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Abstract. The efficiency of various numerical approaches are compared for solving 3D electromagnetic
boundary value problems (BVPs) in frequency domain. The differential and variational statements in terms
of electric field as well as in terms of vector and scalar potentials, with different types of boundary condi-
tions (perfect electrical and magnetic conductor, absorption surfaces, wave ports) are approximated at the
non-structured grids by finite volume method (FVM) or finite element methods (FEM). FVM is applied for
barycentric Voronoi cells, with computing the local balance matrices and assembling the global matrix of the
system of linear algebraic equations (SLAE). In FEM, the scalar and vector basis functions are implemented
at the tetrahedral elements. The solutions of obtained non-symmetric indefinite SLAEs are made by different
preconditioned iterative processes in Krylov subspaces. The Eisenstat modification of incomplete factorization
and various preconditioning matrices are combined with semi-conjugate residual (SCR), BiCGStab and other
Krylov algorithms. The results of numerical experiments for the representative set of the model problems
are presented and demonstrate performance of the proposed algorithms. Computational technologies include
parallelization and using the program tools of Mathematical Kernel Library of Intel (MKL).

1 Introduction

The goal of this paper includes the comparative analysis of the different approaches for numerical
solution of the 3D mixed boundary value problems for the system of time-harmonic Maxwell equation,
see [1], [2] for example:

∇× ~E = −iωµ̇ ~H, ∇× ~H = iωε̇ ~E + ~J,

∇ · (εr ~E) = ρ/ε0, ∇ · (µr ~H) = 0.
(1)

Here εr, ε̇, ε0, µr, µ̇ are physical parameters of the media, ω is frequency, ρ, ~J are charge and current
densities, ~E and ~H are the vector electric and magnetic fields.

For ρ = 0 the above system is transformed to complex “electrical” Helmholtz equation

∇×
(

1
µr
∇× ~E

)
− æ ~E = −ik0Z0

~J, (2)

where æ = k2
0 ε̇r, k0 = ω

√
ε0µ0, Z0 =

√
µ0/ε0, ε̇r = ε̇/ε0.

The solution of (1) or (2) is defined in open domain Ω with boundary Γ =
⋃
i

Γi, under various

types of boundary conditions at the perfect electric or magnetic conductor Γ1,Γ2 respectively, wave
port Γ3, and absorbtion surface Γ4:

Γ1 : ~n× ~E = 0, Γ2 : ~n× ~H = 0,
Γ3 : ~Eτ = ~E0, Γ4 : ~Eτ = Z0

(
~H × ~n

)
.

(3)
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Here τ is tangent vector component at the surface with the external normal ~n. If we introduce
scalar and vector potentials ~B = µr ~H = i

ω∇× ~A, ~E = ~A +∇V , the equation (2) can be rewritten
as follows:

∇×
(

1
µr
∇× ~A

)
− k2

0 ε̇r

(
~A+∇V

)
= −ik0Z0

~J. (4)

For the problems with piece-wise smooth material properties, the well-known conjugation condi-
tions are given on the internal boundaries additionally.

The classical statements (2), (5) can be reformulated in variational forms, see [3], [4]:
∫

Ω

1
µr

(∇× ~E) · (∇× ~Ψ)dΩ−
∫

S

( 1
µr

(∇× ~E)× ~n
)
· ~ΨdS−

−
∫

Ω

æ( ~E · ~Ψ)dΩ =
∫

Ω

(~F · ~Ψ)dΩ, ∀~Ψ ∈ Hrot
0 ,

(5)

∫

Ω

1
µ r

(
∇× ~A

)
·
(
∇× ~Ψ

)
dΩ−

∫

S

(
1
µ r

(
∇× ~A

)
× ~n

)
· ~ΨdS −

−
∫

Ω

æ
(
~A · ~Ψ

)
dΩ−

∫

Ω

æ
(
∇V · ~Ψ

)
dΩ =

∫
Ω

(
~F · ~Ψ

)
dΩ, ∀~Ψ ∈ Hrot

0 ,
(6)

where ~Ψ are some vector probe functions, ~E ∈ Hrot, V ∈ H1
0 (Ω).

The approximations of the above BVPs by FVM or FEM were implemented and investigated in
the numerous papers, see [3]–[6] and literature citied there. Also, in these and other articles the big
attention is payed to the special algorithms for iterative solution of complex non-Hermitian SLAEs
which arise in discretization of original problems.

This paper is organized as follows. In point 2 we describe shortly the approximative FVM and
FEM to be applied on the non-structural tetrahedral grids as well as algebraic preconditioned iterative
methods in the Krylov subspaces which are used for solution of large sparse SLAEs with non-symmetric
indefinite matrices for real variables. In the last section the results of numerical experiments for the
representative set of the model problems demonstrate the convergence of different grid solutions and
the efficiency of algebraic solvers for the various physical parameters and meshsteps.

2 Approximations and iterative algorithms

We construct the discretization of the considered 3D BVPs on the adaptive non-structured grids with
tetrahedral elements, i.e. the verteces and edges of the boundary Γ are the mesh nodes and mesh
edges also.

Let ~rj , j = 1, 2, 3, 4, be the verteces of some tetrahedra T , and let u(e), v(e) be the beginning and
end points of some edge e in T . In each tetrahedra we introduce the linear basis functions Li and
vector functions ~We:

Li(~rj) = δi,j , ~We = Lv(e)∇Lu(e) − Lu(e)∇Lv(e). (7)

The unknown vector and scalar functions are presented in the form

~E =
∑

uEi ~Wi, ~A =
∑

uAi ~Wi, V =
∑

uVi Li (8)
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where the coefficients uEi , for example, are sought from the resulting finite dimensional approximation
of (5): ∑

i

uEi

[ ∫

Ω

1
µ r

(
∇× ~Ψi

)
·
(
∇× ~Ψj

)
dΩ−

∫

S

(
1
µ r

(
∇× ~Ψi

)
× ~n

)
· ~ΨjdS −

−
∫

Ω

æ
(
~Ψi · ~Ψj

)
dΩ
]

=
∫
Ω

(
~F · ~Ψj

)
dΩ,

(9)

The similar relations for each j-th grid edge can be written for ~A− V variational statement (7).
The relations (8), (9) define SLAE

AEuE = fE , AE = {AEi,j}, uE = {uEi }, fE = {fEi }, (10)

which dimension Ne equals to the number of mesh edges. The entries of matrix AEi,j = Si,j −Mi,j and
vector entries fEi are defined via integrals on the finite elements, see [4]:

For the potential statement SLAE can be written in the following form, see [7]:

AAV u ≡
[

I
GT

]
· [AE] · [ I G

] ·
[
uA

uV

]
=
[

I
GT

]
· [fE] ≡ fAV , (11)

where identity matrix I and subvector uA have order Ne, the dimension of subvector uV equals to the
number of nodes Nn, and G = {gi,j} ∈ RNe,Nn is incident “edge-node” matrix: gi,j = −1 or 1 if j is
node number of the beginning or end vertex of the i-th mesh edge respectively, and gi,j = 0 otherwise.

The finite volume approximation of complex Helmholtz equation

−∆E + µræE = 0, (12)

which is derived for the uniform media by means of relation rot rot = −∆ + grad div is made using
barycentric Voronoi cells on the same non-structured tetrahedral grid, see [6]. In the case of piece-
wise constant material properties, the conjugation conditions on the internal boundaries are satisfied
automatically in FVM approach.

The iterative solution of SLAE Au = f, A = D−L−U, where D,−L and −U are diagonal, low
and upper triangular parts of A, is made by preconditioned Krylov methods. In particular, we use
preconditiong matrix

B = (G+ L)G−1(G+ U), G =
1
θ
D, (13)

where θ is iterative relaxation parameter, and B can be presented in the factorized form, see [7]:

B = LBUB, LB = (G− L)G−1/2, UB = G−1/2(G− U). (14)

Then the efficient Eisenstat modification of two side preconditioning can be realized as follows:

Āū = L−1
B AU−1

B UBu = L−1
n f ≡ f̄ , ū = UBu. (15)

The advantage of such approach consists in the fast multiplication of some vector by matrix Ā.
The iterative solution of preconditioned SLAE (15) is made by various Krylov’s methods: conju-

gate gradient (CG, for symmetric case), biconjugate gradient (BiCG), biconjugate gradient stabilized
(BiCGStab) and semi-conjugate residual (SCR), see [7]. Let us remark that the complex SLAEs where
transformed to real non-symmetric form.
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3 Numerical experiments

The efficientcy of the described algorithms is demonstrated by the results of numerical experiments
for three test problems (wave guides) with known exact solutions. The computational domain Ω is
parallelepiped 0 < x < 72, 0 < y < 34, 0 < z < 200. The surface z=200 is wave port with
boundary condition

−→
E = −→ey sin(πx72 ), and the rest boundary surfaces are perfect electric conductor.

The frequency is ω = 6πGHz.
Test 1 includes uniform real parameters εr = µr = 1. In the Test 2 the values εr = 5 for

0 < z < 100 and εr = 1 for 100 < z < 200 (µr = 1 everywhere in Ω). The third test corresponds to
complex parameters εr = 1− 0.1i, µr = 1.

The computations were made under double precision real arithmetics at the uniform grid with the
number of parallelepipeds Np = 163, 323, 643 which were divided into 6 tetrahedrals. The stopping
criteria was choosen for the iterative residual norm ‖r‖ 6 ‖f‖ · 10−7. The implementation of the
iterative solvers was made for conventional compressed sparse row matrix format, see [8].

Table 1 demonstrates the maximum error ∆E for three test problems, obtained by FVM and FEM
on the different grids. In FEM approximations, the accuracy is approximately the same for ~E and
A-V statement.

Np Test 1 Test 2 Test 3
FEM FVM FEM FVM FEM FVM

163 7.1 · 10−1 1.6 · 100 2.6 · 10−1 1.0 · 100 6.7 · 10−1 1.7 · 10−1

323 2.7 · 10−1 2.8 · 10−1 1.4 · 10−1 5.5 · 10−1 3.1 · 10−1 4.1 · 10−2

643 1.1 · 10−1 6.4 · 10−2 — 7.9 · 10−2 1.6 · 10−1 1.0 · 10−2

Table 1: The errors of numerical solution

The Table 2 demonstrates the number of iterations for preconditioned BiCGStab algorithm which
are required for solving three test problems at different grids for FVM and FEM approximations.
In FEM approach, the A-V formulations (11) was solved. For ”electric” SLAE (10) the numbers of
iterations are considerably bigger.

Np Test 1 Test 2 Test 3
FEM FVM FEM FVM FEM FVM

163 173 53 1169 225 242 112
323 402 96 2240 356 509 216
643 — 154 — 531 1544 395

Table 2: Number of iterations for different approaches

In the Table 3 we present the computational resources which are necessary for solving Test 3 by
iterative SCR method (for A-V variables in FEM statement (6), (11)) and direct PARDISO solver
from MKL [8]. Here N means the order of the SLAEs for different grids, T1 and T4 are execution times
in seconds for one- and four-threads parallel implementations under OpenMP system, and MemGB is
the required volume of memory in gigabyte. For 643 grid, the PARDISO solver fails because of memory
deficit. Let us remark, that in the last experiments the implementation of SCR solver was done by
using SPARS BLAS computational tools from MKL. This technology helps to save code execution
time about 50%.

The comparative analysis of the presented results and many others numerical experiments allows
to make the following conclusions:
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Grid N SCR Pardiso
n T1, sec T4, sec MemGB T1, sec T4, sec MemGB

163 59582 216 15.4 13.4 0.28 15.6 6.7 0.44
323 50009 411 664 495 3.73 865 302 5.78
643 4096766 988 — 17844 47.6 — — > 64

Table 3: Test 3: computational resources for different solvers

• the FVM and FEM approaches provide approximately the same accuracy for considered test
problems, including complex and piece-wise constant material properties, but the order of con-
vergence for h→ 0 is the first one for FEM and the second one for FVM;

• in FVM case the algebraic properties of SLAE are better considerably which help to obtain more
fast iterative solution;

• direct solver PARDISO is really competitive for relatively small SLAEs, but it fails for the very
large orders;

• the variational A-V statement has the considerable advantage, compare to FVM for ~E formula-
tion, because of better algebraic properties of SLAE.
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