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Consider the ',ysfern of linear algebraic equations
(SLAE)
Au=J). w={uw}, fi={f}eR
A= {ai,j} E'RN'N,

for whic’i iere is a converging stationary iterative pro-
cess

(1)

n+l

u Bu" +g, g=U-B)A"F @

wit) - transition matrix B that has the eigenvalues A,(B)
ari# he spectral radius p = max { [A,(B)|} < 1. Then the
: q

n
umu,

v ctor u solves the system
Au=(I-B)u = g, (3)

where [ is the identity matrix and A is the precondi-

‘rned matrix with respect to A. If A is a symmetric
sositive definite (SPD) matrix, then it has the spectral
condition number

<= laJal, - 122 @

fa—

and SLAE (3) can be solved by an iterative conjugate
gradient method (see [1-4]):

0

rozg—Au, P =r“; =0 10

ur=+ 1 = un + a'(:)pn’ rn+ 1 e ru - ai.r)/’ipn’ (5)
prl-H = rn-l-l 3 ﬁf:)]?n, = O, 1’
which is optimal in the Krylov subspaces I, , ,(*, A) =

span{p®, Ap® ..., A"p°). In the conjugate gradient
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(CG) and conjugate residual (CR) methods, the itera-
tive parameters o.” and B'” in (5) are defined as
“S.n a 15 n+l a+l
gl LATE)  gov (A o1 ) A
(Ap", A'p") (Ar',r"
Here, s =0, 1 for CG and CR, respectively. These algo-

rithms generate the residual 7 and direction p" vectors
with the orthogonality properties

(A'F", rk) = (A", LA

0 e 1.1 IS . an (7)
(AP’AP ) = (Ap :AP )6n,k

and minimize the functionals ®'” () = (A"~ 1, )

(s=0, 1) in Krylov subspaces. To reduce these func-

@, (")

tionals according to the condition P g*< 1, the
o (r

required number of iteration is estimated as

f 2
n(e)s1 +(lnl+—8-1—_i) ;/]—_:—:ﬁl(

If A is nonsymmetric but positive definite, i.e.,

(Au, u) = 8(u, u) for & > 0 and u # 0, then system (3)
can be solved by the semiconjugate residual (SCR)
method, which is a stable modification of the general-
ized conjugate residual method described in [5]. In
SCR the vectors u"*! and 7" *! are calculated by formu-
las (5), where the coefficients o, are determined by (6)
at s = 1 and p"*! are determined by the “long” recur-
sions

fIny, Y= (8)

n+1,0 _ n+l a+ 1 _ o n+li1-1 -1
=0k s P = P _Bﬂ,.’p ’
l's 1,2, 0oy
S0 7 oa+vli=] (9)
_ (Ap,Ap ) n+l _ 4l
Bn,l’ i A ] L] [} =P g
(Ap,Ap)
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HIV-1 can become resistant to nucleoside analogs by developing an
enhanced ability to excise the analogs after they have been incorporated.
Excision requires that the analog be located at the 3’ terminus of the
primer. We have describe nucleoside analogs that do not block DNA
svithesis at the point of incorporation, but only after additional dNTPs
have been added to the DNA. These nucleoside analogs are called

‘delaved chain terminators” and are relatively effective inhibitors of
drug rwiat.‘.m HIV-1 transcriptases (RTs) that are excision
However, the first delayved chain terminator that we
characterized was poorly },-I‘ltssl;‘.ﬂrﬁ'ﬂ‘ltt‘d in cultured cells. We have
examined other nuclecside analogs to determine whether these com-
pounds also act as delaved chain terminators, but were more efficiently
converted to the triphosphate form by cellular kinases.

These analogs contain subslitutions on the deoxyribose sugar ring at
the 4’ carbon (4'C-methyl dT and 4'C-ethyl dT). Unlike true delayed chain
terminators, which terminate DNA sy nthesis in a spatial sense (DNA
synthesis is halted only after additional dNTPs have been incorporated
after the analog) 4'C-methyl dTTP causes a pause in DNA synthesis at
the point of mcorporation How ever, HIV-1 RT can ev entually ‘extend the
primer blocked by the 4 C-Me dTMP analog. 4'C-methyl dTTP blocks
IM™NA synthesis i a i mporal sense, rather than in a spatial sense. A
primer hlocked by 4'C-ethyvl dTMI is not extended by HIV-1 RT, and this
com pm md acts like a conventional chain ter minator, deqplte the presence
of a 3-OH group. These .wwp' unds effectively block the replication of an
HIV-1-based vector tiat replicates using wild-type HIV-1 RT, but only in
the presence of herpes simplex virus h\mhhne kinase (HSV TK). These
compounds are offective against many NRTI drug-resistant RT variants;
however, the M184V mutant is relatively resistant.

Published by Elsevier Ltd.
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Introduction

Although there are a large number of anti-HIV-1
drugs, the virus can develop resistance to all of the
drugs. A major class of reverse transcriptase (RT)
inhibitors is the nucleoside analogs (NRTIs), which
act as chain terminators of viral DNA synthesis
when incor pmated dutmg reverse transcr:ptmn An
important mechanism of resistance to NRTIs is that

Elsevier Ltd.
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Formulas (5) and (9) produce A’A-orthogonal vec-
tors p°, p', ..., p"*! (A" denotes the transpose matrix)
by using modified Gram—Schmidt orthogonalization
[6]. In this case, the functional @i”(f‘) = (r% )18
minimized in %, , ,(°, A) and the residual vectors 7

are right semiconjugate in the sense that (Ar,m=0
for k < n.

MULTIPLICATIVE PROJECTION METHODS

Denoteby Q= {i=1,2, ..., N} the set of row indices

of Aand by Q, (p=1,2, ..., ) its disjoint subsets with
!
the numbers of elements m, such that Q=1Q, and
p=1

m; + ... + m; = N. Accordingly, we introduce the
mp-dimensional subvectors ug,, f( p=12,...,Hand
the rectangular m, X N submatrices A,

”’(p) = {ui! e Qf‘}, f(p) = {fi! ie Qp}i

) (10)
A = {A,ie Q‘,,},

where A, is the ith row of A. Then SLAE (1) can be writ-

ten as

A(I;)u = f(p)s P = 1, 2, aiy [, (11)

To solve it, we consider an iterative process in which
the computation of every nth approximation consists of
[ steps:

n, p np-1 + _nmp-1
uw' =u + WA 7 T TR (15—
" () -/ (12)

Here, 1”9 = {u? ,i=1,2,..., N} is the initial vector, @

is an iteration parameter, 7(,) ™" = fi —Agywt? 1 is the
residual subvector of order m,, and A is the pseudoin-

verse of A, defined as A{,) = A, (A, A, )" (if A, is
of full rank m).

It follows that - AZ’P)A({,) is the symmetric positive
semidefinite matrix of orthogonal projection onto the
pth subspace, which is geometrically represented as the
union of the subspaces defined by the rows A;, i € £,

[terative method (12) can be written in matrix form as

n n-1

W =Bu" '+g, B=(-T)...A1-T)),
8 ) I | 1 (13)
Tﬂ = mA(p)A(p)'

When @ = 1 and m, = 1, projection method (12),
(13) becomes Kaczmarz’s “pointwise” algorithm pro-
posed in [7]. It was generalized and studied by different

authors (see [8, 9]).
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In [10] the following result was proved for an
abstract iterative multiplicative projection method of
form (13).

Theorem 1. Let T, (p= 1,2, ..., ) be SPD matrrices,
and let v € RY be an arbitrary vector such that

Ly
L) et i 1B el
(v, v)

I
Ivi<BY, (T,v, v).
p=1l
Then the 2-norm B in (13) satisfies the estimate
2-0

Bl<p =1- ;
Mi=e BLL+all(l-1)/2]

If the matrices T, = w™'T,, satisfy the conditions

(Tpv> V)

(v, v

Ivl £BUT v, v) + ... + (Thv, v)]

S0<2,

. 1
for all p, then the choice of © = ——— yields p =
o/l -1)!
1-@3pan
Note that, since 7, is not permutable, the transition

matrix B of iterative process (13) is not symmetric.

Now consider Kaczmarz’'s alternating block
method, in which every iteration consists of two half-
steps. The first is given by formulas (12) or (13), while
the second consists of similar computations in reverse
order with respect to p:

n,p—1

n+1/2, p np=1 +
i) =13 +QA G s P = 1. 2y sy L

n+1/2 n+ 12,1 n+1/2,1+1
i = U = U 3
+1 +172,p+1 + 112, 1 (14)
n+l,p _ .n L p + _n . D+
U = U + (OA“,)?‘(P) S
1 +1,1
P bl g dl, & s=a

The transition matrix in iterations (14) is the matrix
product B = B,B,, where B; denotes B in (13) and B, has
the form

Wt = B,Bu"+¢g,
B = (=T~ Tl =15 = By

Under the assumptions of Theorem 1, each of the
matrices B; and B, satisfies the estimate ||B,|| < p.
Therefore, for the transition matrix of alternating
method (14), we have ||B|| < ||B,]l - |IB,ll £ p* < 1.

Since method (14) can be represented in the form of
(2) with a SPD matrix B, the convergence of the itera-
tions can be accelerated by formally applying conju-
gate direction algorithms to preconditioned SLAE (3),
which yields the following result.

(15)
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Theorem 2. Under the assumptions of Theorem 1,
the alternating multiplicative projection conjugate gra-
dient methods (AMPCGM) defined by (3), (5), and (6)

at s =0, 1 and by relations (14) and (15) converge and
2

+P
L=p

n(e) satisfies estimate (8), where K = and p is

2
defined in Theorem 1.

Now consider the sequential projection semiconju-
gate residual method (SPSCRM), which is an alterna-
tive to AMPCGM and is based on the acceleration of
algorithm (13) with a nonsymmetric transition matrix B
by applying iterations in Krylov subspaces by formulas
(5) and (9), where the preconditioned matrix is deter-
mined by (3) and (13). A specific feature of SPSCRM
is that, like in the GMRES algorithm [4], all the previ-
ous vectors p°, p!, ..., p" have to be stored to determine
1"+l These two methods have identical convergence
properties, since they both ensure the minimality of

®'" () in the subspace ¥, ,,(7°, A). The following
result holds for the given multiplicative method.

Theorem 3. Suppose that the multiplicative
SPSCRM algorithm defined by formulas (3), (5), (6) at
s = 1 and by (9) and (11)—(13) has a diagonalizable

matrix A = XAX", A = diag (A, Ay, ..., Ay), where ),
are the eigenvalues of A and X is a square matrix

whose columns are the corresponding eigenvectors.
Assume that the conditions of Theorem 1 hold.

Then this method converges and n(g) satisfies the

estimate
1 [y Toa
n(e)< 1+ [ln—fﬂ]/mﬁ,
1 T2
£
£ = ————.
Axl, - Ix7'12)

Here,V,=a+ az_dz;,h=c+ A/czudl;andc,d, and
a are the coordinate of the center, the focal distance
(d* < ?), and the major semiaxis of an ellipse in the
complex plane that contains all .

Note that, like for GMRES, modifications with a
constrained number of stored direction vectors can be
designed for SPSCRM. This reduces the computational
costs per iteration but increases n(g).

ADDITIVE PROJECTION METHODS

Versions of Cimmino’s iterative method were con-
sidered in [11-13] (see also the references therein). Its
elementary step, as in Kaczmarz’s algorithm, consists
of projecting a point of an N-dimensional space onto
the hyperplane described by the ith equation of the orig-
inal SLAE. However, these operations are sequential in
the former case while being simultaneous in the latter:
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for a given approximation u", all the projections w"’
onto the hyperplane A, are found, and the new u"*! is

determined as their linear combination. This additive
projection algorithm in its block version for solving
SLAE (11) is written as

n-1

np o _ n + _
S +A(.")r(p) s P = 125 il
el B e w@t (16)
u = :
l
which is equivalent to the matrix form
!
u*' = Bu'"+g, B = I—r‘zA:,,)A(p)
o (17)

I !
| 1
=7-1 ZTP, g="r ZA?,,)f“,).

p=1 p=1

Obviously, the limiting vector of this iterative pro-
cess u = limu" satisfies the preconditioned system of

n=0

equations

1 !
Au = f1 A= ZT"‘” f = zAL’)f{I?)' (18)

p=l p=1

The eigenvalues of A are estimated as follows (see [10]).

Theorem 4. Let 0 < ou <2 and 0 < p < 1 be the same
as in Theorem 1.

Then the eigenvalues MA ) of the matrix A in (18)
satisfy (—2_—“)4(1—"” <MA)<al.

This assertion implies the following result.

Theorem 5. For conjugate gradient methods (5),
(6) as applied to SLAE (18) of the additive projection
algorithm, estimate (8) for n(e) holds true, in which the

condition number K(A) satisfies the inequality ¥ <
4ol
(2-o)(1-p)’

Obviously, multiplication by A in this algorithm
corresponds to one iteration in Cimmino’s block
method (17).

Remark 1. Theorems 2 and 5 imply that the additive
projection method converges more slowly that the mul-
tiplicative one. However, additive algorithms are more
advantageous in parallelization, since the projections
u™P can be computed simultaneously on ditferent pro-
Cessors.

Remark 2. Theorems 1 and 4 above were used in
[10] to substantiate multiplicative and additive domain
decomposition methods. Obviously, Theorems 2, 3,
and 5 on conjugate and semiconjugate direction meth-
ods with acceleration also hold for these applications.
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A promising direction in the acceleration of itera-
tions, for example, in the domain decomposition
method (see [2]) is the use of algorithms in Krylov sub-
spaces with dynamic preconditioning. A generalization
of the methods discussed above is the nonstationary
iterative process

ur:+] = B“un+gn i un+C;I(f_Aun)’
B, = I-C}'A,

where C, are easily invertible preconditioning matrices.
The acceleration of the corresponding iterations in the

subspaces ¥, , (7, C;' A) = span{C;' 2, AC]' 2, ...,

A"C, : '} is ensured by the dynamically preconditioned
semiconjugate direction (DPSCD) method

P = f-Ad, p n=01,..;

(19)

( 1.0

)
= CiF.

n+l n+

. = sy, o= r-ndp,
a1 a1 (20)
n+1 1 n+1 n n+ 1,1 n
p = n+1? +ZBn,kp =P +2Bn,kp 2
k=1

k=0

_ At g (A ap"h
(Ap" Ap") (AP, Ap")

The DPSCD algorithm minimizes the residual norm
I+ ]| in the subspace ¥, , ;(+, C,' A) so that

n+1]2 [ (ACEir“, ?‘“)2
[P
(Ap,Ap")

(AC " ™)

T (AP AP

Thus, if the matrices C' A are positive definite, the
DPSCD method converges. However, additional stud-

ies are required to estimate n(g) and optimize the itera-
tions. Note that the matrices B, in (19) can be defined, for
example, as the products of the arbitrary factors (I — T})
in (13), but the different B, must include all the rows A,
of the original matrix A.
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