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Abstract—Integrated domain decomposition multigrid methods (DDM-MG) for solving large sys-
tems of linear algebraic equations (SLAEs) with sparse symmetric or asymmetric matrices are consid-
ered. Such systems are obtained as a result of grid approximations of multidimensional boundary value
problems. The proposed algorithms are based on the construction of single-layer or two-layer macro-
grids and a special ordering of nodes according to their belonging to various topological primitives of
the macrogrid: macronodes, macroedges, macrofaces, and subdomains. With a consistent numbering
of vector components, the SLAE matrix in the three-dimensional case takes a block-tridiagonal form
of the fourth order. To solve it, an iterative preconditioned method in Krylov subspaces is used. In this
case, the solution of auxiliary systems in subdomains is carried out by multigrid methods of block
incomplete factorization based on a similar topologically oriented ordering of nodes but at the
microlevel rather than at the macrolevel, as a result of which a single preconditioner of a recursively
nested type is formed. The justification of the proposed methods is carried out for matrices of the
Stieltjes type.

Keywords: large sparse SLAEs, multigrid methods, domain decomposition, macrogrids, precondi-
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1. INTRODUCTION

Domain decomposition methods (DDM) and multigrid approaches (MG) are among the main com-
putational technologies for solving large systems of linear algebraic equations (SLAEs) with sparse matri-
ces arising in grid approximations of multidimensional boundary value problems. Historically, they
evolved as alternative directions: DDM were oriented mainly toward efficient parallelization of iterative
algorithms on multiprocessor computing systems (MCS), and MG solvers turned out to be asymptotically
optimal in terms of order; in these methods, for a characteristic grid step # — 0, the amount of required
arithmetic operations is directly proportional to the SLAE dimension, while the acceleration of parallel
computations is not high. The theoretical analysis of these computational tools is completely different,
and their software implementations are available in many libraries (see an extensive bibliography in [1—
18] and the references therein).

In [19], an algebraic-geometric decomposition method was proposed for a parallelepipedal grid com-
putational domain based on constructing a separating macrogrid and dividing the nodes into four non-
intersecting subsets according to their belonging to different topological primitives: macronodes, mac-
roedges, macrofaces, and subdomains. With the appropriate ordering of the nodes and vector compo-
nents, the SLAE matrix is represented in a block-tridiagonal form, and preconditioned iterative algo-
rithms in Krylov subspaces using approximate matrix triangular decompositions are used to solve it.

Note that in this approach the first stage of the algorithm is associated with the analysis of the geomet-
ric properties of grid objects, and the second stage is only associated with transformations of the con-
structed block matrices, and there are no concepts of solutions to auxiliary boundary value problems in
subdomains, which is the basis of the classical DDMs. In [20, 21], a similar approach was proposed for
the multigrid method, but at the microlevel rather than at the macrolevel. For the case of two three-
dimensional nested grids consisting, e.g., of parallelepipeds or tetrahedra, the nodes of the dense grid are
divided into four subsets according to their belonging to different topological primitives of the sparse grid:
nodes, edges, faces and cells. With the appropriate numbering of the vector components, the algebraic
system is also reduced to a block-tridiagonal form of the fourth order, to the solution of which the algo-
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rithm of approximate factorization in Krylov subspaces can be effectively applied. Multigrid methods are
defined as a recursive application of two-grid methods with the matrix structures taking a nested block-
tridiagonal form.

A natural step in developing these two approaches is to combine DDM and MG into a single-level
algebraic-topological method with the construction of a Krylov-type iterative process with a single pre-
conditioning matrix constructed by approximating the general recursive block-tridiagonal structure for
the original SLAE. In this case, the nodes of the macrogrid implementing the decomposition of the
domain are numbered first, and then the internal nodes in the subdomains are numbered using for each
of them the ordering of the algebraic-topological type described above for MG.

In contrast to the single-layer separating macrogrid considered in [19], we also assume that the grid
computational domain is decomposed using a two-layer macrogrid. In this case, the formal division into
subdomains is carried out by breaking the edge connections between individual neighboring nodes. The
set of near-boundary nodes thus obtained is excluded from the subdomains and combined into a macro-
grid consisting, for the case of a cubic grid, of two-layer macrofaces, “thick” macroedges (four nodes in a
perpendicular section) and “fat” macronodes (eight nodes in each). The block structure of the SLAE
obtained in this algebraic-topological version of DDM retains its general form, but the configuration of
the blocks themselves becomes more complex.

Macrogrid subdomain separators ensure high speed of DDM iterations since the solution of the corre-
sponding “carcass” SLAEs ensures the propagation of the disturbance throughout the computational
domain at each step.

The implementation of the MG stage of the combined approach does not change, neither does the
principle of the preconditioned iterative method change: approximation of the block-tridiagonal matrix
using approximate factorization plus construction of any of the Krylov-type algorithms. Note that the first
approaches to the joint use of DDM and MG were considered in [22, 23].

This paper is organized as follows. In Section 2, we give a brief description of iterative preconditioned
methods in Krylov subspaces for symmetric and asymmetric SLAEs. Section 3 presents an algebraic-
topological version of DDM with two-layer macrogrids, and Section 4 presents a similar description of
the multigrid method for subdomains. Section 5 presents the general structure of the proposed DDM—
MG iterative process and some of its properties. In the last section, possible generalizations of the
described approaches and directions for further research are discussed.

2. PRECONDITIONED ITERATIVE METHODS IN KRYLOV SUBSPACES

Consider a real nonsingular SLAE
Au=f, A={a e R"™, u=tu}, [={fteR", (1)

which is assumed to be obtained as a result of approximation of a boundary value problem on a grid Q"
We assume that system (1) is of the node type, i.e., each grid node is associated with one component of
the unknown vector u. Below, to illustrate the proposed algorithms, we use a seven-point or seven-diag-
onal SLAE that is an approximation of a diffusion-convection equation for the cubic grid

Q":x,=ih, i=1,..,N, y,=jh j=1,.,N,, z =kh k=1,.,N, ()

which in multi-index form is written as

() (H 2) (3)
(Au); ;i = @0t jo = G o i = G i ok — Gy bk

(3

) ) (6) — .

= G it e — G a1 = Gl g = Jijuo
for methodological purposes, we will use symmetric positive definite (s.p.d.) matrices, including the class
of Stieltjes matrices (indecomposable that have the properties of diagonal dominance, positive diagonal

and non-positive off-diagonal elements, see [24]).

If B is an easily invertible (preconditioning) s.p.d. matrix, then with its help preconditioned iterative
processes of the Krylov type are formulated in the general form:
P=f-Ad, p’=B", n=0l1,..,

+1 +1
" =u"+a,p’, =" —a,A4p”,

4
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here p” are the direction vectors, r* is the initial residual, and o,,pB, are the iterative parameters to be

determined. If the direction vectors are A”-orthogonal

A" ) =pP8,, P = (A" PN = H”k

2
) (%)
Y

where y = 0,1,2, and 8,,’,( is the Kronecker symbol, then relations (4) define the residual functional

n—1
D"y = (A7) = (), = D120, AT ) — aipy ], (6)
k=0
which under the conditions

P =B 4B, o, =06,/p By=0,u/0, ©,=0" B, p,="A4") (7)

attains its minimum

-

o, =] —goﬂp"ﬁ_,/pk. ®)

In this case, to satisfy the condition ”r”“ =", r""? < e[ f]| at the given & < 1, the number of required
iterations satisfies the bound

n(e) < vV (log(2e™)1/2, 9)

where x is the spectral condition number of the matrix B 'A. In this family of preconditioned conjugate
direction methods (CD) the value y = 0 corresponds to the minimum error algorithm, and for y =1 and
v = 2 we have the conjugate direction and conjugate residual methods. More precisely, the two-term for-

mulas (7) define the Hestenes—Stiefel orthogonalization for the vectors p”. An alternative are the three-
term Lanczos relations, which are more sensitive to rounding errors.

If the original SLAE is not symmetric, then instead of CD, semi-conjugate direction (SCD) methods
with long vector recursions are defined, which are more resource-intensive. We will consider these algo-
rithms in a generalized form with multi-preconditioning, when a new iterative approximation is calculated

using several direction vectors rather than a single direction vector p”; these direction vectors form the
matrix P,:

F=f-Ad, n=0,. u""'=u"+Pu,
P =" — AP, = 1! = APT, —...— APG,, 0<gq<n, (10)
By=(plsespy) e RV Gy = (0, 0y ) € R

Here, 0, € RM» are the iterative parameter vectors and pj are the direction vectors satisfying the semi-
conjugation condition (it is essential that following relations n' < n):

AP ATpl) = pSek,  ph = (Ap, A'p)), ¥=0,1, n=0,1,.,n-1, kk =12,.,M, (1)

If we set the coefficients &, = {o,,} in (10) by the formulas

a‘n,l = Gn,//pfxgn Gn,l = (rO,AYI_)In)a (12)
then the residual functional
n M,
L) = ("L AT = (1, AT =Y D LAY . =01, (13)
k=g =1

attains its minimum in the block Krylov spaces:

Ky = Span{p),..., Dys AL ADygyse oo s APl APy b M = My + My + ...+ M, (14)
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The orthogonal properties of the direction vectors p;l are generally determined using various precondi-
tioning matrices B, ; as a result, we obtain

n M,
0_ p-10 ntl _ -l ntl ) K _ .
yZi _Bo,l" s Db T Dp gl _ZZBn,k,lpla n=0,1,...;
k=0 1=1

— T
B, e R™™, i=1,..M; v=0.12 BN =1}=B0 Bl €R" (15)

Birs =—(A"p ABL ) ol n=0.1, k=0,..m [=1,..M,

Note that particular versions of the considered methods for asymmetric SLAEs are equivalent in conver-
gence rate to CMRES-type algorithms based on Arnoldi orthogonalization, including those with dynamic
or flexible preconditioning (FGMRES, see [25] for more details).

Note also that asymmetric SLAEs can be solved by Krylov’s methods with short recursions if we use
biconjugate direction algorithms or symmetrization of the original system with the preliminary Gaussian
transformation (see [26, 27] and the references therein).

3. MACROGRID DOMAIN DECOMPOSITION METHODS

The construction of the proposed macrogrid DDMs consists of two stages. At the first stage, a block
three-diagonal representation of the original SLAE based on the topology oriented ordering of the nodes
of the grid computational domain is formed, and the second stage consists of constructing an efficient pre-
conditioning matrix.

3.1. Topology Oriented Domain Decompositions

In [14], the nonoverlapping subdomains were decomposed using the separating macrogrid Q" embed-

ded into the original grid Q"
Q" pxy <hp <y, <N 1< <y, <Ny 1<k <ky <N, Q" =/ uQruQr. (16)

In this case, the dimensions of each macronode, macroedge, and macroface are zero, one, and two,
respectively; i.e., they are a simple node, grid segment, and a fragment of the grid plane. The correspond-
ing geometric (or topological) grid objects are shown by the symbols e, X, o in Fig. 1 depicting a fragment
of a cubic grid.

By numbering all the macronodes, then the macroedge nodes, then macroface nodes, and finally the
internal nodes of the subdomains, we obtain four subsets of the nodes of the original grid and four sub-

Fig. 1. A fragment of a cubic grid with macrogrid objects.
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vectors of the original grid solution to SLAE (1), which then takes a block tridiagonal form of the fourth
order:

A1,1 A1,2 0 0 U Ji
Ay = Ay Ay Ay 0 w1/ _ (17)
0 A5 Ay Ay Ve

0 0 A Ag]lus| | Sa

&

<

Here, the diagonal blocks 4,, and the subvectors ,, f; correspond to the subsets QZ, Q’g, Q’f', and Q’l') for
[ =1,2,3,4. The matrix A4, in (17) is a diagonal one, its size equals the number of macronodes M, , and
Ay, A3, and A, 4 are block diagonal matrices with the block sizes M, M, and M, equal to the number
of macroedges, macrofaces, and subdomains, respectively. If we assume for simplicity that all macroedges
have N nodes each, then the sizes of the resulting grid subdomains and the corresponding subvectors are

4
N, =M,, N,=M;N;, N;=M;N;, N,=MyN;, N=>N, (18)
=1

The set of separating nodes described above is called a simple (or single-layer) macrogrid. In this case,
each diagonal block of the matrix 4, , is a tridiagonal matrix, and the diagonal blocks of 4; ; and 4, , are
five-diagonal and seven-diagonal matrices, respectively.

Now consider the decomposition of the grid domain Q" using “virtual” coordinate planes that do not
include grid nodes. In this case, to each grid line we assign the macrogrid pairs of adjacent nodes separated
the plane:

Q" ; ; (19)
. xil, xil+1> (A xMxﬁ xMH]: yj,-’ yj1+l= EARE] yMya xMx+1: zki,’ zk1+1’ (AR zMzﬂ zMﬁ]'

Then the macroface is a fragment of a “double” grid plane, and a three-dimensional macroedge is a
sequentially located “quadruples” of nodes of the original grid. The corresponding macronodes, which

are intersections of a triple of macroedges, consist of eight nodes. The set of nodes Q" obtained in this way
will be called, in contrast to (10), a double or two-layer macrogrid. For clarity, Fig. 2 shows a fragment of
the obtained structure in the two-dimensional case, where the symbols e, X, o denote macronodes, mac-
roedges, and internal nodes of subdomains, respectively.

O
O—

,mgo

Fig. 2. A fragment of a double macrogrid for the two-dimensional case, M, = M, = 2.
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In this case, the SLAE block structure (16) has the third, rather than fourth, order. It is easy to verify

that, for the model example with identical macroedge lengths N, the sizes of the diagonal blocks and sub-
vectors are

N,=4M,, N,=2M,N,, N;=M,N2 N =N,+N,+ N, (20)

For a three-dimensional double separation macrogrid, the corresponding quantities are defined as fol-
lows:

N, =8M,, N,=4M,N,, N,=2M,N,, N,=MyN,, N N,. (1)

[
M-

=1
In the last case, each diagonal block of the matrix 4, , is a four-diagonal matrix, and each diagonal

block of 4,, and A4; 5 is a six-diagonal matrix. The structure of the matrix 4, , is the same as that in the
case of a simple macrogrid.

3.2. Construction of “Macrogrid” Preconditioners

In Section 2, we presented formulas for preconditioned methods of conjugate or semi-conjugate direc-
tions for iterative solution of symmetric or asymmetric SLAEs, respectively. In this section, we focus only
on the issues of constructing and implementing preconditioners that generalize the decomposition of
domains using single-layer and double-layer macrogrids that have some analogy, at least terminological,
with the potentials of simple and double layers in the theory of integral equations. To approximate the
matrix of the original SLAE (17), two methods of its approximate block-triangular decomposition can be
used. The first is the method of incomplete factorization with diagonal compensation:

G, 0 0 0 G A, 0 0

dopgo|fr G 0 010 G Ay 0]
0 4, G 0 0 0 G 4,
0 0 4G, 00 0 G,

where the matrices G, are given by the formulas
G =4, G=4H4,- (Az,lelAl,z)l -0S5,, S = [A2,1G171A1,2 - (Az,lelAl,z)l]ez,
Gy = 45— (A3,202_1A2,3)1 -0S8;, S = [A3,2G2_1A2,3 - (A3)2G2_1A3,2)1Je3, (22)

Gy, = Ay — (A4,3G3_1A3,4)1 -0S8,, S = [1‘14,303_1143,4 - (A4,3G3_1A4,3)1:'e4.

Here, S, are diagonal matrices, (C), denotes the diagonal part of the matrix C, 0 € [0,1] is the compensa-
tion parameter, and the trial vectors (typically, their components are equal to unity) e, have dimension
N,. These formulas correspond to the condition of full compensation of the row sums Be = Ae for6 =1,
ee R", and they come from exact factorization of (4 = B), for which G, = A — Ak,k,ICk_ilAk ke

The second method for constructing a factorized preconditioner is the symmetric or asymmetric
(depending on the properties of the original SLAE) method of successive upper relaxation (SSOR or

USSOR), when the matrices G, in (22) are defined simply as
G =0 Ay ®€(0,2), (23)

where m is the relaxation parameter.

Note that for the implementation of preconditioned iterative methods, an auxiliary SLAE Bg = r must
be solved at each step n, which is done using the following efficient formulas:

Gvi=h, Gv,=n—-A4 v, Gvi=r—A4,v,, Gv,=n—Asv, q =V, (24)
_ _ _ _ _ -1
Gyw; = Ay, G =V3—W, Gyw, = A2,3513: G =Vy=w, q =vi—(G) Al,zqz-

To calculate the matrices G, in (22), the simple approximation C = (C), is used. More accurate versions
will be discussed later.
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In these relations, the components of the vector v, correspond to a subset of nodes of M, in subdo-
mains in each of which an algebraic subsystem must be solved, for which purpose we will use multigrid

methods described in the following section. Note that the matrix G, in (22) has the same seven-point por-
trait as A, ,.

Iterative algorithmic capabilities in the macrogrid DDM arise if a special block tridiagonal structure of
the matrix block 4, , is used instead of (22) for constructing the preconditioned matrix B. In this case,
from the first two block rows of SLAE (17) it is possible to form the subsystem

—_| Ay A || w Ji
A ’ ’ = = f, — Ay 3u;, 25
u [ Ay Ay ||ty £ S 3,3U3 (25)

which can be solved (or its solution can be expressed in terms of ;) using the block sweeping method. Let
us consider, for illustration, the system of equations for a double macrogrid in the two-dimensional case
shown in Fig. 2:

L} , L} Al P i " " " " J— "
—av, + bth — Vi T dth - fr 5 -4 Wt bt W, =G Wy t dt Vi = ft 5

(26)

_ _ b _ b _ _ e
t=1,...,N, Vo=V, Wy=W, Vy =V, Wy =w.

e’ e

t is the local index of macroedge section located between two macronodes the values v,, w — B, V;, W, of
the desired solution at which can be considered as boundary conditions for the grid problem

il b
_ . _(vi _| /i _|v _ [
—Au+ Bu; —Cuyyy = f, i=1,..,N,, u = w fi= s U=, Una T L)
w

"‘ w
/ (27)
a 0 b d ¢ 0
Bu, —Cu, = fi, —Ayuy_+Byuy, = fn, A= , B = , G =

1

" " " "
0 q d" b 0 ¢

1
Its solution can be found using forward or back version of the sweep algorithm

MANE =‘2N25 121‘231121‘+1+21" t=Ne_1,...,l, ljl:Z[a ﬁtzBIﬁt—l-i-Zt’ t=2,...,Ne, (28)
where the vectors Z,, Z, and the matrices E,, B are found from the equations

Bl = Clbla ﬁ1 = Bl_lv Bt = Ctbtsbt = (Bt _Ath—l)a 1=2,..,N,

e’

~ ~ _ = ~ ~ =\l
BNE = ANEDNEs DNe = BNl—e’ Bt = AtDt’ Dt = (Bt - CtBHI) , 1= Ne -1,...0
4= +Auw)D, & =(f+A50D, 1=2, N,
v, = Uy, + CNEUNE+1)D/:'1, =+ CtZtH)Dt_ls t=N,-1,...,L

Using these formulas, the components of the subvector i, can be explicitly expressed in terms of the mac-

(29)

ronode values Z,, Z, and é,, B, after the substitution into the corresponding macronode equations and
eliminated from the system. The resulting macronode low-order subsystem can be solved by a direct
method after which the values at macroedge nodes are calculated using (28).

The matrix relations (27), (28) remain valid for the three-dimensional case; only the matrices and vec-
tors become not of the second but of the fourth order, and vice versa; and when using a simple macrogrid,
the sweep formulas become scalar for both the two-dimensional and three-dimensional cases. Note with-
out going into details that this approach allows one to relatively easily calculate the main diagonal of the

inverse matrix 4~ from (25), which provides additional opportunities for improving the preconditioned
matrix.

Let us consider another direction of development of this class of subdomain decompositions, which we
will illustrate on the simplest two-dimensional case with a single-layer macrogrid shown in Fig. 3. In this
case, the block matrices 4 and B have order three, and the fourth block rows and columns are absent. The

new algorithm is constructed by replacing the diagonal approximation of the matrix A4, ,G, 1A2,3 in (22)

with a more accurate approximation, which has a four-point portrait (4; ,G, 1A3,3)4. The changes concern
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Fig. 3. A fragment of a two-dimensional grid with a secondary macrogrid and a simple primary macrogrid.

I ." ..
(X) (X) (X

()

O O ()

Fig. 4. A fragment of a two-dimensional grid with a secondary macrogrid and a two-layer primary macrogrid.

only the near-boundary nodes of the subdomains designated in Fig. 3 by the symbol ®, each node has
connections with two nearest nodes from its subdomain and with one or two from the neighboring ones
(some rows of the matrix have not four, but five nonzero elements).

It is clear that the secondary macrogrid is structurally two-layered and its image will be topologically
equivalent to the graph in Fig. 2 if the nodes of the type X, ® are removed from Fig. 3 (the dimensions of

the new subdomains are reduced by one layer). In this case, the matrix G; (which we will redesignate as

A® = G;) acquires a block form similar to the original matrix 4 = A", and to solve the corresponding

SLAE (approximate calculation of v; in (24)) we can recursively apply the incomplete factorization pro-
cedure (22).

Let us now make some remarks on the construction of preconditioners for macrogrid decompositions
of subdomains.

Remark 1. The computational scheme for constructing a secondary macrogrid has the same block-
matrix form if the original (primary) macrogrid is not simple but has two-layers (see Fig. 4).

Remark 2. The described scheme for constructing the secondary macrogrid can be recursively contin-
ued to form m-ary (tertiary, quaternary, etc.) macrogrids, while for any m the macrogrids have no more
than two-layers and with each such step the subregions are reduced by one grid layer.

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 65 No.6 2025
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Remark 3. Recursive procedures for constructing macrogrid DDMs have the same block-matrix struc-
ture in the three-dimensional case as in the two-dimensional case both for the original simple and double
macrogrids.

4. MULTIGRID PRECONDITIONING IN SUBDOMAINS

The purpose of this section is to specify methods for solving SLAE for calculating the subvector v, in

formulas (24). More strictly speaking, we describe an approximate representation for the matrix G,, which
completes the construction of a single-level combined DDM-MG method in Krylov subspaces and pro-
vides a justification for the proposed approach.

Since G, is a block-diagonal matrix of a large order M, the problem can be formulated as a parallel
solution of systems of the form

ANVD =4O =1, M, [=1. (30)

Here, we assume that v, = {V,(nl '} and that in all M p subdomains the original grids an = Qﬁ,? have approx-
imately the same size (for the purpose of efficient parallelization), and in each of them a sequence of

nested grids Q(,,i) DD Q(,,? DD anL) is constructed.

Below, we will construct identical algorithms for subdomains; for this reason, we will omit the index m
in the following formulas. We will consider in more detail the proposed methods for the case of two grids

Q" 5 QP (dense and sparse), and we will define multigrid algorithms as a recursive application of two-
grid ones.
We divide the set of nodes of the original (dense) grid Q" in the subdomain into four subsets according

to their belonging to different topological primitives of the sparse grid Q” —nodes, edges, faces and cells.
In Fig. 5, the nodes of the corresponding subsets are designated by e, X, o.

Note that these four subsets

Qﬁ” U Q(zl) U Qg” ) Qi‘” = QW
have an analogy with the partition in the case of macrogrid decomposition but at the microlevel rather
than at the macrolevel.
By further sequentially ordering the nodes from these subsets, as well as the corresponding components
ofthe vectorv, = {v,(n])} in (30) (first we renumber all the nodes in the first subset, then in the second, etc.),

we obtain a matrix A'” for the initial grid that has a block-tridiagonal form with a block of fourth order

Z, k
6 .~
_.___‘)__.___
[ |
| 4 |
I/ 9—_—/_/0"‘_'1'/_)
NS T TR Ll S
/| %/ 0 (/|3
é—l———(z————) |
| |
| |
—— 1o X
0 x,'i

Fig. 5. Illustration of node classification for two external grids.
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like SLAE (17). For convenience, we below will formally write the resulting algebraic system with a super-

script A, keeping in mind that in our case / = 1:

A(I) A(l) 0 0 (l) f(/)
1
i i i i
AO,0 — A A AN 0 Mé) | A 31
u 0 A(/) A(/) A(l) 0|~ f(l) :
33 U 3
/ / i 0]
0 0 A% Al ||uw’] LA

Note that for the chosen “topological” ordering for the SLAE (3), the diagonal blocks A,ilzc are diagonal
matrices, the submatrix Al( is a six-diagonal one, A(l) and A(') are a four-diagonal matrix. It is clear that

the matrix of the algebraic system can be approximately factorized (A() = BU)), and for the diagonal
blocks G it holds that

O = A% — ANG")" 4,
G, 4~ A5Gy A

In this case, this matrix has a seven-point portrait of the same type as that of A but only for a coarser

grid, due to which we can introduce the notation G(l) =AY In turn, if / + 1 < L, then the matrix A
can be reduced to a block-tridiagonal form (17) and approximately factorized; next the recursive process
can be continued. Recall that when implementing formulas for incomplete factorization with diagonal
compensation, an auxiliary SLAE Bg = r must be solved at each iteration of the preconditioned conju-
gate gradient method; this is easily accomplished using formulas (24).

Based on the outlined principles of constructing algebraic-geometric multigrid methods, the following
three variants of combined DDM-MG algorithms can be proposed.

The first option is to use nested incomplete factorizations by analogy with the work [19]. We define the
matrix block G, in the DDM decomposition (22) as the SLAE matrix G, = A" on the original (dense)

grid in the subdomain and perform a similar approximate triangular decomposition AV = BV = L(,;)U f;)
for it. Then we continue this recursive process in each domain, as a result of which we obtain a sequence
of matrices

AV <~ g = L(l)U(l) G(l) — 4D < g = L(/)U(l) G(/) G(L) 4D = L(L>U(L)
Thus, the matrix A acquires a factorized combined preconditioner, and we obtain a single-level iterative
process in Krylov subspaces, which we denote by DDM-MG.

This process satisfies the following theorem.

Theorem. Let the matrix A in SLAFE (1) be a Stieltjes matrix. Then the preconditioner B in the DDM-MGa
method is an s.p.d. matrix, and the number of iterations n(€) of the CG method satisfies bound (9), where K is

the condition number of the preconditioned matrix B 'A.

The second option is based on a two-level iterative process, which includes solving the auxiliary system
Gy, = 1, — Ay3v; from (14) with the required accuracy using the multigrid method described above sim-
ilar to [20]. The preconditioner implemented in this case turns out to be dynamic, and the use of the CG
algorithm as an external solver for DDM is, strictly speaking, unjustified. A natural way here, is, e.g., to
use the “flexible” conjugate gradient method FCG [28].

The third option is a development of the second one and includes a complement of the algebraic-geo-
metric method with iterative smoothing operations used in the classical MG algorithms. Here, V-, W-,
and K -cycles can be used which are described in extensive literature, and we will not dwell on these
issues here.

5. CONCLUSIONS: TECHNOLOGICAL ISSUES AND PROSPECTS OF THE DDM-MG

Based on publications [ 19—21] and preliminary experimental studies, it can be concluded that the alge-
braic-geometric macrogrid domain decomposition methods and multigrid approaches developed sepa-
rately but based on common structural principles, when combined into a unified algorithm, promise to
provide a synergetic effect with a significant increase in the efficiency and performance of software. In
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particular, these issues are relevant for solving practical problems with real data that have large condition

numbers (up to 1014) and high orders (1010—1012 and greater). Note that often, when repeatedly solving
SLAEs in interdisciplinary problems with nonlinear, nonstationary and singular effects, the calculation
times on modern computers can reach tens of hours.

The developed computational methods and technologies are naturally applied to multiprocessor com-
puting systems (MCS) with distributed and hierarchical shared memory, and they have a high level of par-
allelization and efficiency of processor usage

S, = L(A/T,(A), F(A) =S,(A)/p,

where T,(A) is the computation time for problem A on p processors.

A feature of data structures and algorithms in the methodologies under examination is the logical com-
plexity of operations with algebraic-topological objects, especially for problems with non-trivial configu-
rations of the computational domain and unstructured grids. The implementation of DDM-MG algo-
rithms is, in principle, possible on matrices represented in sparse-compressed forms such as GSR, but the
computational complexity of such implementations will be much higher than when geometric grid infor-
mation is used. In fact, this means the need to develop new-generation tools for the stages of grid genera-
tion and the construction of discrete models for solving problems. When constructing flexible and
expandable algebraic data structures, using artificial intelligence tools [29], both the efficiency of devel-
oping software solvers and the performance of the resulting code can be significantly increased.

The next important step is the expansion of the class of problems to be solved and the development of
the DDM-MG algorithms themselves. This includes, e.g., the solution of new types of SLAEs obtained
from the discretization of systems of differential equations and from the application of higher-order
approximate schemes. The solution of such problems puts on the agenda the formation of a new paradigm
of applied research, some issues of which are discussed in [30].
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