Научный вестник НГТУ. – 2010. – № 2(39)

ОБРАБОТКА ИНФОРМАЦИИ

УДК 550.34:621.039.9

Распределённая обработка данных в мониторинговых системах и сетях*

С.А. АВРОРОВ, М.С. ХАЙРЕТДИНОВ

Дана общая постановка проблемы локации сейсмических источников и связанной с нею задачи обеспечения высокоточного определения параметров порождаемых источниками сейсмических волн. Рассмотрены вопросы идентификации полезных волн и волн-помех. Дана краткая характеристика программной системы, реализующей предложенные алгоритмы в реальном масштабе времени.

Ключевые слова: сейсмолокация источников, сейсмические и акустические волны, волновые формы, вычислительные технологии, идентификация источников, ГИС-системы

введение

В мире создан ряд глобальных информационных сетей, предназначенных для мониторинга природных и техногенных процессов. В частности, мировая сеть сейсмического мониторинга IMS (International Monitoring System) предназначена для регистрации землетрясений, цунами, ядерных и промышленных взрывов, происходящих в различных районах Земли [1]. Можно выделить некоторую общую архитектуру построения сетей, включающую три уровня иерархии: нижний уровень – это датчики физических процессов совместно с промежуточными центрами сбора данных (автономные станции), средний – локальные центры сбора и обработки данных на уровне региона, верхний уровень – глобальный центр сбора и обработки данных на уровне страны, мира. Одна из основных задач мониторинга сейсмических событий связана с восстановлением их параметров в очаге, прежде всего географических координат по данным регистрации сейсмических сигналов с помощью сети сейсмических станций либо малой сейсмической группы.

Решения задач мониторинга распределяются между различными уровнями сети: на нижнем уровне в реальном масштабе времени осуществляется первичная обработка регистрируемых колебаний разной физической природы – сейсмических, акустических, гидроакустических и т. д. Обработка проводится с целью определения основных характеристик упругих волн, основными из которых являются времена вступлений различных типов волн и их амплитуд. На верхних уровнях сети осуществляется уточненное решение задачи по определению параметров источников.

Влияние сейсмических шумов вызвало потребность в автоматизированной технологии решения задач обнаружения, распознавания сейсмических сигналов и локации сейсмических источников. Такая технология избавляет от множества рутинных операций обработки данных в условиях непрерывного мониторинга событий. Целью данной работы является создание соответствующих алгоритмов и программ для реализации обозначенных целей.

^{*} Статья получена 17 февраля 2010 г.

1. ПОСТАНОВКА ЗАДАЧИ

Задача оценивания неизвестных параметров источника сводится к решению нелинейной системы условных уравнений [2]:

$$\vec{t} = \vec{\eta}(X, \theta) + \vec{\varepsilon} \,, \tag{1}$$

где $\vec{t} = (t_1, t_2, ..., t_N)$ – вектор времен пробега сейсмических сигналов; $\vec{\eta}(X, \theta)$ – *N*-мерный вектор вычисляемых времен пробега (теоретический годограф) или функция регрессии; $\vec{\varepsilon} = (\varepsilon_1, ..., \varepsilon_N)^T$ – вектор невязок; $\vec{\theta} = (x, y, z, v, t)^T$ – *m*-мерный вектор оцениваемых параметров, $X = (\vec{x}_1, \vec{x}_2, ..., \vec{x}_N)$ – матрица координат датчиков (или точек излучения); *N* – число датчиков (или точек излучения). В качестве оцениваемых параметров выступают пространственные координаты источника *x*, *y*, *z*, скоростная характеристика среды *v* и время в источнике *t*. В ряде случаев скорость в среде известна. При оценивании параметров пользуются сведениями о распределении ошибок $\varepsilon_i = t_i(\vec{x}_i, \vec{\theta}) - \eta(\vec{x}_i, \vec{\theta})$. Будем в дальнейшем предполагать, что ε_i – взаимно независимые случайные величины, имеющие распределение с нулевым средним и заданными дисперсиями: $E\varepsilon_i = 0, E\varepsilon_i\varepsilon_j = \sigma_i^2\delta_{ij}, \sigma_i = \sigma(\vec{x}_i),$ где δ_{ij} – символ Кронекера, i = 1, 2, ..., N. В случаях затруднений с заданием дисперсий их принимают равными и получают несмещенную оценку дисперсии наблюдения с единичным весом по ходу решения задачи.

Решение уравнения (1) сводится к решению обратной задачи. При этом точность решения зависит, в первую очередь, от ошибок оценивания вектора времен $\vec{t} = (t_1, t_2, ..., t_N)$, скорости

v, шумов измерения $\vec{\epsilon} = (\epsilon_1, ..., \epsilon_N)^T$, выбора геометрии расстановки датчиков на дневной поверхности Земли. В частности, по отношению к полярной системе координат дисперсия ошибки определения азимута *Az* на источник и расстояния *R* «источник—приемник» с помощью триады сейсмостанций (случай *N* = 3) определяется соотношениями [3]:

$$\sigma_{AZ}^2 = \sigma_t^2 F_1(\bar{t}, \overline{\psi}), \qquad \sigma_R^2 = \sigma_t^2 F_2(\bar{t}, \overline{\psi}), \tag{2}$$

где σ_t^2 – ошибки оценивания времён \bar{t} , $\bar{\psi}$ – вектор параметров, характеризующий геометрию расстановки сейсмической группы.

Решение поставленной задачи ведется по этапам:

- 1) обнаружение и измерение времен вступлений волн на фоне внешних шумов;
- 2) идентификация источника;
- 3) расчет параметров источника;
- 4) отображение координат источника на цифровой карте местности.

В данной работе решение задач на перечисленных этапах рассматривается на примерах обработки сигналов от маломощных полигонных взрывов, зарегистрированных на небольших расстояниях от источника (до 2 км).

По отношению к сейсмическим волнам, описываемым импульсными сигналами, ошибки оценивания времен могут быть вычислены в виде [4]

$$\sigma_{\tau}^2 = \frac{\tau_{\mu}}{2\Delta f (2E/N_0)}.$$
(3)

Здесь τ_{μ} – длительность волнового импульса; Δf – ширина его спектра; E/N_0 – отношение энергии импульса к спектральной плотности внешнего шума. Как следует из (3), уменьшение погрешности можно достичь за счет увеличения соотношения энергий сигнала и шума, расширения спектра частот Δf , занимаемого импульсом, а также за счет сжатия волнового импульса во времени путем приведения его к δ-образному импульсу. Ниже рассматриваются алгоритмы решения задачи минимизации погрешностей оценивания времен с учетом (3).

2. ПОВЫШЕНИЕ СООТНОШЕНИЯ СИГНАЛ/ШУМ

Алгоритм повышения соотношения сигнал/шум по отношению к волновым импульсам наиболее эффективно реализуется с помощью вейвлет-фильтрации, основанной на разложении одномерного сигнала по базису, сконструированному из обладающей определенными свойствами солитоноподобной функции (вейвлета) посредством масштабных изменений и переносов. В основе вейвлет-фильтрации лежит интегральное вейвлет-преобразование

$$X(\tau,s) = \int_{-\infty}^{\infty} f(t) \Psi_{\tau,s}(t) dt , \qquad (4)$$

где f(t) – волновой импульс; $\psi_{\tau,s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right), \quad \tau, s \in \mathbb{R}, \quad \psi \in L^2(\mathbb{R}).$

Базис функционального пространства $L^2(R)$ может быть построен с помощью непрерывных масштабных преобразований и переносов вейвлета $\psi(t)$ с произвольными значениями базисных параметров – масштабного коэффициента *s* и параметра сдвига τ . Наиболее подходящими для аппроксимации сейсмических колебаний являются вейвлеты Добеши [5]. В качестве примера на рис. 1 приведены вейвлеты семейства Добеши 2, 4, 5, 8 и 10-го порядков.

В связи с этим возникает задача подбора порядка материнского вейвлета для обеспечения наилучшего приближения к конкретным видам волновых импульсов.

Рис. 1. Семейство вейвлетов Добеши

В качестве иллюстрации рассмотрим волновые импульсы, порождаемые полигонными взрывами (рис. 2, *a*). По результатам анализа вейвлетов Добеши к использованию был рекомендован вейвлет 4-го порядка. При этом обеспечивается наилучшая аппроксимация формы рассматриваемого волнового импульса (рис. 2, δ). Для иллюстрации качества аппроксимации волнового импульса набором вейвлетов на рис. 3 приведены графики зависимости ошибки аппроксимации от глубины вейвлет-декомпозиции. Качество аппроксимации оценивалось по критерию среднего квадрата ошибки. На рис. 3, *a* это выполнено по отношению к модельному сигналу-импульсу Берлаге, общепринятому для описания взрывных источников [6], на рис. 3, δ – по отношению к рассматриваемой реальной записи (рис. 3, δ). Действительно, использование вейвлетов порядка выше 3-го в первом случае и выше 4-го не дает эффекта для повышения качества аппроксимации.

Пример фильтрации исходной записи полигонного взрыва, рассмотренной ранее на рис. 2, *a*, представлен на рис. 2, *б*. В результате обработки удалось достичь соотношения сигнал/шум, равного 140.

Для вычисления времен вступления волн в автоматическом режиме предварительно рассчитывают огибающую волнового импульса A(t) через преобразование Гильберта

$$A(t) = \sqrt{f^{2}(t) + f^{*2}(t)} \, ,$$

где $f^*(t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{f(x)}{t-x} dx$ – преобразование Гильберта.

Рис. 2. Пример фильтрации реальной записи полигонного взрыва: *а* – исходный сейсмический сигнал, *б* – результата фильтрации, *в*-*е* – вейвлет-коэффициенты на уровнях разложения *1*-4 с соответствующими значениями порогов

Рис. 3. График зависимости ошибки аппроксимации сейсмического сигнала от глубины вейвлетдекомпозиции при использовании вейвлетов Добеши 4, 6, 8-го порядков, вычисленных для модельного (*a*) и реального (*б*) сейсмических сигналов

Для поиска и вычисления времён прихода волновых импульсов использована пороговая обработка по правилу «трёх о». В стационарных условиях предшествующий полезному сигналу сейсмический шум описывается нормальным распределением с дисперсией, вычисляемой в поточном режиме с помощью итерационной процедуры вида

$$D[N+1] = D[N] + \gamma (X[N+1] - X[N])^2,$$
(5)

где $\overline{X}[N] = \overline{X}[N-1] + \gamma(X[N] - \overline{X}[N-1])$ – среднее значение, вычисленное на шаге N; $\gamma = \Delta t / T$ – коэффициент сходимости.

Значение порога обнаружения волны выбирается равным $\Pi = 3\sqrt{D}$.

В качестве примера успешного использования рассмотренной вычислительной технологии на рис. 4 приведены результаты обнаружения волновых импульсов сейсмической и акустической природы от полигонного взрыва мощностью около 500 г в тротиловом эквиваленте, удалённого на расстояние около 800 м. На записи первая низкоамплитудная волна – сейсмическая, вторая высокоамплитудная – акустическая.

 а – исходные сейсмическая и акустическая волны; б – результата вейвлет-фильтрации и построения огибающей; в – результат автоматического порогового вычисления времён вступлений сейсмических и акустических волн с последующим определением длительности импульсов

Погрешность вычисления времен вступления волн оценивалась по результатам внимательной ручной работы человека-оператора.

3. ПРОЦЕДУРА РАСПОЗНАВАНИЯ ТИПА СОБЫТИЯ

В реальных условиях стационарный сейсмический шум осложнен присутствием ложных импульсов-помех, имеющих техногенную природу (транспортные шумы, движение пешеходов и т д.). Во избежание ошибочной интерпретации шумовых всплесков как полезных сигналов дальнейшим этапом обработки становится идентификация источника сейсмических сигналов, результатом которой будет отнесение всплесков к одному из двух классов: взрыв или помеха. Построение системы идентификации сейсмических сигналов подразумевает выбор системы информативных признаков, на основе которой будет производиться классификация. В результате изучения особенностей сейсмических записей взрывов была выбрана система из четырёх признаков:

соотношение амплитуд сейсмических и акустических волн. Исходные значения амплитуд волн представлены на рис. 5, *a*;

 соотношение средних частот этих волн Fs/Fa. Сами значения средних частот представлены на рис. 5, б;

- соотношения длительностей волн (рис. 5, в);

– задержка между временами вступления сейсмических и акустических волн Ta-Ts (рис. 5, e).

На рис. 5, *а* и *б* каждому маркёру графика соответствует отдельная зарегистрированная волна: квадратным маркёрам – сейсмическая, ромбовидным – акустическая. Время обнаружения соответствующей волны отображено на оси абсцисс.

a – соотношение амплитуд сейсмических и акустических волн *Aa/As*; *б* – доминирующие частоты сейсмических *Fs* и акустических волн *Fa*; *в* – длительности волн; *г* – задержки между временами вступления сейсмических и акустических волн *Ta*–*Ts*

На рис. 5, *а* видно, что амплитуда сейсмических волн менее вариабельна по сравнению с акустическими в диапазоне мощностей взрывов (мощность взрывов в процессе эксперимента варьировалась от 200 до 2600 г в тротиловом эквиваленте). На рис. 5, δ отражены значения средних спектров для обоих типов волн. Видно, что частота акустических сигналов лежит в диапазоне 15...18 Гц, сейсмических волн – в диапазоне 25...40 Гц. На рис. 5, *г* показана экспериментальная зависимость расстояния «источник–приёмник» *R* от разности времён прихода сейсмических и акустических волн. Разность времён вступления сейсмических и акустических волн, Разность времён вступления сейсмических и акустических волн. Разность времён вступления сейсмических и акустических волн, Разность времён вступления сейсмических и акустических волн, Разность времён вступления сейсмических и акустических волн. Разность времён вступления сейсмических и акустических волн, Разность времён вступления сейсмических и акустических волн, Разность времён вступления волн до точки регистрации. Располагая данными о скоростях распространения волн для конкретного региона, задав необходимый временной интервал разностей времён прихода Δt , можно обнаружить событие нужного диапазона расстояний. Это свойство используется как дополнительный признак в процессе обнаружения и распознавания сейсмических сигналов и учитывается на этапе определения времён вступления сейсмических и акустических и акустических волн.

На основе статистического анализа набора данных по полевым взрывам мощностью от 200 до 2600 г в тротиловом эквиваленте, зарегистрированных на расстояниях от 472 до 750 м, была построена программная система, реализующая возможности поточного обнаружения и определения параметров волн, а также распознавания типа события (полевой взрыв или помеха). В качестве решающей функции использовано логическое решающее правило

$$T = A(Aa/As) \& F(Fs/Fa) \& T(Ta - Ts) \& L(La/Ls),$$

где операция & («логическое И») означает одновременность выполнения заданных условий:

Если T = 1, то полезный сигнал T = 0 – реакция на шум.

4. ЭКСПЕРИМЕНТАЛЬНОЕ ОЦЕНИВАНИЕ НЕИЗВЕСТНЫХ ПАРАМЕТРОВ ИСТОЧНИКА

С использованием системы алгоритмов и программ обнаружения и распознавания сейсмических и акустических сигналов был обработан набор записей 19 полевых взрывов мощностью от 200 до 2600 г в тротиловом эквиваленте. Диапазон расстояний «источник-приемник» лежал в пределах от 570 до 750 м. Обработка данных производилась в автоматическом режиме. Из 19 взрывов в автоматическом режиме было обнаружено 16, при этом к пропущенным событиям относятся полевые взрывы, проведённые в особых условиях (в болоте и воздухе).

В обоих случаях вступления сейсмической волны обнаружить не удалось, в то время как акустическая волна проявлялась очень чётко. Результаты определения координат источников в полярной системе представлены в таблице.

№ собы- тия	Расстояние <i>R</i> , м			Азимут, град		Погрешность, м	
	Автомати- ческое	Ручное	Истинное	Автоматиче- ское	Истинное	Автомати- ческое	Ручное
1	508,94	499,48	512,37	256,92	253,49	30,76	32,91
2	613,77	569,65	576,28	264,35	260,16	57,42	42,41
3	573,19	559,34	570,52	262,79	261,60	12,17	16,21
4	574,89	563,39	570,70	262,79	263,09	5,15	7,89
5	507,25	509,71	519,66	269,00	269,30	12,70	10,31
6	511,48	509,20	521,51	270,18	270,48	10,39	12,60
7	519,93	520,02	533,53	282,59	281,20	18,66	18,60
8	515,71	526,79	538,05	283,57	283,25	22,54	11,65
9	579,11	575,23	586,68	295,16	295,16	7,57	11,45
10	574,89	581,15	593,02	296,80	296,27	18,92	13,05
11	710,15	709,82	710,77	300,77	300,02	9,32	9,35
12	731,29	731,04	729,54	300,77	300,93	2,69	2,53
13	693,24	684,20	690,42	299,98	300,26	4,41	7,07
14	693,24	690,71	694,36	298,40	298,08	4,03	5,32
15	574,89	574,00	576,54	256,60	256,63	1,68	2,56
16	596,02	591,12	596,18	257,25	257,25	0,16	5.06

Результаты вычислений расстояний «источник-приёмник» *R*, азимутальных направлений и сопоставления с истинными значениями

Приведены результаты автоматического и ручного вычислений расстояний «источникприёмник» *R*, азимутальных направлений на источник и погрешности определения расстояния *R* при ручной и автоматической обработках с учётом угла азимута. Погрешность вычисляется как расстояние между координатами вычисленного эпицентра и полученного на основе высокоточных данных GPS. Средние значения погрешностей для ручной и автоматической обработок составляют 13,66 и 13,06 м соответственно, чему соответствует точность около 5 %.

6. ОСОБЕННОСТИ РЕАЛИЗАЦИИ ПРОГРАММНОЙ СИСТЕМЫ

На основе разработанных методов решения задачи локации сейсмоакустических источников была разработана программная система, предназначенная для функционирования в режиме реального времени и включающая следующее: 1) модуль вейвлет-фильтрации поступающих на вход сигналов в процессе непрерывного мониторинга. Реализован на основе алгоритма быстрого вейвлет-преобразования библиотеки GNU GSL;

 модуль обнаружения импульсных сигналов и вычисления времён прихода волн пороговым методом;

3) модуль распознавания типа источника на фоне шумов;

4) модуль вычисления координат источника методом расчета коэффициента направленного действия сейсмической антенны;

5) модуль сопряжения с ГИС-системой. Для отображения координат источника на цифровой карте местности был использован унифицированный язык на основе XML для представления трёхмерных геопространственных данных под названием KML (Keyhole Markup Language – язык разметки Keyhole) [8]. На выходе программы создаётся KML-файл, используемый в целом ряде профессиональных ГИС-систем, таких как ESRI ArcGIS Explorer, GRASS, MAPinfo, OpenStreetMap, Kapты Google, Adobe PhotoShop, AutoCAD, Yahoo! и др. Таким образом, благодаря универсальности открытого формата представления пространственных данных дальнейшие (более высокие) уровни обработки и анализа сейсмических данных могут производиться привычным способом. Пример отображения источников и приемников с использованием ГИС Google Earth приведен на рис. 6.

Рис. 6. Пример отображения сейсмических источников и регистрирующей группы (расстановка типа «Крест») с использованием ГИС Google Earth

Система алгоритмов реализована на языке Си. По результатам замеров время полной обработки отрезка записи длительностью 2100 с (при частоте дискретизации 250 Гц) составило 8 с. Таким образом, уложившись в заданные временные рамки, можно создать значительный запас ресурсов на дополнительное математическое обеспечение.

ЗАКЛЮЧЕНИЕ

В работе получены следующие результаты.

1. Разработаны алгоритмы и программная система, предназначенные для использования в иерархических сетях мониторинга природных и техногенных сейсмических событий. Основные задачи, решаемые с помощью разработанных средств, связаны с обнаружением и измерением времён вступлений сейсмических волн на фоне внешних шумов, идентификацией типов источников и расчетом их географических координат, отображением координат источника на цифровой карте местности. Высокая эффективность созданных средств доказана применительно к импульсным источникам в виде полигонных взрывов по интегральному критерию. Последний оценивает значение невязки между истинными и расчетными координатами серии взрывов. Полученное среднее значение невязки по 150 взрывам составило около 1,5 %.

2. Высокая производительность обработки записей доказана результатами тестирования производительности: искомые записи длительностью 1 ч обрабатываются за 2 с, что соответствует ускорению в 1500 раз. Это говорит о возможности применения разработанной системы для обработки данных в режиме реального времени в полевых условиях.

 Разработан интерфейс для сопряжения программной системы с современными ГИСсистемами с целью отображения обнаруженных сейсмоисточников на цифровой карте местности.

СПИСОК ЛИТЕРАТУРЫ

[1] Зербо Л. Возможности подготовительной Комиссии ОДВЗЯИ отслеживать соответствие Договору о всеобъемлющем запрещении ядерных испытаний: докл. на 5-й Междунар. конф. «Мониторинг ядерных испытаний и их последствий», 4–8 авг. 2008 / Боровое (Казахстан).

[2] Khairetdinov M.S., Omelchenko O.K. et al. A computing technology to determine the parameters of the borehole bottom and medium // Bull. Nov. Comp. Center. Math. Model. in Geoph. – 2005. – Iss.10. – P. 19–26.

[3] Kijko A., Ungvarai J. The accuracy of teleseismic events location by a tripartite seismic network in Hungary // Acta Geodaet. – Tomus (Hungary), 2002. – P. 239–246.

[4]. Тихонов В.И. Оптимальный прием сигналов. – М.: Радио и связь, 1983.

[5] **Oonincx P.J.** Automatic phase detection in seismic data using the discrete wavelet transform // CWI Report PNA-R9811, October 1998.

[6] Гурвич И.И., Боганик Г.Н. Сейсмическая разведка: учебник для вузов. – 3-е изд., перераб. – М.: Недра, 1980.

[7] **Авроров С.А., Хайретдинов М.С.** Автоматизированная процедура поточного обнаружения и идентификации сейсмических событий // Науч.-техн. журн. Национального ядерного центра республики Казахстан. – 2008. – Вып. 2. – С. 70–75.

[8] Введение в документацию КМL. Электронное справочное руководство. http://code.google.com/intl/ru/apis/kml/documentation/

Авроров Сергей Александрович, аспирант кафедры сетевых информационных технологий Новосибирского государственного технического университета. Основное направление научных исследований – вычислительные технологии в сейсмологии. Имеет 11 публикаций.

E-mail: sergey.avrorov@gmail.com

Хайретдинов Марат Саматович, доктор технических наук, профессор, зав. кафедрой сетевых информационных технологий Новосибирского государственного технического университета. Основное направление научных исследований – методы цифровой обработки данных, интеллектуальный анализ данных и распознавание образов, математическое моделирование в геофизике, геоинформационные системы. Имеет 180 публикаций.

E-mail: marat@opg.ss.cc.ru

S.A. Avrorov, M.S. Khairetdinov

Distributed data processing in monitoring systems and monitoring networks

In the work the problem of creating a technology for automatic stream-handling detection and recognition of seismic events which are generated by natural and man-caused processes is considered. The overall definition of seismic sources location problem is formulated as well as related problem of calculation of high-precision seismic waves parameters under background noise. The questions of desired waves and noisy signals identification are considered. A brief overview of the program system including all the algorithms developed and performing in a real-time mode is presented. The efficiency of this approach is illustrated with respect to polygon explosions location problem.

Key words: seismic sources location, seismic and acoustic waves, wave shapes, processing technologies, sources identification, GIS-systems.