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Since mathematical modeling is an extremely
many�sided notion, it can be considered from various
points of view. One of the possible trends in classifica�
tion is by types of problems solved, which can relate to
electromagnetism, thermal physics, elastoplasticity,
fluid and gas dynamics, multiphase filtration, chemi�
cal kinetics, quantum phenomena, dynamic systems,
etc. Noteworthy is the exceptional topicality of inter�
disciplinary direct and inverse problems. In addition,
mathematical formulations can be represented differ�
ently—as differential and/or integral, classic or gen�
eralized, variational and mixed equations.

Another possible approach to this diversity is the
prism of industry�specific applications: machine
building, metallurgy, energy production, geophysics,
weather and climate, ecology and disasters, biomedi�
cine, materials science, and economics and society.
RAS Presidium basic research program no. 1 on stra�
tegic trends in science (competition of 2014) “Basic
Problems of Mathematical Modeling,” available on
the Internet, is largely based on this principle.

The next criterion for classification is computa�
tional methods and technologies used at different
stages of computer experimentation: geometric and
functional modeling, mesh generation, initial equa�
tion approximation, the solution of algebraic systems
obtained, optimization methods for inverse problems,

the processing and visualization of numerical results,
and so on.

The propagation of modeling is prompted by exter�
nal factors, such as the fantastic increase in the perfor�
mance of multiprocessor computing systems (MCSs),
the rapid development of methods of theoretical and
applied mathematics, and the practical needs of the
epoch of reindustrialization and breakthrough sci�
ence�intensive technologies. All this increases the
practical potential of modeling, turning it, on the one
hand, into a third way of cognition along with theoret�
ical and empirical (field) studies and, on the other,
into a crucial condition for increasing labor productiv�
ity and the GDP.

A bottleneck is programmer labor productivity, the
growth of which lags critically behind the growth rates
of supercomputer capacities. Overcoming the long�
overdue crisis of applied programming requires a new
paradigm of its development. The existing long�term
practice is the implementation of applied software
packages (ASPs), either commercial or public, for
concrete classes of problems. Examples of such prod�
ucts are ANSYS [1] and Nastran [2]. Developments of
another type are program libraries that implement a
totality of algorithms for a certain type of computa�
tional tasks. For instance, Netgen [3] is responsible for
mesh generation, PETSc [4] is a suite of algebraic
solvers, and so on. Still another variant, which is
becoming increasingly popular nowadays, is instru�
mental computational systems OpenFOAM [5],
DUNE (Distributed Unified Numerical Environ�
ment) [6], and the basic modeling system (BMS) [7].
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In the case of instrumental computational systems,
we speak about the formation of an integrated open�
source environment developed by a wide community.
It supports all principal algorithmic stages of compu�
tational experimentation and makes it possible to
develop on the fly ASPs, including closed ones, for
concrete and diverse applications. Initial in this case is
not problem�related but methodological and instru�
mental orientation. This approach makes it possible to
overcome the fundamental contradiction between
universality and effectiveness: if algorithms to solve a
specific task (from an admissible wide class) are abun�
dant, one can choose a sufficiently economical imple�
mentation.

The concept of open�source computational sys�
tems is based on the idea that, under the practically
infinite manifold of problems with different individual
characteristics, all of them are described by a finite set
of mathematical models, the solving techniques of
which can be “unscrambled”; the organization of
work with such intellectual objects should be auto�
mated to an adequate extent. The creation of such a
large software complex requires a long lifecycle, an
extensible composition of models and algorithms,
adaptation to the evolution of computer platforms,
interaction with external products, flexible interfaces
designed for users of different professional prepared�
ness, and component architecture that would support
the principles of modular (or assembling) program�
ming. Actually, we are speaking about the creation of a
global high�performance system of science�intensive
technologies of a new generation, aimed at making
cardinal changes in the demand for mathematical
modeling and oriented at ensuring import�substituting
software developments urgent for national security
and highly competitive in the external market.

This article is dedicated to consideration of the
above large�scale and inseparably interconnected
issues: first, the automation of model and algorithm
construction; second, the reflection of the algorithm
structure on the architecture of present�day and future
heterogeneous MCSs; and, third, the development of
component architectures and technologies of creating
very large unified complexes designed to allow applied
software to have not only a high profitability and effec�
tiveness but also flexible potentialities of wide�ranged
use, comparable with the performance and interface
qualities of operating systems or compilers.

AUTOMATION OF MODEL AND ALGORITHM 
CONSTRUCTION IS THE BASIS FOR APPLIED 

SOFTWARE INTELLECTUALIZATION

Irrespective of the subject orientation of the respec�
tive applied software, computational experimentation
passes through similar technological stages.

Geometric and functional modeling. At the first
stage, the user formulates a computation task, which
can include the description of a complex geometric
configuration of a domain consisting of subdomains
with different material properties. If the geometric
objects and operations have long been assimilated in
numerous CAD products (CAD, CAE, CAM, PLM)
and graphics systems, functional modeling requires
operating with formalisms such as equations in subdo�
mains, boundary conditions on border segments, var�
ious coefficients, and so on. In addition to source data,
we should specify what we want to obtain and in what
form. Methods to be applied or even detailed compu�
tational schemes, which unambiguously determine
the process of mathematical modeling in a concrete
environment, may also be prescribed. With the
emphasis on the above aspects, we, in fact, come to the
automation of model and algorithm construction.

The creation of flexible input and output interfaces
for the end user remains a problem. Ideally, such an
interface is represented by a natural�type program�
ming language with the use of both text and graphic
means. Since very different specialists—mathemati�
cians, programmers, engineers, technicians, etc.—
can use the same software, it is obviously necessary to
form a rich variety of applied cognitive means. This, in
turn, predetermines the task to organize a “factory” of
numerous application�specific languages, which the
literature calls Domain�Specific Languages (DSLs)
[8].

Note that already the first stage of computer exper�
imentation shows that the high demand for supercom�
puter technologies requires not only high�perfor�
mance computations but also high�level artificial
intelligence. Work [8] associates this point with trans�
fer from “paleoinformatics” to “neoinformatics.”

Problem discretization. Solution of nontrivial
mathematical equations practically always begins with
constructing a grid. To show the diversity of the ques�
tions that arise in this respect, it is enough to enumer�
ate the most popular types of grids, such as adaptive;
structured, unstructured, and quasi�structured;
matching, nonmatching, and mortar; regular and
irregular; static and dynamic; and so on.

The most effective approaches to discretization are
associated with sufficiently complex discrete objects
and their transformations, including sequences of
hierarchical grids and their local zooms, decomposi�
tions of grid domains into subdomains, dynamic
reconfiguration of grids, and a posteriori and/or a pri�
ori account for the properties of the desired solutions.
Although there are quite a few indicators of the quality
of grids, the determination of the optimal grid remains
a very complicated problem, which practical develop�
ments do not even formulate. The most frequently
used principle of choice is reducible to the empirical
approach—the use of distribution densities of mesh
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nodes proceeding from general qualitative consider�
ations. Individual methodological recommendations
relate to particular cases and are merely prove�the�rule
exceptions. The global applied�software market
simultaneously offers both very expensive and free
mesh generators, which use a certain number of mesh
data structures (MDSs), recognized by the computa�
tional community. Effective use of this colossal mate�
rialized intellectual potential appears a very topical
task.

For a long time, basic and applied problems of
mesh construction have been studied actively using
various variational and engineering approaches. Since
the problem of the optimality of meshes and their
decomposition is extremely multifaceted, it has no
sufficiently strict formulation thus far. We will return
to this issue later; for the time being, let me note that
today we can speak only about constructing “good”
grids, i.e., those meeting approbated but rather
numerous qualitative and quantitative criteria: trian�
gles must not have angles that are too small, the vol�
umes and areas of cells must not degenerate, etc.
These criteria are either obtained from theoretical
evaluations or derived purely empirically, which has
even led to the opinion that one should construct
“beautiful” grids, and, hence, it is quite natural to use
visualization means to control mesh generators.

At the descriptive level, we can define the quality of
mesh adaptivity, which is at least desirable, even if not
mandatory: the nodes and edges of the sectionally
smooth boundary of the computational domain must
coincide with the nodes and edges of the grid, and the
steps of the grid must be smaller where the derivatives
of the desired solution are relatively large. The latter is
calculated either on the basis of a priori theoretical
evaluations or proceeding from a posteriori analysis of
intermediate numerical results. We stress that the
observance of these requirements can, as a rule, save
by many times the total computational resources for
obtaining a solution with the desired precision.

Discretization is a technological stage important
for both resource intensity as a whole and computa�
tional resolution, which largely determines the success
of modeling. This is especially true of problems with a
complex spatiotemporal behavior of the solution,
including actual situations with strongly multiscale
characteristics. Therefore, mesh generation is a highly
intelligent methodology; the lack of substantial theo�
retical and algorithmic results makes us orient not
toward automatic but toward automated mesh con�
struction accompanied by immediate visualization
and the participation of an expert in controlling the
computational process.

Approximation of equations. When, after the previ�
ous stages have been executed, an MDS is formed,
which, together with the geometric and functional
data structures (GDS and FDS), reflects all informa�

tion about the initial problem at the discrete level, it is
time to approximate it. The result is a system of finite�
dimensional algebraic relations—an algebraic data
structure (ADS) that can effectively use widespread
matrix representations for sparse algebraic systems. As
an example, let us give the Compressed Sparse Row
(CSR) [9].

The operations performed in this case turn out to
be the most science intensive and are represented by
diverse theoretical approaches: finite�difference,
finite�volume, and finite�element methods (FDM,
FVM, and FEM) [10, 11]; different spectral algo�
rithms; integral equation methods; and so on. The log�
ical complexity of “approximators” particularly
increases when methods of a high order of accuracy
are used, especially on unstructured grids, formulas
for which take several pages. It is this circumstance
that hinders their wide occurrence despite their signif�
icant advantages.

The cardinal solution to this situation is the use of
artificial intelligence potentialities, namely, the means
of automating analytic symbolic transformations. In
principle, such tools are present in large specialized
systems of the Reduce or Maple type and are success�
fully used, for example, in the FEniCS and Helmholtz
packages [12]. In the above cases, the problem is sim�
plified by the FEM� and FVM�based unique polyele�
ment technology of independent and easily parallel�
ized computation of local matrices with subsequent
assembly of the global matrix. Moreover, in proceed�
ing from the additive methodology, it becomes possible
to embrace the issues of accounting for boundary con�
ditions of various types, autonomous approximations
of standard differential Laplace operators, divergence,
rotor, gradient, and so on, as well as their integral ana�
logs in generalized variational formulations.

Solving algebraic problems. At this stage, various
matrix–vector operations are performed that require
the largest computer resources because the volume of
arithmetic operations and necessary memory often
grows nonlinearly here with growth in the number of
degrees of freedom of the problem. The performed
computations may imply implementing recurrent
sequences, solving systems of algebraic equations (lin�
ear, SLAEs, and nonlinear, SNAEs), solving eigen�
value problems, and realizing optimization algorithms
for mathematical programming. These tasks consti�
tute vast fields of computational algebra, characterized
by the colossal diversity of conceptual approaches,
concrete versions of methods, and particular ways of
their application. It is here where issues of paralleliz�
ing algorithms and reflecting them on MCS architec�
tures, particularly on cluster systems containing heter�
ogeneous nodes with classical and specialized proces�
sors, arise.

The international market offers a colossal amount
of algebraic software, which is continuously updated
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and expanded due to adaptive modifications for new
computer platforms and architectures and the rapid
development of new algorithms. Rapid growth and
continuous updating create the problem of the coordi�
nated reuse of the existing products. Note that there
are serious achievements in this area: standard univer�
sal data structures and libraries with the basic set of
matrix–vector operations (BLAS, SPARSE BLAS)
[9].

The diversity of algebraic methods is due, first, to
the different types of the participant matrices—Her�
mitian and anti�Hermitian, real and complex, sym�
metrical and antisymmetrical, degenerate and nonde�
generate, positive�definite and indefinite, and so on.
Matrices of all types are divided into dense and sparse,
and approaches to their processing are significantly
different. Moreover, the choice of optimal algorithms
largely depends on structural properties of matrices
(band, triangular, etc.), as well as on their dimension�
ality (the notion of “large” matrices continually
changes depending on the capacity of the current gen�
eration of computers and, in the postpetaflops era, is
related to 109–1012 orders of magnitude). Especially
difficult are poorly worded problems with a strong
instability of numerical solutions relative to inherent
or computer round�off errors.

The most effective modern algorithms are charac�
terized by a high logical complexity: multigrid
approaches, domain decomposition methods, variable
sequence optimization or matrix scaling techniques,
and so on. We can state that the most resource�inten�
sive algebraic methods also require the active use of
artificial intelligence.

Optimization approaches to solving inverse prob�
lems. Although solutions of direct problems of mathe�
matical modeling that require finding desired func�
tions at all given coefficients of equations and initial
and final boundary conditions can be of high compu�
tational complexity, they are usually only a part of the
difficulties associated with the solution of an inverse
problem. The latter is characterized by the fact that
some of its initial data depend on unknown parame�
ters, which should be found by minimizing the
described objective functional under certain addi�
tional restrictions on the problem' properties. For
example, when computing technical devices or instru�
ments, the engineer usually aims not only at studying
their properties but also at the computer�assisted
design of optimal configurations that would ensure the
required characteristics. In addition, practically
always there are additional restrictions associated with
the size, weight, or other functional conditions.
Another characteristic example of an inverse problem
is identification of the parameters of a mathematical
model based on comparison of the estimated results
with the data of field (indirect) measurements.

The main universal approaches to solving inverse
problems are based on the use of conditional minimi�
zation methods, which imply a guided sequential
search for a local or global minimum, the intermediate
values of the objective functional being computed at
each step, which is none other than the solution of a
direct problem. Consequently, in the general case, the
solution of an inverse problem requires repeated solu�
tions of direct problems.

In recent decades, optimization methods have
been developing actively, giving rise to new trends,
such as algorithms of internal points, sequential qua�
dratic programming, and confidence intervals [13].
Note, however, that the minimization of functionals
with complex geometric characteristics, especially of
the ravine type, is something at the interface of science
and art; this is why a fully automated computational
process is possible only in the simplest situations. In
fact, even in this case, highly intelligent technologies
are necessary, implying step�by�step implementation
of the entire problem in dialogue with the user, who,
proceeding from his experience, should control the
behavior of sequential approximations and govern the
parameters of algorithms to achieve the ultimate goal
as soon as possible.

The postprocessing and visualization of results.
Computational process control and decision�making
tools. The results of algebraic computations lack any
physical meaning and obviousness, primarily owing to
their large volumes. For example, FEM makes it pos�
sible to obtain coefficients of the expansion of required
solutions by the basic functions used in grid cells,
while the user needs a compact and illustrative picture
of multidimensional vector fields. Hence, applied
software should have a developed set of instruments to
form typical representations, such as isosurfaces, force
lines, cross sections, various graphs, and so on. This is
the first requirement. The second one is associated
with the fact that one cannot foresee everything, and
an intelligent modeling system should contain means
of automating the programming of various possible
characteristics of final data. Finally, the third factor is
the possible diversity of the professions of end users,
who want to receive a comfortable representation of
the results of using the computer, which determines its
production effect.

Importantly, even ideal applied software does not
eliminate the fact that computer modeling of compli�
cated processes or phenomena is a multifold creative
activity. For example, to study some applications sys�
temically, you should first make sure that the models
and methods applied meet the specifications; for this,
it is necessary to perform test computations first and
then to analyze whether the obtained data are ade�
quate. Then it comes to the studies proper, which can
be a large�scale machine experiment preceded by
planning and method selection procedures. The latter
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is unattainable without providing for flexible possibili�
ties to compile computational schemes, which implies
the creation of respective languages (declarative or
imperative) to control computational processes.
Finally, since modeling is not an end in itself but a tool
for cognitive or production activity, then, to ensure
decision making in line with computational results,
the applied software should contain either some cog�
nitive principles or means of connecting to CAD
infrastructures, or technologies of supporting and
optimizing the operation regimes of concrete pro�
cesses. However, these issues are beyond mathematical
modeling proper.

PARALLELIZING ALGORITHMS 
AND REFLECTING THEM ON MCS 

ARCHITECTURE

One of the main trends in the development of com�
putational sciences and technologies is convergence of
algorithmic structures and computer architectures.
Since the latter of the above sides of the process turns
out to be outside the topic considered in this article, let
us limit ourselves to analysis of cluster systems with
heterogeneous nodes that contain classical (central)
and graphic processors with numerous compute cores,
which implement algorithms using hybrid program�
ming with the organization of Message–Passage–
Interface (MPI) processes in distributed memory and
multithreaded operations in shared memory.

Some general issues of parallelization. A universal
requirement on applied software is the absence of soft�
ware restrictions on the number of degrees of freedom
(d.o.f.) of the problem under solution and the quantity
of the processors and/or cores used. Note also the
important algorithm parallelization characteristics
such as weak and strong scaling. Weak scaling means
that computation time remains practically the same
under the simultaneous increase in d.o.f. and the
number of computing devices, while strong scaling is a
proportional decrease in the time of a fixed problem
with the growth of the number of computers.

Ideally, a solution to the problem of the automation
and optimization of algorithm parallelization should
be sought through the simulation modeling of a com�
puter system as a whole. However, this is too compli�
cated; this is why one has to employ semiempirical
techniques or the simplest models of computer calcu�
lations. Examples of parallelization characteristics are
two values: the coefficients of computational speedup
and processor utilization efficiency:

where  is the time of performing a task or an algo�
rithm on processors (p). The ideal situation is when
the value of  is directly proportional and  is
equal to unity; in practice, however, we often have to
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content ourselves with efficiency factors of several per�
cent.

The development of supercomputer technologies
proceeds in two main directions: high�performance
computing (HPC) and working with Big Data; note
that the convergence of these two trends (intensive
data computing) has been observable of late. Overall,
the evolution of MCS generations and extremum
modeling problems is accompanied by similar growths
of RAM speed and capacity (the number of tera� or
petaflops is quite similar to the number of tera� or
petabytes of the computer).

The main goal in programming parallel algorithms
is to minimize information exchange because total
problem time  equals the sum of two addends:

where  and  are the average times of one arith�
metic operation and one number transfer,  is the
number of arithmetic operations,  is the number of
memory accesses,  is exchange operation delay (set�
ting) time, and  is the average volume of one array
under transfer. We should bear in mind the character�
istic relation . The requirement on
decreasing data transfer is explained not only by the
necessity to increase the speed but also by the energy
consumption of communications.

The above makes it clear that the notion of the
quality of algorithms changes for large tasks: out of the
two methods compared, the best is not the one that has
fewer computations but the one that is realized quicker
on MCSs of the type under consideration. In other
words, there appears a new concept of computation
optimization based on the search for approaches that
significantly decrease the volume of data transfer
between the processors, even if they increase the num�
ber of arithmetic operations.

The term large problem requires a formal defini�
tion. In this case, we mean a problem that requires
much computing time. In a sense, this notion is an
invariant relative to the generation of the computer. In
addition, it is necessary to concretize the category
“extreme modeling,” i.e., solving large (or superlarge)
problems on supercomputers, such as, for example,
MCSs that, in terms of power�related indicators, are
ten times inferior to the last computer from the current
world TOP�500 list.

Speaking about intensive computations, one can�
not but mention the basic problem of stability to
round�off and inherent errors. Let me limit myself to
stating that solving very “bad” or ill�defined (so�called
stiff, ill�posed) problems requires specific conditions
for result accuracy control and, quite often, the search
for special algorithms. Except for such exceptional sit�
uations, the estimated errors are determined by the
length of the mantissa in the floating�point number

T

( )= τ = τ + τ0, ,a a a c c cT N T M N

τa τ c

aN
M

τ0

cN

τ τ τ0 c a� �



HERALD OF THE RUSSIAN ACADEMY OF SCIENCES  Vol. 86  No. 2  2016

FUNDAMENTAL ISSUES OF MATHEMATICAL MODELING 123

representation. At present, for moderately and highly
complex problems, “double�precision” arithmetic
operations are universally used, which corresponds to
a 64�bit machine representation of real numbers. On
the one hand, this significantly simplifies algorithm
optimization; on the other, optimization�related
issues are simply put outside the brackets. The ideal
solution would be the use of variable word length;
however, this strategy is viewed today as a distant pros�
pect.

The last point of interest is the necessity to over�
come the mental complex when we have no supercom�
puter “within reach.” With modern cloud technolo�
gies, it is sufficient to have Internet access to the com�
puting center for collective users (CCCU, or Data
Center). Of course, to intellectualize the user inter�
face, the workstation should be equipped with special�
ized means; however, this is outside the scope of this
article.

Characteristic features of the parallelization of
technological studies. Parallelization tactics at each
computation stage are determined by the volume of
data and the number of operations. The stage of geo�
metric and functional modeling, substantial in intel�
lectual loads and crucial for the user input interface,
deals with macroobjects, which should not be too
many (tens, hundreds, or, at worst, thousands).
Hence, it seems desirable to do without exchanges,
copying the computations in all MPI processes and
storing in them the geometric and functional data
structures obtained.

Mesh generation may formally be represented as
data transformation: GDS + FDS –> MDS; note that
the mesh data structure for the entire computational
space can be of great volume. Due to this, it is natural
to create an MDS by each MPI process for “its” mesh
subdomain (with a certain overlap). The formation of
distributed data at the initial stage is reasonable, the
more so that the decomposition of domains is the main
instrument of parallelization. However, since the esti�
mated mesh domain should also be identified as an
integral object, all its nodes and other elementary
objects (edges, faces, cells) should be numbered
twice—locally by subdomain and globally. Decompo�
sition problems can employ two tactics: subdomain
construction, which precedes mesh generation (for
example, it is natural to separate media with contrast�
ingly different material properties), or the direct for�
mation of mesh subdomains. We should also bear in
mind that many effective algorithms are based on spe�
cial rearrangements of components (one may speak
about this task in terms of graphs as well), and all the
respective procedures should be accessible for all MPI
processes, or subdomains, which, overall, will sub�
stantially reduce data exchange. The popular software
packages METIS and PARMETIS are effective rear�
rangement instruments.

The most computationally complex are moving
boundary problems, because they imply that adaptive
grids are dynamically reconfigurable as well. Many
economical methods are based on local zooms and
multigrid approaches, whose instrumental support
should also be distributed.

Upon obtaining distributed data arrays, reflected in
MDS, GDS, and FDS, one can in parallel approxi�
mate the initial problem. For this purpose, FEM and
FVM have a unique technology of computing local
matrices and assembling the global matrix. Since the
“approximator” works in parallel by subdomain, or
MPI processes, with already distributed necessary
data, the obtained matrix–vector structures must be in
their subdomain; hence, this stage can be realized per�
fectly in the absence of exchanges. Principal opera�
tions performed by mesh cells independently of one
another can be parallelized effectively using multi�
threaded computing. In nonstationary problems, as
well as in nonlinear or optimization computations,
approximations are repeated; however, from the point
of view of adaptation to computing devices, this usu�
ally changes nothing.

The most important intermediate element in solv�
ing algebraic problems is linear systems; this is why we
will focus on them. Special attention should be paid to
very large SLAEs with sparse matrices, which emerge
after the FEM� or FVM�assisted approximation of
differential or respective variational multidimensional
problems on unstructured grids. From the point of
view of the classification of algorithms, the SLAEs
under solution can be divided into two major classes—
special and general ones. For the former, which com�
prises systems that emerge in boundary value problems
with separable variables, there are superfast direct
and/or iterative problem solvers, like the fast Fourier
transform or alternating direction implicit methods
with optimal sets of iterative parameters [10], which
have been in demand over the last decade due to actual
Lyapunov and Sylvester matrix equations.

Direct methods for large sparse SLAEs of the gen�
eral type are improving actively; however, even in the
most advanced versions of the popular Pardiso [9] and
MUMPS programs, their applicability is limited,
mainly because of their requirements on the RAM vol�
ume. The main tool for a parallel highly productive
solution of SLAEs of this type is iterative additive
domain decomposition methods (DDMs), which are
covered in the multitudinous special literature (for
example, see the review in [14]) and have been dis�
cussed at 23 major international conferences. The
essence of these decomposition methods is dividing a
computational mesh domain into subdomains with
parametrized intersections (in the particular case,
without intersections), at the internal boundaries of
which certain interface boundary conditions are set to
determine informational interrelations between
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neighboring subdomains. In the simplest case, itera�
tions are formed according to the Jacobi decomposi�
tion method, which implies solving auxiliary SLAEs in
subdomains simultaneously with data exchange
between them. To accelerate this process, optimal
algorithms in Krylov subspaces are primarily used. For
further increase in speed, various two� or multilevel
approaches are employed, such as deflation, aggrega�
tion, coarse�mesh correction, low�rank matrix
approximations, etc.

To attain scalable parallelization, hybrid program�
ming technologies are used: MPI processes are formed
over the memory distributed by computational nodes,
one per subdomain, inside which multithreaded com�
putations are performed using OpneMP in common
memory. Note that substantial acceleration is achiev�
able if interprocessor exchanges are matched with syn�
chronous performance of arithmetic operations in
subdomains. A separate problem is how to use effec�
tively universal graphics accelerator cards with a great
number of computer cores but relatively slow commu�
nications (General Purpose Graphic Processor Units,
GPGPUs), as well as advanced field programmable
logic devices (FPLDs) or free programmable gate
arrays (FPGAs).

The adaptation of modern decomposition methods
to the existing computer platforms is, in terms of phi�
losophy and methodology, a problem of reflecting
algorithms to the MCS architecture. This basic (in
terms of significance) scientific trend is largely exper�
imental, and only numerous comparisons of the mea�
surements of real productivity can be the foundation
for elaborating practical recommendations on solving
classes of problems.

The postprocessing and visualization of computa�
tional results is a sphere most favorable for paralleliza�
tion. With its seeming mathematical simplicity, this
technological stage is key to the success of large mod�
eling projects. High�quality color graphics, especially
with dynamic scenarios and repeated control of inter�
mediate data, requires significant computer resources
and, in a large�scale computational experiment, can
take the lion’s share of machine time. Since one of the
main requirements on the quality of visualization is a
high speed of image generation, a natural technical
solution is the use of high�speed GPU graphic proces�
sors. An important feature of visualization is that the
resultant multidimensional vector fields, which should
be graphically presented to the user, are distributed
over hierarchical memory units of different processors.
Another circumstance is related to the presence of a
large number of professional graphic products (Visual
Studio, Open GL, and so on), and one of the main
problems for developers of a modeling system is their
effective reuse.

From the point of view of large�scale paralleliza�
tion, optimization methods and computational exper�

imentation control are a superstructure over resource�
intensive computing stages, and we can expect no spe�
cial problems here, although the decisions made at the
upper block level play a significant role in reaching the
final high performance.

THE COMPONENT ARCHITECTURE
OF THE INTEGRATED ENVIRONMENT

OF MATHEMATICAL MODELING

The roadmap of Jack Dongarra’s international
committee (International Exascale Software Project,
IESP) emphasizes that the rise of exaflops supercom�
puters with several million computer cores by 2020
requires the creation of a new programming paradigm
and large�scale developments, which are possible only
under wide and well�coordinated international coop�
eration [15]. In the sphere of mathematical modeling,
this challenge requires forming and implementing
principles of constructing applied software of a new
generation, namely, creating an integrated instrumen�
tal environment that would support all stages of sci�
ence�intensive experimentation and serve as the basis
for operational developments of software packages for
concrete applications and users. This method–prob�
lem–oriented complex should constitute a new gener�
ation of applied software, which is being created by
numerous groups of developers on the basis of coordi�
nated technologies and data structures. The large�
block configuration of this globalized project, which
can be called the basic modeling system (BMS), is
determined by the computational stages considered
above from the functional point of view.

The BMS concept and principles of constructing
major instrumental blocks are considered in works [7,
16–20]. This project is based on the following provi�
sions:

• the BMS is created as a rich and even abundant,
but by no means minimal set of computational meth�
ods to solve a wide range of applied problems, includ�
ing inverse and interdisciplinary ones, with possibili�
ties of a flexible choice and optimization of algorithms
proceeding from the properties of a concrete problem
to be solved;

• the composition of algorithms and mathematical
models is extensible and operationally replenishable,
among other things, by using external software prod�
ucts;

• program implementations of modules are
adapted to the evolution of computer architectures
and platforms, opening up prospects for a long lifecy�
cle of the BMS;

• ensuring internal and external programming
interfaces, as well as interaction with users, is based on
the multiple representation of data structures with the
active use of their conversion and specialized lan�
guages;

1
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• algorithms are realized as oriented to mass scal�
able parallelization, without software restrictions on
the number of degrees of freedom of a problem and the
number of processors and/or cores used and on typical
technologies of large problem solutions—cloud com�
putations on CCCU supercomputers.

As for the BMS architecture, each of its structural,
or stage, blocks is actually an extensible library of algo�
rithms and programs, i.e., an integrated and suffi�
ciently autonomous environment for a respective
method–environmental niche. Let me stress that the
blocks are constructed on the principles of the multi�
plicity of both data structures and algorithms for solv�
ing particular subtasks. For example, this multiplicity
can include implementation multiversionality in dif�
ferent programming languages or for different com�
puting devices (central of graphics processors). The
functionally oriented blocks under consideration can
be elaborated practically independently from one
another (and even be operated as independent prod�
ucts in other production conditions), and interaction
between them is determined only by interface data
structures (GDS, MDS, ADS, and so on).

The component technologies that have widely been
used for several decades, such as Common Object
Request Broker Architecture (CORBA) [21] and
COM/DCOM (Distributed Component Object Man�
agement) [22], are in a sense the development of
object�oriented programming; however, they do not
realize the duly high performance of science�intensive
computations with scalable parallelism, complex types
of data, and multilingual program modules. To over�
come these limitations, the Common Component
Architecture (CCA) Forum [23] was organized in
1997, which set the task to determine the main stan�
dards, instruments, and technologies. The US
Department of Energy established the Center for
Component Technology for Terascale Simulation
Software (CCTTSS), which, jointly with leading
national laboratories, created a number of instrumen�
tal means within the CCA specifications [24]. Among
such developments, noteworthy are the scientific
interface definition language (SIDL) [25], which is
the generalization of the IDL language from the
CORBA project to support multilingualism, including
F77, F90/95, C, C++, and Python, implemented in
the Babel Team [26], as well as the instrumental com�
plex CCAFFEINE [26] for conducting technological
operations in hierarchical distributed memory. Today
there are already a number of publications on the
results of the successful use of component technolo�
gies for serious applications. An example is the SPAR�
SKIT software package [27] upgrades within the CCA
methodology to solve problems of linear algebra, as
well as interface standards to solve equations, devel�
oped in the SANDIA (United States) national labora�
tory [28].

Overall, the ideas of computer architectures echo
other programming technologies—modular, assem�
bling, and fragmentary ones. In recent years, the trend
of service�oriented architectures (SOA) has appeared,
which also implies a cardinal increase in the automa�
tion (and, consequently, productivity) of the labor of
programmers. This is largely associated with the
reduction of the times of the labor�intensive software�
debugging process, which includes repeated passes of
test routines and the search for inevitable technical
errors. The developer must code the algorithmic mod�
ule only according to the specified requirements on
the representation of input and output information,
while the programming system should ensure its cor�
rect execution within the entire complex irrespective
of the operation system and computing device that will
launch it (platform independence).

The property of multilingualism here is no less
important for two reasons: the first is provision for the
possibility to reuse third�party modules in the BMS;
the second is determined by the tendency to create
new languages customized for writing algorithms of
certain classes quickly. Such natural or functional lan�
guages with a wide use of not only imperative (com�
mand), but also declarative, styles significantly
increase the intellectuality of human–computer inter�
action and are ultimately aimed at increasing the
effectiveness of modeling. The automation of algo�
rithm parallelization at the language level remains an
attractive prospect, but numerous attempts have not
led to the development of a commercial product thus
far.

* * *

Because of the increased complexity of tasks in
basic research, as well as in breakthrough industrial
and social technologies, the globalization of mathe�
matical modeling on supercomputers has become a
major requirement of scientific–technological
advance. However, we should, first, bear in mind that
its wide�scale introduction requires the solution of a
great number of production, organizational, and per�
sonnel issues [29] and, second, distinguish between
modeling problems proper and those relating to disci�
plines and industries in which it is used. We can draw
the following analogy: mathematicians study mathe�
matical objects; theoretical physicists actively use var�
ious formulas and methods for their purposes but do
not prove theorems. At present, instead of the qualita�
tive analysis of the properties of differential or integral
equations, on which physicists often spend their time
(although, in reality, this is possible only in the sim�
plest cases), they can take a “smart” applied software
product and obtain quickly and graphically the neces�
sary results, investigating all possible variants on the
fly. The same is also true of engineers engaged in opti�
mizing a device under design. However, even if there
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exists a perfect instrument of modeling, the art of its
effective use is the problem of users in concrete subject
areas, which also requires close attention on the part of
researchers.
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