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1. INTRODUCTION

Until recently, planning of a transition to a new
stage of technical provision of computations for math�
ematical modeling was considered only locally, for
separate problems. This was sufficient when the
achievement of superhigh performance was viewed as
an isolated problem of a particular applied or research
task solved in the context of a particular computa�
tional environment. Today, the situation is changing.
The necessity to solve interdisciplinary problems
requires that isolated tasks of particular domains be
organized in systems for joint modeling. Such integra�
tion often results in systems of partial differential
equations, which are difficult to solve by traditional
methods.

Barefaced build�up of computational capacities by
itself does not change much in what concerns complex
solution of mathematical modeling problems. Today, a
wide variety of multiprocessor systems positioned as
means for high�performance computations are used.
They include cluster systems, support of cloudy com�
puting, GRID technologies, powerful graphic accel�
erators, etc. At the same time, actual performance of
such systems is often far from that indicated by the
hardware developers and does not ensure current or
future needs. According to [1], due to overheads asso�
ciated with interprocessor exchanges and process syn�
chronization, it does not exceed 10–15% of the peak
performance. The reduction in performance is
explained by inadequacy of stiff architectures of mul�
tiprocessor systems to real computational problems.
To overcome this inadequacy, reconfigurable comput�
ing systems are currently used, which are built from
field�programmable gate arrays (FPGA) [2]. The per�
formance improvement at the expense of growth of the
computing power poses the problem of selection of

computational environment, and the local adaptation
of separate models to each such environment is not
only impractical but also impossible.

One of the promising approaches to solving com�
putational problems is to use software�as�a�service
(SaaS) provided by the so�called Data Centers, which
provide problems with resources with regard to their
distribution in the course of the computation process
[3]. In this case, the performance improvement is
viewed as improvement of efficiency of the Center,
which implies that one should not rely on that the
model calculation will be carried out with the use of
the architecture on which the program was oriented
when it was designed. Although the method of adapta�
tion of algorithms and data representations based on
low�level optimization does not exhaust itself, its
application domain becomes narrower as the com�
plexity of the architectures grows. The low�level opti�
mization is one of the compilation tasks aimed at
obtaining an object code that takes into account not
only specific features of the architectures but also
dynamic properties of the environments where the
computation are to be carried out.

All above�mentioned approaches (as well as others)
to improving performance at the expense of increasing
the computing power illustrate topicality of the transi�
tion to technological development of mathematical
models, which makes it possible to effectively auto�
mate the adaptation of the problem solution to the
hardware used. To this end, it is required to develop the
following two directions:

• first, algorithmic optimization, the aim of which
is to represent the program in the form suitable for
automated adaptation to a particular architecture;
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• second, construction of large�scale optimized
fragments of computations suitable for using in various
situations.

The second way is aimed, essentially, at the devel�
opment of means to support the well�known desire to
repeatedly (and multiply) use created algorithms and
program modules. It is these modules that require low�
level optimization that results in codes that are capable
of running in different dynamically varying environ�
ments, leaving the programming system only (in the
ideal case) the selection of the execution path, which
turns out optimal. It is required to develop universal
maximally optimized libraries of various algorithms
designed for various data representations with support
of integration of library modules in composing pro�
grams for particular problems, which will make it pos�
sible to achieve using almost all capabilities of the com�
putational environment. The creation of premises for
gradual transition to solving resource�consuming prob�
lems with the use of exaflop hardware, which will replace
the currently existing computing systems in a near future,
should be considered as a perspective goal [4].

At the same time, methods used currently for pro�
gramming computational problems (in particular,
mathematical programming methods) do not fit the
growing architecture complexity and, which is very
important, are not designed for simple reuse. This
problem makes the researchers look for other
approaches and use special tools supporting develop�
ment of large�scale program complexes, which found
application in the field of system and financial pro�
gramming, the so�called CASE (computer aided soft�
ware engineering) tools [5]. Unfortunately, such
approaches and tools were developed without taking
into account specific features of computational prob�
lems; therefore, simple transfer of these methods to
the new field does no lead to sound results. Computa�
tional programming does not turn to what we call
technology, really improving efficiency of program�
mers’ labor.

The above�said does not mean, of course, the rejec�
tion of the previous experience. Vice versa, it is advis�
able to take advantage of everything that is suggested
for technological support of collective development of
system and economical programs, to investigate both
popular means of this kind and approaches rejected for
various reasons in other that, on the basis of careful
studies, determine technologies of computational pro�
gramming and mathematical modeling with original
methods and tools, regulations and agreements, expe�
dients, and design and programming patterns.

Taking into account multidimensional character of
the problem of development of such a technology,
necessity in significant preliminary investigations, and
the subject of the technology to be created, adequate
solution of the problem is impossible without funda�
mental studies, experiments, and verification of the
results being obtained. The most suitable approach to
solving this problem is an evolutionary way of appro�

bation of the existing methodologies and their devel�
opment aimed at adaptation to computational pro�
gramming problems.

Like in solving any complex problems (in particu�
lar, like in developing traditional programming tech�
nologies), it is required to divide the problem into a
number of relatively independent subproblems. Such
decomposition may rely on the lifecycle of mathemat�
ical model construction and use in a computational
experiment.

An agreement about typical stages will make it possi�
ble to systematize solution methods used on each stage
and the corresponding algorithms of their implementa�
tion fragmentized in accordance with the modular prin�
ciple, depending on their purposes, approaches used,
efficiency, resource consumption, concurrency, etc. [6].
Accordingly, there arise problems of supporting the
modeling lifecycle by technological means, which can
be characterized as formation of the technological
development environment. Essentially, these are pos�
sibilities of selection of appropriate means for imple�
menting a well�developed and approved methodical
approach to modeling. Advanced libraries (like, for
example, [7]) always tend to maximally provide the
user with such possibilities, and the only thing that is
required for converting them to a technology is to
define the so�called operational routes of the user [8]
the passage of which (i.e., optimal choice and correct
application of appropriate means on each stage) con�
sistently leads to problem solution. However, com�
plexity and diversity of the existing methods (and,
those to be developed) of mathematical modeling and
interdependency of solutions taken on different stages
makes this choice difficult and ambiguous, so that the
entire approach becomes a matter of art rather than
technology. The approach need to be revised on the
basis of complex and comprehensive study of mathe�
matical modeling problems, which will make it possi�
ble to create technological development environments
that make development of computational technology
real and accessible.

In what follows, we discuss both above�mentioned
aspects, namely, technological support of the model�
ing lifecycle and directions of promising studies as a
foundation of computational technology.

2. TECHNOLOGICAL SUPPORT
OF MODELING LIFECYCLE

In the most general form, the lifecycle of physical
process modeling can be represented as the flowchart
shown in Fig. 1. The initiation of the modeling origi�
nates from the initial problem statement, where the
need in model construction is fixed and the first stage
of the lifecycle is formulated as a mathematical prob�
lem. To carry out subsequent calculations, this, as a
rule, continuous, problem is discretized, which consti�
tutes the content of the second stage. The next stage is
construction of approximations of the desired functional
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relations on the basis of the discretized representation
constructed. An important technological tool of mod�
eling on this stage is solution of systems of linear and
nonlinear algebraic equations describing functional
relations. The application of this tool leads to obtain�
ing primary calculation results, which, on the postpro�
cessing stage, are reduced to a format suitable for visu�
alization, which constitutes the next stage of modeling
aimed at submitting the model information obtained
for subsequent using. Sometimes, a series of calcula�
tions are required, for example, when solving inverse
problems aimed at finding model parameter values
(initial and boundary values, constraints, etc.) for
which a desired behavior of the system is achieved
(i.e., model optimization aimed at decision making
when controlling the computational process). In such
cases, as well as when the results turn out unsatisfac�
tory for some other reasons, the model needs correc�
tion, i.e., elaboration of the discretization, approxima�
tion, or postprocessing, which means that the stages
need to be organized in a nested loop of stage repeti�
tion.

It can be seen from the flowchart that the use of the
modeling results are considered to be outside the pro�
cess of model construction. This is a different kind of
activity, which may require modification of the prob�
lem statement and transition to a new cycle of model�
ing. It is important to note also that the construction of
a mathematical model is viewed as the base of the
entire modeling: if analysis of the data obtained
requires modification of functional relations, then a
new model need to be constructed.

In the following sections, the outlined stages are
discussed from the point of view of model develop�

ment technology as parts of the general problem of
turning computational programming to a technology.
For this reason, we do not consider details of each
stage concerning particular algorithms but rather
focus on general technological aspects typical of any
modeling methodology.

2.1. Mathematical Model Construction

The first stage of modeling, as an approach to prob�
lem solving, is selection or creation of mathematical
methods. In the majority of cases, mathematical mod�
els are described in terms of integral–differential cal�
culus over functions of continuous argument. The
direct and inverse problem statements are distin�
guished: as early as at the stage of selection of mathe�
matical methods, it is required to take into account
that, in the former case, a desired functional depen�
dence is sought, whereas, in the latter case, parameters
matching a given dependence are to be found, for
which an optimality criterion is satisfied. As a result, in
the inverse problem statement, methods are selected
with regard to multiple repetition of calculations with
different sets of parameters; i.e., in essence, solution of
the inverse problem is constructed as a series of solu�
tions of the direct problems.

An important aspect of the model construction
stage is revealing mathematical properties affecting
organization of subsequent calculations. For example,
the proof of existence and uniqueness of a solution can
guarantee convergence of iterative approximations,
which greatly simplifies verification of the results
obtained, or solution stability reduces requirements on
calculation accuracy support.

Problem statement

Solution of systems of linear 

6.Correction

Using

and nonlinear equations

1.Mathematical model 

2.Discretization of continuous

3.Approximation

4.Postprocessing

5.Visualization of results

construction

model

Lifecycle of physical process modeling.
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The stage completes when the designer approves
the selected mathematical model adequately repre�
senting an actual problem in the form of a mathemat�
ical object and calculation methods used for this
object. The stage is verified by a competent expertise,
which takes into account not only quality of represent�
ing processes under study but also conditions of the
real problem (in particular, the way the model data are
specified on the user level is to be determined).

For the designer, this is a stage of creative activity
not admitting special technologies (except for use of
office support means or other general�purpose tools).

2.2. Discretization of Continuous Model

The second stage is called discretization of the
selected model. It consists in constructing a grid for the
calculation region, which is used for replacing an inte�
gral–differential model representation by a discrete
scheme.

There exist many methods of grid construction
meeting various criteria of quality of partitioning the
computation region, which affect accuracy and
resource consumption of numerical solution. Selec�
tion of the method of grid construction may occur dif�
ficult for the designer; therefore, technological sup�
port here is desirable. Such support is based on analy�
sis of the problem to be solved: mathematical model
and parameters describing its particular use, possible
variants of specifying computation region, initial and
boundary conditions, etc. If this information is not
sufficient for complete analysis, the modeling support
system may confine its operation to some warnings
indicating specific features of the computation region,
inconsistency of the discretization and accuracy
requirements, and the like. Such warnings will allow
the user not to miss important aspects of the model.

Technological tools of discretization include grid
generators that perform partitioning of the calculation
domain with regard to some performance indexes.
This process is controlled by specifying calculation
domain features, such as faces, edges, singular points,
and the like. The decomposition of the calculation
domain into subdomains and grid partitioning of the
subdomains should be agreed; i.e., there should be no
inconsistencies associated with subsequent approxi�
mations of the subdomain into which the calculation
domain is partitioned. To make discretization more
controllable, various means for editing decomposition
of the calculation domain, such as visualization of
constructions and coloring of the segments being par�
titioned, are used.

The stage is completed when the designer is satis�
fied with the results of the discretization; however, it
can be resumed if it will become clear on subsequent
stages that this decision was a mistake. Accordingly,
the technology should include means for support of
resumption, for partial use of results of previous dis�
cretizations, and for comparison of results.

2.3. Approximation

The third stage is selection and implementation of an
approximation method, i.e., transition from original
functional relations including an infinite number of
degrees of freedom to finite�dimensional equations,
inequalities, and recursions. In so doing, the problem,
in fact, is reduced to an algebraic form, which is
achieved by means of approximate calculation of
functions, derivatives, and integrals. Basic approaches
to construction of grid relations rely on finite differ�
ence, finite volume, and finite element methods; col�
locations; and spectral methods associated with
decomposition into Fourier series. Like on the previ�
ous stage, the basic problem associated with the
approximation is selection of methods, which can be
systematized and classified in terms of various indexes
[9]. In terms of technology, the environment for sup�
port of development of computational models should
ensure selection of a scheme that is adequate to the
user need from the point of view of calculation accu�
racy and performance.

Operations to be performed on the approximation
stage greatly depend on the discretization method
used; therefore, these two stages are performed in
coordination. To be more precise, upon grid genera�
tion, the approximation is selected based on an a priori
assumption; if results turn out unsatisfactory (which
becomes clear on the postprocessing or visualization
stage), the discretization stage is repeated with a new a
priori assumption.

Technological support of the approximation stage
consists in providing the designer with appropriate
algorithms, tools for composing calculation scheme,
and criteria controlling quality of the results obtained.
For such criteria, the order of approximation error,
possibility of obtaining an exact numerical solution,
rate of convergence to this solution, and stability to
perturbations of the initial data and rounding errors
can be used. In addition, the tools should support pos�
sibilities of returning to the previous stage and com�
paring variants found. From the point of view of
improving calculation accuracy and performance, an
automated determination of singularities of the matrix
constructed for solving the system of algebraic equa�
tions representing functional relations in the model is
a necessary element of the technological support of the
stage.

The stage includes selection of solvers for systems
of grid equations (see the next section) and their uses
for organization of calculation of the approximating
function, which is considered to be the result of the
stage. Since the quality of the solution depends on
what solver is selected, the stage may often require sev�
eral variants of approximation.
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2.4. Solution of Systems of Linear
and Nonlinear Algebraic Equations

Typically, grid methods for solving differential
problems result in large, sparse, and banded matrices.
Matrix order N may reach hundreds of millions or bil�
lions, and nonzero elements are concentrated in a
band of width m near the principal diagonal, with m � N.
The number of nonzero elements in each row usually
does not depend on N. Discretized algebraic systems
arising from approximations of integral equations
(defined on the boundary or in the interior of the cal�
culation domain) are, vice versa, dense but often have
special structural properties (for example, these are
Toeplitz, quasi�Toeplitz, or block Toeplitz matrices).
When solving nonlinear problems, the number of
matrices grows significantly, since these problems are
usually reduced to systems of linear equations. As a
result, complexity of calculations grows. From the
above�said, it follows that the main difficulties of solv�
ing systems of linear and nonlinear equations are asso�
ciated with the support of effective manipulation with
superlarge matrices of special form.

Computational linear algebra suggests a great num�
ber of algorithms for solving problems involving matri�
ces of different types: real and complex, square and
rectangular, Hermitian and non�Hermitian, positive
definite and sign�indefinite matrices. An optimal
choice of an algorithm and the corresponding pro�
gram is determined by properties of matrices repre�
senting calculation subdomains of the model. Possibil�
ity of calculation of these properties should be pro�
vided as technological support of modeling. The most
important part of the modeling, which is responsible
for adaptation of calculations to the architecture of the
computing system, manifests itself on the level of solv�
ing systems of linear equations. The possibility of
organizing cluster distribution of calculations, cach�
ing, and other specific features of architectures help to
reach high performance only theoretically. In order to
really increase efficiency of calculations, accurate
adjustment of algorithms is required. Mapping of
algorithms onto the architecture of computing com�
plexes can be implemented in the framework of spe�
cialized libraries. Fast development of such libraries
easily�adaptable to new architectures is one of the key
problems of development of computational program�
ming technology (see Section 3.6).

Solution of systems of linear algebraic equations
(SLAEs) needs special care about calculation accu�
racy. Ill�conditioned matrices may result in consider�
able distortions of results and slow convergence of iter�
ations. To compensate this, preconditioning is usually
applied, by means of which the original system can be
converted to an equivalent one with a better condition
number. Again, different preconditioners may be
selected, which means that it is required to envision
variant operation in order that the user could not face

the situation when he is not able to select between one
or another strategy.

2.5. Postprocessing, visualization, and correction

The goal of modeling is to use results of computa�
tional experiments for performing certain kinds of
activity rather than just purposeless solution of math�
ematical problems. It is necessary to organize separa�
tion of required data fragments and to reduce data to
formats of their use. Variants of such transformations,
which are called postprocessing, may be different:
from control signals in automatic control systems to
formats of visual representation with possibility of ani�
mation of colored images in decision making systems
for analysis of results of simulation of modeled pro�
cesses (sections, isolines, isosurfaces, color coding,
plots, etc.). One kind of postprocessing—preparation
of information for visual control of grid functions
obtained, which is accompanied by model correc�
tion—is common for almost any modeling.

Turning postprocessing to technology is achieved
by providing the user with a maximally possible set of
means for supporting variants of data preparation for
subsequent use. Such support may rely on the concept
of abstract representation, which is a convenient and
fast tool for constructing variants of user data repre�
sentation. This is the well�known MVC (model, view,
controller) approach [10], in the framework of which
the development of a program system is based on sep�
aration of entities related to processing, control, and
visualization of data. In accordance with this
approach, the postprocessing stage completes by con�
struction of an abstract representation of calculation
results and specification of an abstract control corre�
sponding to schemes of the modeling correction con�
trol. Construction of desired visualizations is consid�
ered to be a separate stage of modeling.

2.6. General Requirements to Technological Support
of Modeling

Formation of technologies for development of
mathematical modeling as support of stages of model
construction lifecycle is very promising. The above
discussion shows that technological modeling requires
creation of a specialized toolkit to automate various
design operations and development of techniques of
these tools use. This is a traditional way that was fre�
quently used for construction of technologies of devel�
opment of system and applied software. It is quite nat�
ural to take advantage of the experience accumulated
in this way and to apply it to computational technolo�
gies. This should result in considerable growth of labor
efficiency in the filed of mathematical modeling.

At the same time, it is clear that the traditional way
creates only prerequisites for transition to industrial
production of mathematical models. The key problem
in the development of computational programming
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technologies is to reduce time required for incorporation
of promising algorithms, methods, and approaches for
support of mathematical modeling that take into
account possibilities of new architectures into real
practice. Other necessary conditions of turning tradi�
tional approaches to the industrial ones are as follows:

• Inclusion in support libraries both programs
implementing approved modeling methods assigned
to the development stages (and ensuring conditions for
their effective use) and means for analyzing the prob�
lem being solved and data processed aimed at determi�
nation of optimal method selection in each particular
case.

• Orientation on adaptation of library means to
advanced architectural solutions and use of problem�
independent modules ensuring efficient distribution
of computational resources and high�performance
calculations on the lower common and universal level.

• Openness and extensibility of libraries through
both new approaches and methods and architectural
solutions (follows from the previous requirements).

An example of the project that is aimed at the
implementation of these problems is the development
of a specialized base mathematical modeling system
BSM [11] carried out currently at the Institute of
Computational Mathematics and Mathematical Geo�
physics, Siberian Division, Russian Academy of Sci�
ences.

3. DIRECTIONS OF STUDIES

Perspectives of the traditional way of development
of computational programming technologies should
not hide problems associated with the approaching
transition to exaflop calculations. As it was already
noted, an adequate answer to this challenging transi�
tion suggests revision of the existing practices and pro�
gramming methods and development of fundamen�
tally new approaches, which requires special studies.

This should be a complex study touching all aspects
of program development that effectively use perspective
hardware. The most topical aspects are listed below.

• It is required to revise approaches and methodol�
ogy of individual program development.

• The concept of data representation for solving
computational problems needs to be extended.

• It is necessary to further develop code optimiza�
tion methods caused by the need to use nontraditional
styles in computational programming.

• It is required to develop approaches to decompo�
sition of computational programs.

• There is a need in new approaches to construct�
ing parallel programs: both to improve the existing
parallelization methods and replace them by direct
parallel programming.

• There is a need in the development of mathemat�
ical libraries of new type that ensure assembly con�
struction and dynamical optimization of the assem�

bled applied programs, as well as their adaptation to
the architecture of the computation environment.

• It is required to develop and use methods and
instrumental support of collective development of
computational program complexes.

• There is a need in studies in the field of system
programming and purposeful development of hardware
supporting execution of computational programs.

In the following sections, we discuss these issues in
more detail and identify key problems needing solu�
tions in each of the above�specified directions.

3.1. Revision of Approaches and Methodologies
of Individual Program Development

This is the so�called “programming in small” [12].
An ordinary support of individual methodologies is
language means provided for the programmer. We can�
not say that, in this field, there are no significant and
useful results, which could be used in computational
programming. For example, the C++ language stan�
dard suggests special classes that help to use the
abstract method in solving computational problems.
Nevertheless, the use of object�oriented programming
in this field did not go further than support of tradi�
tional design patterns [14] adjusted to the existing
abstractions of computational programming, which
are implemented in traditional mathematical libraries.

Alternative methods, such as, for example, use of
functional programming means [15], are at the stage
of preliminary developments and experiments.
Although this field demonstrates certain achieve�
ments, these methods are still far from the mass appli�
cation in practice, to say nothing of the change of par�
adigms.

The key problem here is the lack of certainty about
boundaries of adequate applicability of programming
styles: the designers say about advantages of an
approach suggested but do not mention where these
advantages do not work and turn out to be a burden.
Another problem is related to the previous one: there
is a need in creation of new (and adaptation of the
existing) patterns, expedients, and programming
methods, in other words, in the development of special
programming styles that are adequate to computa�
tional problems.

3.2. Extension of the Concept of Data Representation
for Solving Computational Problems

The ordinary representation in the form of arrays of
real or complex scalars corresponds to mathematical
abstraction of vectors and matrices as objects of oper�
ation. From this point of view, the use, for example, of
sparse matrices and data possessing different features
results in abrupt complication of the algorithms,
which can be excused only by need of efficiency. This
also refers to the concept of accuracy supported in
classical mathematics by the concept of approxima�
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tion, which is obviously insufficient for programming.
From mathematical standpoint, there is a need in the
development of approaches that guarantee the desired
accuracy of the results obtained [16]. As applied to the
programming technologies, libraries should ensure
efficient calculations that are adequate to the reality
being modeled.

Traditional algorithms are most often constructed
as repetition of locally defined fragments, separation
of which is a specific feature of one or another
approach to problem solution. On the other hand,
construction of algorithms where local calculation
fragments would be separated with regard to the
dynamically changing situation based on global prop�
erties of data (which could become a basis for adapta�
tion to the calculation environment architecture) is
cumbersome because of lack of development of the
required structures. In fact, flexibility of the existing
data representations (computational properties of
which are always a prerogative of the programmer and
are not presented, for example, in the form of accom�
panying attributes) is not sufficient. The situation is
aggravated by the fact that, from the computational
standpoint, different structures are adequate to differ�
ent kinds of processing, and joint support of these
structures is usually not provided [17].

The existing methods of domain decomposition—
finite volume and finite element methods—demon�
strate lack of development of means for operating on
grouped data. These methods uniquely separate sub�
domains for autonomous one�type operation; how�
ever, this is not reflected at all on the language level. As
a result, advantages of non�interaction are lost upon
implementation of the algorithm, and the program
complexity grows.

Key problems here are development and implemen�
tation of methods for operation on multiply structured
data corresponding to computational programming
styles and support of actual state of structures useful
for subsequent operation. This support should rely on
the development of advanced system of data convert�
ers ensuring transformation of structures needed for
processing and methods of dynamical data analysis
ensuring selection of optimal continuation of calcula�
tions.

3.3. Development of Optimization Methods
and Nontraditional Styles

in Computational Programming

The development of programming languages and
architectural hardware solutions has been and remains
an impulse to improve compilation methods. The
need in new approaches, languages, and styles (see
Section 3.1) stipulates adaptation of the existing
methods (and development of new ones) of efficient
implementation of nontraditional languages and, in
the first turn, optimization methods for them. Until
recently, languages relying on nontraditional calcula�

tion models were a matter of only academic interest;
therefore, optimization methods for them were not
actively developed.

Currently, the situation is changing. Nontradi�
tional styles penetrated into the sphere of computa�
tional problems. This especially concerns the func�
tional style of programming, which possesses rather
high potential capabilities for computation parallelism
and whose expressiveness greatly exceeds that of
imperative styles in its application domain. This point
is substantiated by examples from paper of Hughes
[18], which was published as early as 1989 and has
appeared in many copies in press and on the Internet.
These are examples of efficient algorithms that hardly
could be implemented in terms of imperative pro�
gramming.

Special means for data organization in a functional
program make it possible to achieve high computation
performance comparable to that of traditional solu�
tions and to improve it by using new optimization
capabilities. An illustration of this is the SaC (Single
Assignment C) language [19], in which, by excluding
from C everything that prevents functionality, it
became possible to get rid of specification of initial and
final values of indices and their increments when tra�
versing data regions. Possibilities of optimization of
SaC programs execution rely on the absence of side
effects, dependence of expression values on the con�
text, and other obstacles preventing functionality in
combination with separation of array indexing from
data operations. Owing to the use of known optimiza�
tion techniques, as well as new algorithms, which
would be incorrect in the imperative case, the object
code gets rid of calculation redundancy and auxiliary
arrays.

Nevertheless, functional programming systems are
still not capable of competing against programming
environments with traditional language compilers.
The reasons for this are as follows. So far, functional
calculations were not specially supported on the hard�
ware level; therefore, imperative calculations are in an
advantageous position. The second reason is related to
the first one and consists in the lack of development of
optimization methods for a functional calculation
model, which is due to the lack of demand of these
methods and the existing opinion that this model is
not suitable for numerical calculations. Finally, the
third reason is traditions that manifest themselves on
all levels of computation organization starting from
the development of models and algorithms to pro�
gramming and calculations. These, as well as other,
obstacles on the way of development of nontraditional
programming styles were mentioned by Backus in his
famous Turing lecture as early as 1977 [20].

The traditional model of calculations, which
underlies implementations of the existing architec�
tures, is approaching physical limits of performance
growth; therefore, we observe the tendency of increas�
ing the number of processors and kernels, and the effi�
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cient use of such architectures requires fundamentally
new approaches and programming methods. This is
just what recognized gooroo Jack Dongarra says time
and again [21]. In these circumstances, advantages of
nontraditional models (and, in the first turn, func�
tional calculations with their flexible possibilities of
parallelism) became apparent, and, as a result, impor�
tance of implementations of industrial functional pro�
gramming systems grows.

The key problems of this direction is development
of specialized hardware support of nonimperative cal�
culation models and, in the field of programming,
mapping of such models into a format adapted to opti�
mization in terms of modern and perspective hard�
ware. In the first turn, this concerns functional lan�
guages, whose expressiveness and natural parallelism
are rather attractive from the standpoint of solving
hard computational problems.

3.4. Development of Approaches to Decomposition
of Computational Programs

Currently, the object�oriented approach is the
main one in programming. It dominates other (struc�
tural, functional, etc.) decomposition methods, dem�
onstrating advantages associated with multiple use of
modules adapted to particular situations without loss
of functionality [22]. Among the advantages of the
approach is compatibility with many programming
styles. Having arisen from the need in solving model�
ing problems and, then, extended to other fields of
programming, this approach seems adequate to the
tasks of mathematical modeling of physical processes
just due to its origination. However, there are two
points that need to be taken into account if the object�
oriented approach is used as the basis of decomposi�
tion in computational programming.

First, computation efficiency should be the subject
of special care. The efficiency requirement leads to the
solution selection based on criteria that are not related
to the object decomposition; therefore, the latter is
most often sacrificed. The efficiency is sometimes
ensured at the expense of automatic code optimization
upon compilation, and this pays off. Nevertheless,
information on what data the processing program is
going to deal with is not always available upon compi�
lation. Therefore, an attempt is made to use the so�
called controlled compilation, for which the user
specifies certain optimization options, which deter�
mine strategies of code generation. Unfortunately, no
significant success was achieved on this way, first,
because the relationship between the structure of the
processed data and optimization strategies is not evi�
dent and, second, because of difficulties associated with
selection of options, the number of which in real com�
pilers is too great (may reach several thousand [23]).

The second point is associated with the choice of
the basic system of object classes based on which all
subsequent program constructions implementing

1

algorithms are performed. The programmers are used
to think of the language array structure as a necessary
and sufficient abstraction of representing mathemati�
cal objects, such as matrices and vectors, in programs.
Operations on matrices and vectors are most often
specified in terms of variables with indices, which
implement access to scalar elements of the array rather
than to the array as a whole. This agreement contra�
dicts the commonly accepted concept of objects as
active structures, which include data and means
(methods) of operation on them, considering an
object as an indivisible abstraction. It is difficult to get
rid of this “scalar” view of operations on computa�
tional structures because the burden of accumulated
algorithms and programs based on such understanding
is too great and leaves almost no room for alternative
abstractions. At the same time, barefaced attempts to
write algorithms using vector–matrix notation are cer�
tainly not efficient, since result in operating with
extremely hard structures. All this is aggravated by effi�
ciency requirements and responses to them in the
form of numerous expedients and methods optimizing
access to array entries, the support of which is imple�
mented in modern computing systems.

For computational programming, separation of
operating with calculation domains from calculations
themselves is an important problem of decomposition
method development. Autonomous specification of
subdomains, neighborhood relations, and rules of data
delivery for calculations would make it possible to
improve flexibility of calculations, since determina�
tion of independent fragments admitting parallel exe�
cution is simplified. The SaC language, which was
mentioned in the previous section, demonstrates tech�
nique of such decomposition and its advantages from
the point of view of both expressiveness of algorithm
representation and optimization efficiency. It relies on
language features originating from functionality of its
calculation model.

Separate description of calculation domains and
program fragments specifying calculations should be
viewed as implementation of the general idea of sepa�
rating calculation aspects, which, generally, may
greatly affect each other. Productivity of this idea is
substantiated by its implementation in the approach to
organization of stream calculations developed by a
research group from the University of Hertfordshire
[24]. In this approach, atomic computational compo�
nents are viewed as autonomous objects operated by
the program, which provides control and organizes
data streams, taking no care of what particular actions
the components actually do. It should be emphasized
that the authors of this approach consider develop�
ment of such programs as self�sufficient activity, which
is based on the use of the S�Net language specially
developed for this purpose. This language is designed
for declarative description of coordination of asyn�
chronously executed components and is supported on
the system level.
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The idea of separation of the computational process
entities aimed at technological development of pro�
grams to be executed in parallel on various configura�
tions of computational hardware was used in the frag�
mented programming approach developed by V. Maly�
shkin and co�workers [25]. In this case, the focus was
placed on autonomous description of computational
fragments and data fragments for which dependencies
in the form of explicitly specified relations between
fragments are established. These dependencies are
used for correct determination of control variants and
for composing calculation schemes from them with
regard to dynamically changing situation. Selection
criteria are determined by optimization of the
resource distribution and hardware load. In the frame�
work of this approach, the developers managed to
reach significant speed�up of performance for some
classes of problems. The approach showed its effi�
ciency in solution of computational programming
problems [26].

The key problem in this direction is adaptation of
the existing decomposition methodologies, as well as
other successful solutions, to computational program�
ming problems. On this basis, construction of lan�
guage and system support of program module reuse—
a system of classes, tools for operation on fragments
and other entities—may be discussed.

3.5. Revision of Approaches to Construction
of Parallel Programs

Methods that are currently used for constructing
parallel programs tend to the so�called parallelization,
i.e., construction of parallel programs from sequential
algorithms. In other words, first, a sequential algo�
rithm is constructed (the fact that it can actually be
executed by several processors is not taken into
account); then, its program is transformed to a parallel
version. A more flexible alternative to this is various
schemes of construction of algorithms that are free of
limitation of one�processor sequential execution. The
result of such construction is mapped onto actually
available resources, and this is a separate activity not

related to composing the algorithm.
1
 These activities

can be carried out independently one after another.
It is also important that the alternative approaches do
not need to represent an algorithm in a sequential
form if parallel representation of this algorithm is

more natural.
2

Whereas automated parallelization can be excused
by the fact that it supports the possibility of using old
well�approved programs, the development of new
sequential algorithms to be further parallelized for

1 Presented in the previous section approaches to the decomposi�
tion, which implement separation of calculation aspects, dem�
onstrate productivity of alternative methods of development of
parallel programs.

efficient use in modern architectures is a complete
anachronism.

The explanation to such an approach is customs
and stereotypes of the programmers, who were taught
to implement their ideas in sequential programs.
Arguments of the apologists of the sequential pro�
gramming based on the idea that a “human thinks
sequentially” do not stand up to criticism: it is not
known yet how humans think, but it is clear that put�
ting any limits to the thought process suppresses cre�
ative activity. Backus [20] was one of the first who said
that customs and stereotypes would become a serious
obstacle on the way of development of computational
hardware and programming. Today, his words are
completely justified.

Stereotypes hamper development of algorithms
that, from the very beginning, are adapted best of all
for the execution on computing systems with well�
developed parallelism and, thus, decelerate further
development of such architectures. They have negative
effect on the development of the programming lan�
guages supporting parallelism. Teaching of informatics
and programming, as well as of discrete mathematics,
based on these stereotypes reduces quality of educa�
tion: it teaches to adapt thinking to the existing pat�
terns rather than to break them with the help of new
methods. There is a need in revision of the existing
modeling methods and finding, at early stages of the
development, schemes in these methods that admit
parallel formalization, form parallel algorithms, and
may result in parallel solutions immediately upon pro�
gramming.

All this does not mean rejection of the currently
used tools of the development of parallel programs.
We call to shift accents from program parallelization to
direct construction of parallel programs when it is pos�
sible. In this regard, the use of Intel® library Thread�
ing Building Blocks (TBB) [28], which is written in
C++ and designed for support of development of par�
allel programs in this language, seems to be preferable
compared to the orientation to parallelization by
means of OpenMP [29] and other systems external to
the language in which the program is written. Such
position does not contradict the fact that, in the num�
ber of cases, parallel construction on the basis of TBB
may occur more difficult than construction with the
use of OpenMP. This is possible when the case in point
is parallelization of a simple sequential code; however,
in more complicated cases, the capability of TBB to

2 The concept of natural parallelism is not strictly defined. Here,
we treat it in a wider sense, as the possibility of formulation of an
algorithm without regard to resource constraints (including the
number of available processes) for which mapping onto a real
hardware configuration presents no difficulties. The problem is
said to possess natural parallelism if this mapping can be con�
structed with accepted performance. An example of such a
problem is search of an optimal path between two graph nodes
[27]. Unlimitedly parallelized solution of this problem is
mapped onto traditional sequential calculation with the help of
a quite regular technique.
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explicitly specify a calculation scheduling algorithm
and to encapsulate the code and data related to the
computational stream simplify development and
application program code [30, p. 105].

The key problem in this direction is development of
language means for support of natural decomposition
designed for development of parallel algorithms and
those that admit effective parallel execution. In this
and many other cases, an obstacle is the lack of formu�
lated social infrastructure problem: development of
parallel programming methods remains on the level of
backyard production and is not provided with techno�
logical patterns (the latter should have been taught in
the courses of the computational programming disci�
pline at universities).

3.6. Mathematical Libraries Ensuring Assembling
of Application Programs and Their Dynamical 

Optimization

Technologization possibilities were discussed in
Section 1 together with the modeling lifecycle stages.
This results in the necessity of inclusion of special aux�
iliary tools into the library, which help to obtain quality
solutions. Another aspect of technologization is
related to the desire of optimizing the development
process. It originates from the idea of variant solution
assembly, which includes a motivated set of algorithms
selected from the set suggested by the library. A typical
feature of such libraries should be use of three optimi�
zation levels based on systems of the corresponding
concepts, in the framework of which operation with
library means is specified.

The system of concepts of the first—algorithmic—
level is determined by theories used as the base for for�
mulation of algorithms, or, more precisely, algorithm
schemes, which specify the library means granted in
the most general form. Based on fundamental proper�
ties of the operation objects, the designer of the algo�
rithm builds plans of possible variants of the program
being assembled. Knowledge of specific features of the
processed data and the goals makes it possible to select
the desired data transformations from a set of means
supported by the library and to arrange them with the
aim to determine a constructive and, in this sense,
optimal assembly plan.

The second—language—level determines ele�
ments of the program assembly. The library should
include all useful variants of the specified algorithms,
which are selected for a real problem based on the
analysis of performance requirements, properties of
the processed data, and methods of their transfer
between the environments where the calculations are
performed and data are used. This does not always
mean that all variants are implemented. In many
cases, it is desirable to construct library elements as
parameterized algorithmic structures, which are
adapted to the computation conditions at the expense
of additional information received from the program

being assembled. To match library elements, data con�
verters may be required. In the ideal case, automated
transformation of library elements and data structures
can be used; however, the user may affect the selection
of the approach to be used. The concepts of this level
are program interfaces of systems of classes and mod�
ules. The corresponding means should be optimized
under various computing platforms for practically sig�
nificant variants of computational environments.
Thus, execution of the assembly plan with acceptable
performance characteristics is ensured.

The third—system—level ensures dialog specifica�
tion of factors affecting selection of the assembled pro�
gram and, when possible, automated determination of
static and dynamic properties affecting resource alloca�
tion for calculations. It suggests possibility of automated
(by default) or semi�automated construction; to take
into account actual resource demands and constraints,
an advanced interactive interface is used. As a result, we
have natural combination of components of the pro�
gram being assembled, including dynamic adaptation
in accordance with the solution plan.

The necessity in permanent completion of the
library by the tools reflecting modern and promising
achievements of computational mathematics gives rise
to the requirement of library openness for extension.
In essence, this requirement is nothing more than
specification of algorithmic, program, and system
interfaces for library extension modules.

The above�discussed requirements are listed in the
project of the specialized base mathematical modeling
system BSM, which was mentioned in Section 2.6.
It was developed as an extendable library supporting
all three optimization levels.

The key problems of this direction are matching of
solutions on all three levels and creation of an assem�
bly programming toolkit for fast development of
libraries easily adaptable to new architectures. Solu�
tion matching means possibility of technological tran�
sition from one level to another and a matching regu�
lation for modules implementing mathematical mod�
els in the framework of the plan of complex solution of
real problems by the assembly method. Currently,
assembling in the field of mathematical modeling is
not supported by means that would make it possible to
implement the process as a technology.

3.7. Development of Methods and Instrumental Support 
of Collective Development

of Computational Program Complexes

Modern computational programming is based
mainly on individual designer work rather than on col�
lective work. This situation is explained by the existing
traditions. In addition, only algorithmic achievements
were considered to be significant results in this field,
whereas program solutions played an auxiliary role.

This situation started to change radically with the
advent of the exaflop hardware, the complexity of pro�



220

PROGRAMMING AND COMPUTER SOFTWARE  Vol. 37  No. 4  2011

IL’IN, SKOPIN

gramming for which exceeds the level of auxiliary sup�
port. An expert in algorithms cannot (and should not)
go into details of system problems of architecture�ori�
ented optimization and program modularization.
Hence, there is a need in cooperation, i.e., group work
on projects, and experts in computational mathemat�
ics are not ready yet for such work.

In this regard, experience of collective develop�
ments of system software products may become a step
in the development of technologization of theoretical
achievements and methods of mathematical model�
ing. Recognized methods of distribution of roles in a
group; organization of groups; separation of designer
groups from the users of large�scale instrumental
model complexes; and formation of relations between
the designers, users, and customers are applicable to
computational programming. The corresponding sup�
port tools are also applicable.

Problems of collective development of large�scale
software products have been widely discussed in the
literature. Among publications on this subject, we
note, first of all, one of the first monographs where
problems of collective development of software prod�
ucts are systematically discussed. This is the famous
book The Mythical Man–Month by F. Brooks [31],
which is considered to be the number�one bestseller in
the programming literature. The monograph [32] is
the source of the most complete information about
existing methodologies of technological development of
software projects. This subject is also discussed in the text�
book [8] written by one of the co�authors of this paper.
Book Technology of Programming by A.N. Terekhov gen�
eralizes reach experience of its author in managing
large�scale industrial software projects.

The list of publications on methods of collective
development of computational program systems will
not be complete if we do not mention the so�called
agile software development, which currently wins gen�
eral recognition. This direction consolidated by the
manifesto [34] accepted by a group of enthusiasts in
2001 includes various approaches oriented on the
existing and new techniques of development support
that showed their efficiency in real projects. One of the
most advanced approaches among them is called
extreme programming [35]. The experience of using
this approach and the direction as a whole will be use�
ful in development of computational programming
technologies. However, it should be noted that all
principles of agile software development cannot be fol�
lowed when the approach is applied to mathematical
modeling. This issue needs special study.

The key problem in this direction is incorporation
of the existing programming achievements and tech�
nologies into practice, which is to be preceded by the
stage of adaptation and specialist training. It is also
required to develop existing methodologies of collec�
tive programming work in the field of computational
programming and within frames of special program�
ming styles specific to computational programming.

3.8. Development of Hardware and System 
Programming Supporting Execution

of Computational Programs

A new technology of computational programming
will inevitably place problems of purposeful develop�
ment of hardware and system programming support�
ing execution of computational programs. In the first
turn, this is compiler optimization methods. Today, in
this field, methods for improving performance on the
lower level [36] are well developed, and there is also
some experience of support of specialized calcula�
tions, in particular, for graphics [37]. This experience
has appeared owing to well�understood bottlenecks
arising when solving some problems. The program�
mers appreciated such support, adapting to hardware
capabilities provided for specialized calculations.
An illustrative example is the use of support of opera�
tion on textures on the level of graphical processors,
which gave birth to a new approach called computa�
tional programming for graphics accelerators.

The use of new capabilities in a field where they
were not supposed to be used is quite natural. It may
result in quite unexpected use of specialized means
and approaches, which cannot be derived from tradi�
tional computation models directly related to numer�
ical calculations. As an example, we refer to work [38],
in which, based on capabilities of graphics accelera�
tors, a computation model is defined that makes it
possible to replace traditional schemes of mass calcu�
lations by combinations of geometric operations and
achieve great growth of performance.

We have already noted the necessity in software and
hardware support of nontraditional computation
models (Section 3.3). In what concerns the hardware,
it would be too restrictive to develop only methods that
ensure interpretation of new models in the framework
of traditional calculations with the help of micropro�
gramming. Although this way yields certain advan�
tages compared to the program interpretation, it does
not radically improve performance. It is more promis�
ing to seek possibilities that directly implement advan�
tageous features of new models. For example, for
functional models, it is more preferable to use hard�
ware with active associative memory. Using the mech�
anism of coupling of memory elements (tokens) with
identical keys, it is possible to run subprograms imme�
diately, as soon as their arguments are ready, escaping

the stage of reactions to the corresponding events.
3

However, in order that such capabilities become compet�
itive, calculation optimization methods are required. The
use of these methods is not typical of imperative models;
therefore, they are not currently well�developed.

In conclusion of the discussion of the subject of
optimization for new calculation models, we note one

3 The details of one of the implementations of this idea can be
found in the last section of the memorial collection of papers by
V.S. Burtsev [39], where an associative processor developed by
the team headed by the author is presented.
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of the most critical problems of support of functional
calculations. This is implementation of optimal mem�
orization. The case in point is development of schemes
capable of reducing the number of expression values
stored that ensure that repeated calculation will not
required in all contexts of use. It is quite clear that it is
useless to store all calculated values, but it is extremely
difficult to determine which of them are not required
anymore. To overcome this difficulty, the above�men�
tioned schemes are used.

An ordinary statement of the calculation optimiza�
tion problem suggests achieving of the maximum effi�
ciency of use of hardware capabilities. The situation
with the hardware support of nontraditional models is
not exclusion. In this regard, the problem of develop�
ment of software support for them remains traditional:
it is required to ensure architecture�oriented optimi�
zation for suggested hardware solutions.

The presented thoughts on the development of cal�
culation support are general and are not directly
related to computational programming. Clearly, the
above�noted, as well as other similar, solutions should
be combined with specialized support adequate to
needs of numerical calculations.

The key problem in this direction is selection of
hardware and software solutions adequate to needs of
computational technologies in organization of model�
ing with the use of expressive language means, which
make it possible to reach maximum possible efficiency
of calculations.

4. CONCLUSIONS

The problems discussed in this paper do not
exhaust the list of all problems that need to be solved
on the way of development of computational program�
ming technologies. We considered only those of them
that are not sufficiently discussed in publications on
transition to exaflop calculations. For this reason, we
did not touch, for example, solutions related to orga�
nization of interaction and synchronization of
streams. They are currently presented in all systems
with advanced parallelism, and study of experience of
different implementations of the corresponding soft�
ware–hardware support is necessary for the develop�
ment of perspective hardware.

We considered problems related to the develop�
ment of new technologies using example of mathe�
matical modeling of physical processes. The latter is
undoubtedly the main consumer of these technolo�
gies. However, this does not mean that the other fields
needing high�performance calculations should be
ignored. Analysis of programming means and organi�
zation of efficient calculations in the fields like bioin�
formatics, simulation modeling, and model�based
study of social processes, as well as for other resource�
consuming research and engineering developments,
should contribute to the determination of means and
methods required for the technology discussed. This is

necessary in view of conceptual generality of problems
to be solved in the course of development of architec�
ture capabilities aimed at exaflop calculations.

We have noted problems of adaptation of the exist�
ing approaches to the development of programs that
are, in one way or another, related to functional styles
of programming and their capabilities from the point
of view of computational programming. Clearly, the
study should not be confined to only these aspects of
computational technologies. We believe that studies in
other directions, in particular, those related to senten�
tial and logical languages, development of information
systems and databases, and artificial intelligence
should also contribute to the development of the tech�
nology discussed. There is every reason to further
develop the subject discussed.

It can be seen from the discussions of the trends of
the development of computational programming
technologies that constructive solution of the prob�
lems noted in this paper is related to the creation of
libraries of new type, which will provide opportunities
for adaptation development associated with the opti�
mization of calculations and means for adequate solu�
tion of applied problems. Creation and use of such
libraries will help to elaborate both particular optimal
implementations and methods of work of computa�
tional programmers under new conditions. The
project of a specialized base system of mathematical
modeling BSM, the concepts of which were discussed
above, may be viewed as an example of such a solution.
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