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THE ADDITIVE PEACEMAN–RACHFORD METHOD

N. I. Gorbenko∗ and V. P. Il’in∗ UDC 519.6

A new version of the parallel Alternating Direction Implicit (ADI ) method by Peaceman and
Rachford for solving systems of linear algebraic equations with positive-definite coefficient ma-
trices represented as sums of two commuting terms is suggested. The algorithms considered are
suited for solving two-dimensional grid boundary-value problems with separable variables, as well
as the Sylvester and Lyapunov matrix equations. The approach to rising parallel efficiency pro-
posed in the paper is based on representing rational functions as sums of partial fractions. An
additive version of the factorized ADI method for solving Sylvester’s equation is described. Esti-
mates of the speedup resulting from increasing the number of computer units are presented. These
estimates demonstrate a potential advantage of using the additive algorithms when implemented
on a supercomputer with large number of processors or cores. Bibliography: 5 titles.

1. Introduction

The Alternating Direction Implicit (ADI) method of Peaceman–Rachford has been known
for about sixty years and has been investigated by many authors, in particular, from the stand-
point of its suitability for implementation on multiprocessor computer systems, see, e.g., [1–4]
and the references therein. There is quite a number of ADI type methods, and they are
essentially equivalent with respect to the convergence rate. For this reason, we limit our
considerations to the Peaceman–Rachford method, which is denoted by ADI for shortness.
In the last years, such algorithms have attracted increased interest in connection with their
application to solving Lyapunov and Sylvester matrix equations [5].

In application to solving systems of linear algebraic equations of the form

Au = f, A = A1 + A2, A ∈ RN,N , (1)

the method under consideration is described by the formulas

(I + τnA1)un−1/2 = (I − τnA2)un−1 + τnf,

(I + τnA2)un = (I − τnA1)un−1/2 + τnf,
(2)

where n, τn, and I are the iteration number, iteration parameter, and identity matrix, re-
spectively. Observe that other alternating direction implicit methods, having essentially the
same convergence rate, are known. In the sequel, such methods will also be denoted by ADI.
Here and below, we assume that the matrices A1 and A2 are real and positive semidefinite; in
addition, it is assumed that one of them is positive definite, i.e.,

(Akv, v) ≥ δk(v, v), δk ≥ 0, k = 1, 2; δ1 + δ2 > 0, v ∈ Rn. (3)

ADI methods possess the highest convergence rate in the case where the original coeffi-
cient matrix of a linear system is represented as a sum of two commuting terms with known
eigenvalue bounds. Such matrices arise, for instance, in finite-volume or finite-element approx-
imation of two-dimensional boundary-value problems with separable variables. In this case,
if the eigenvalues of one of the matrices Ak, k = 1, 2, are known, then the ADI methods,
with an appropriate choice of the parameters τn, yield the exact solution of the system in Nk

iterations (provided that no round-off errors are made), where Nk is the number of grid nodes
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in one of the coordinate directions, N = N1N2. More exactly, the number of iterations equals
N̄k ≤ Nk, where N̄k is the number of distinct eigenvalues of the matrix Ak. Note that from
the standpoint of achieving a given precision ε in the sense that the Euclidean norm of the
residual satisfies the stopping criterion

||rn|| ≡ ||f − Aun|| ≤ ε||f ||, ε � 1, (4)

in a minimal number of iterations n(ε), the optimal values of the parameters τn are determined
by solving Zolotarev’s problem [1], and, in this case,

n(ε) ≤ C log ε−1 log(cond(A)). (5)

Here, C is a constant, and cond(A) is an upper bound for the condition number of A. Strictly
speaking, if the matrices A1 and A2 have different spectral bounds, then the optimal values
of the iteration parameters in (2) have different values, τ

(1)
n and τ

(2)
n , for the first and second

equations, respectively. However, in the case where cond(A1) and cond(A2) are of the same
order in N , Eqs. (2) allow one to obtain an “almost optimal” (or an optimal in the order)
sequence of the parameters τn. For simplicity, we limit our considerations to this case.

Since, for instance, for grid approximations of elliptic second-order equations (for brevity,
they will be referred to as the model systems of linear equations), cond(A) ∼ O(N), the
corresponding number of iterations proves to be proportional to log N , and the ADI methods
are competitive with the Fast Fourier Transform (FFT) algorithm, and a specific interrelation
of their performances on a multiprocessor computer system depends on the properties of a
problem to be solved, as well as on the technologies of program parallel implementation used.

2. Some properties of the ADI method

Upon elimination of the auxiliary vector un−1/2 from (2), the iterative process considered
can be written as

(snI + A1)(snI + A2)un = (snI − A1)(snI − A2)un−1 + 2snf, (6)

where the new parameter sn = τ−1
n plays the role of a shift for the eigenvalues of the matrices A1

and A2. Define the preconditioning matrix

Bn =
1

2sn
(snI + A1)(snI + A2). (7)

Then relation (6) can be brought to the form

un = un−1 + B−1
n rn−1, (8)

and we obtain the following relations for the residual vectors:

rn = rn−1 − AB−1
n rn−1 = (Bn − A)B−1

n rn−1

= (snI − A1)(snI − A2)(snI + A2)−1(snI + A1)−1rn−1.
(9)

Assuming that the matrices A1 and A2 commute, A1A2 = A2A1 (this property has not been
exploited until now), from (8) we derive

rn = Rn(A1)Rn(A2)rn−1 ≡ Tnrn−1, (10)

where we denote

Rn(Ak)=Pn(Ak)Q−1
n (Ak), Pn(Ak)=snI−Ak, Qn(Ak =(snI+Ak), k = 1, 2, (11)
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and Tn is the iteration matrix. From (9) and (10) it follows that

rn = R̄n(A1)R̄n(A2)r0,

R̄n(Ak) = P̄n(Ak)Q̄−1
n (Ak) =

n∏

l=1

Pl(Ak)
n∏

l=1

Q−1
l (Ak),

(12)

where, in the scalar case, R̄n(s) is a rational function of the form

R̄n(s) =
P̄n(s)
Q̄n(s)

≡ (s1 − s) · · · (sn − s)
(s1 + s) · · · (sn + s)

. (13)

Observe that if the residual vectors r0, r1, . . . , rn−1 are known, then the approximate solu-
tions can be computed with the use of the formula

un = u0 + B−1
1 r0 + · · · + B−1

n rn−1, (14)

following from (8).
Instead of (14), one can also use relations not involving the residual vectors. To this end,

we write
un = Tnun−1 + gn, gn = 2snQn(A1)Qn(A2)f, (15)

implying that
un = Tn,1u

0 + Tn,2g1 + · · · + Tn,ngn−1 + gn. (16)

Here, we use the notation

Tn,l = T
(1)
n,l T

(2)
n,l , T

(k)
n,l =

n∏

m=l

(smI + Ak)−1(smI − Ak). (17)

3. The additive Peaceman–Rachford method

As is seen from the previous section, the ADI method can be realized with the use of rational
matrix functions of the form (12). From the standpoint of parallelization, it is reasonable to
perform operations with such functions based on their partial fraction decompositions, which
will be looked for in the following form:

R̄n(A) ≡
n∏

l=l

(slI − A)(slI + A)−1 = z0I +
n∑

l=1

zlRl(A). (18)

Here, s1, . . . , sn are some given numbers; z1, . . . , zn are the desired coefficients of the de-
composition, and the subscript k is omitted for simplicity. Multiplying both sides of (18) by
the matrix polynomial Q̄n(A), we arrive at the relations

P̄n(A) = (s1I − A) · · · (snI − A) = z0Q̄n(A) +
n∑

l=1

zlS̄l(A),

S̄l(A) =
n∏

k=l

(tk,lI + A),

(19)

where tk,l = −sl if k = l and tk,l = sl otherwise. By equating the coefficients at the same
powers of A in (19), we obtain a system of n linear algebraic equations with respect to the
unknowns zl, l = 1, . . . , n.
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Represent the matrix polynomials P̄n(A), Q̄n(A), and S̄k(A) of order n as follows:

P̄n(A) = b0I − b1A + · · · + (−1)nbnAn,

Q̄n(A) = b0I + b1A + · · · + bnAn,

S̄l(A) = b0,lI + b1,lA + · · · + bn,lA
n.

(20)

The coefficients occurring in (20) are given by the formulas

bn = 1, bn−1 =
n∑

k=1

sk, bn−k =
∑

1≤i1<ik≤n

k∏

j=l

sij , b0 = s1 . . . sn,

bn,l = 1, bn−1,l =
n∑

i=1

tl,i, bn−k,l =
∑

1≤i1<...ik≤n

k∏

j=l

tl,ij , b0,l = t1,l . . . tn,l.

From the definition of tl,k it follows that for all l = 1, . . . , n, we have b0,l = −b0. Furthermore,
from (19) we obtain

b0z0 −
n∑

l=1

b0,lzl = b0,

bkz0 −
n∑

l=1

bk,lzl = (−1)kbk, k = 1, . . . , n.

(21)

It is convenient to eliminate z0 from Eqs. (21), which yields

z0 = 1 −
n∑

l=1

zl,

n∑

l=1

(
bk +

n∑

l=1

bk,l

)
zl =

[
(−1)k − 1

]
bk, k = 1, . . . , n.

Thus, for the unknown vector z = {zk} we have the following system of n linear algebraic
equations:

C z = g, C = {ck,l = 1 + bk,l/bk}, g = {gk = (−1)k − 1}. (22)

If, in accordance with formulas (18)–(22), we find the coefficients z
(k)
0 , z

(k)
1 , . . . , z

(k)
n , k = 1, 2,

for the partial fraction decompositions of the rational functions R̄n(A1) and R̄n(A2), then, for
the residual vector rn from (12), we obtain the expression

rn =
[
z
(1)
0 I +

n∑

l=1

z
(1)
l Rl(A1)

][
z
(2)
0 I +

n∑

l=1

z
(2)
l Rl(A2)

]
r0. (23)

One can also find another representation of a rational function in terms of partial fractions.
To this end, instead of (18), we use the relation

nR̄n(A) =
n∑

l=1

(ẑiI − A)(siI + A)−1, (24)

where ẑi are the new coefficients to be determined.
In this case, instead of (22), for the coefficients ẑi from (24) we obtain the system of linear

algebraic equations
Ĉẑ = ĝ, ẑ = {ẑi}, (25)
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where the entries of the coefficient matrix Ĉ and the components of the right-hand-side vector ĝ
are determined by the relations

Ĉ = {Ĉi,j =
n−1∑

k=1

bn−1,k(t̂1,i, . . . , t̂j,i, . . . , t̂n−1,i)},

ĝ = {ĝi = (−1)inbn,i(s1, . . . , sn) −
n∑

j=1

bn,j(ť1,i, . . . , ťj,i, . . . , ťn,i)}.

Here, we use the notation

t̂j,i =

{
si, i = j,

si+1, i �= j,
ťj,i =

{
0, i = j,

sj, i �= j.

Formulas (18)–(25), considered in the present section, assume that the iteration parameters
s1, . . . , sn are prescribed. We do not dwell on the problem of choosing them because it is widely
covered in the literature. It should only be emphasized that the shifts sk and the iteration
number n(ε) are assumed to be determined by the stopping criterion ε and the spectral bounds
for the matrix A, 0 < m ≤ λ(A) ≤ M < ∞, in accordance with (4) and (5), where one can set
cond(A) = M/m.

Once the residual vectors are found, the approximate solution un can be computed by us-
ing (14) or (16). We emphasize that preliminarily one must determine the vectors r0, . . . , rn−1

in the first case or g1, . . . , gn in the second one.
In the ADI methods under consideration, we do not use iterative processes in Krylov’s

subspaces because this will not essentially change the interrelation between the parallel per-
formances of the multiplicative algorithm (2) and the corresponding additive versions, an
analysis of which is the main object of the present paper.

Note also that for small n, the coefficient matrices C and Ĉ of systems (22) and (25)
for determining the coefficients of the partial fraction decompositions prove to be nonsingular,
provided that the shift parameters sk are distinct. However, in the general case, the solvability
and numerical stability of systems (22) and (25) must be specially investigated.

4. Estimates of the parallel efficiency of the ADI methods

An analysis of the parallel efficiency of different implementations of the Peaceman–Rachford
method will be done, for the sake of simplicity, on the model problem resulting from the
five-point difference approximation of the two-dimensional Dirichlet problem for the Poisson
equation on a square domain discretized using the square grid with step size h, see [1–4] for
more details. In this case, the matrices A1 and A2 are positive definite and block tridiagonal
(if the unknowns are ordered naturally), and the order of the linear system is equal to N =
N1N2 = h−2, where N1 and N2 are the numbers of nodes in the two coordinate directions,
N1 = N2 = h−1.

For simplicity, the performances of different algorithms will be compared on an abstract
computer system with huge shared memory, sufficient for solving the problems considered by
multi-thread technology without data exchanges and conflicts in data access. We may assume,
for instance, that the algorithm is implemented on a Central Processing Unit (CPU) or a
Graphics Processing Unit (GPU) with a sufficient number of cores.

The time, Tm, of performing computations by the multiplicative ADI method in accordance
with formulas (2) (which will be measured in computer cycles, the time of a cycle being
determined by the clock period of the multiprocessor computer system) can be estimated by
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the expression
Tm = 2(Ts + Tr)n(ε). (26)

Here, Ts is the number of cycles needed for solving a system of linear algebraic equations with
a coefficient matrix of the form I +τAk, and Tr is the time required to compute the right-hand
sides in each of the equations in (2).

The quantities Ts and Tr can be evaluated using the formulas

Ts = Cs/P, Tr = Cr/P, (27)

where P is the number of computing threads (it is assumed that the number of grid nodes along
one direction is proportional to P , i.e., N1/2/P is an integer), whereas Cs and Cr are certain
numbers determined by a specific algorithm being applied. For instance, linear systems with
tridiagonal coefficient matrices can be solved either by the “standard” forward and backward
substitutions or by a spectral algorithm. The quantities Cs and Cr are assumed to be the
same for both the multiplicative and additive ADI methods; therefore, from the standpoint of
their comparison, specific values of Cs and Cr are of no importance.

In deriving formulas (27), it is taken into account that the solution of block tridiagonal linear
systems actually reduces to parallel solution of decoupled tridiagonal systems corresponding
to grid lines, first, along the first direction and then along the second one. At each of these
iterative half-stages, parallelization is performed in a natural (and practically optimal) way,
so that the total number of cycles for solving a linear systems using (2) is equal to

Tm = 2(Cs + Cr)n(ε)/P, (28)

i.e., for P ≤ N1/2, the speedup is linear with respect to P .
It is also worth mentioning that if the number of threads P is greater than the number of

grid nodes in one direction and proportional, say, to N1/2, then the values Cs and Cr can be
decreased owing to “inner” parallelization of arithmetic operations for each of the grid lines
(but this can again be done in the same fashion for both the multiplicative and additive ADI
methods, whence the result of comparison of their parallel efficiency will not be altered).

The additive variant of the ADI method allows one to achieve a higher degree of paral-
lelization (provided that the number of cores is sufficiently large) owing to computing the
matrix-vector products occurring in (23) and (14) in parallel. Here, we take into considera-
tion the fact that the coefficients zk of the partial fraction decomposition of a rational matrix
function are computed only once, prior to iterations, and the relevant arithmetic costs are
independent of h and can be neglected.

The solution of a linear system by the additive ADI method can be split into two stages:
computation of the residual vectors by formula (23) and computation of the approximate
solutions un from (14). The most expensive operation of the first stage is the computation of
a vector-matrix sum of the form

w =
n∑

l=1

zl(slI − Ak)(slI + Ak)−1v,

repeated twice.
Thus, the time for computing rn in accordance with (23) is estimated as

T (1)
a

∼= 2[Ts + T1 + C1 log2 n(ε)], (29)

where Ts is the same as in (26); T1 is the time for multiplying a vector by zl(slI − Ak), and
the last term is equal to the total summation costs by the binary reduction method on n
cores. Note that for a fast computation of the approximate solutions un, all the vectors rk,
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k = 0, 1, . . . , n, must be available. The latter vectors can indeed be computed simultaneously
in the time T

(1)
a , but then a larger number of threads is required, i.e., P ≥ N1/2n(ε).

The time for computing un in accordance with (14) is estimated as

T (2)
a

∼= Ts + T1 + C1 log2 n(ε). (30)

Since the total solution time of the additive method is equal to Ta = T
(1)
a + T

(2)
a , we

conclude that the speedup resulting from applying the additive ADI method is proportional to
the ratio n/ log2 n. Obviously, it is unreasonable to apply such an algorithm with one or a few
threads because the required arithmetic and memory costs will increase considerably. Above,
in (29), we have used the first of the two variants of partial fraction decomposition of a rational
function. However, it is clear that for the second variant of the partial fraction decomposition,
computed in accordance with (24)–(25), the result will be qualitatively the same.

5. Conclusion

In this paper, an approach to rising efficiency of program implementation of parallel ADI
methods is suggested. We assume that the number of computing threads with shared memory
can be increased. This approach is based on using the partial fraction decomposition of a
rational matrix function. It is worth mentioning that the iteration parameters τn (or τ

(1)
n and

τ
(2)
n ), as well as the convergence rate in the case of exact arithmetic, remain the same as for

the classical Peaceman–Rachford algorithm.
For model grid problems, for which n(ε) ∼ log h, the speedup factor corresponding to passing

from the multiplicative variant to the additive one equals log h−1/ log(log h−1) if the iteration
parameters are optimal, and it increases if the parameters are not optimal.

Note that if the components of the vectors u and f in (1) are the values of the grid functions
at the nodes of a regular rectangular grid, i.e.,

u = {ui,j}, f = {fi,j}, i = 1, . . . , N1, j = 1, . . . , N2,

and the matrices A1 and A2 correspond to the model linear algebraic system and can be
represented as

A1 = blockdiag{Ā1}, A2 = blockdiag{Ā2},
where the blocks Ā1 and Ā2 are tridiagonal matrices of orders N1 and N2, then the original
linear algebraic system can be written in the form of the following Sylvester matrix equation:

Ā1U + UĀ2 = F, Ā1 ∈ RN1,N1, Ā2 ∈ RN2,N2, U, F ∈ RN1,N2. (31)

As was shown in [5] and the references therein, if the matrix on the right-hand side of (31)
is factorized as

F = F1F
T
2 , Fk ∈ RNk,m, m � Nk, k = 1, 2,

then Eq. (31) can be solved by applying the following very efficient “Factorized” ADI method
(FADI):

Un = Un
1 Dn(Un

2 )T , Un
1 = (U1

1 , . . . , Un
1 ) ∈ RN1,mn,

D = diag((s(1)1 + s
(2)
1 )Im, . . . , (s(1)n + s(2)n )Im) ∈ Rmn,mn,

Un
2 = (U1

2 . . . Un
2 ) ∈ RN2,mn.

(32)

Here, the subscript T denotes transposition; s
(1)
n and s

(2)
n are prescribed iteration parameters

(the shifts of the spectra of Ā1 and Ā2); Im is the identity matrix of order m, and approxi-
mations of the matrix factors U

(k)
1 ∈ RN1,m and U

(k)
2 ∈ RN2m, k = 1, . . . , n, are computed via
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the following recursive relations:

U
(0)
1 = (A1 + s

(1)
0 I)−1F1, U

(n)
1 =

n∏

k=1

R̂k(A1)U
(0)
1 ,

U
(0)
2 = (F2)T (A2 + s

(2)
0 I), U

(n)
2 = (U (0)

2 )T
n∏

k=1

Řk(A2),

R̂k(z) = (z − s
(1)
k−1)/(z + s

(2)
k ), Řk(z) = (z − s

(1)
k−1)/(z + s

(2)
k ).

(33)

Since, in the above formulas, the products of the rational matrix functions R̂k(A1) and
Řk(A2) can be represented as sums of partial fractions, it is nondifficult to construct a par-
allelizable additive variant of the FADI method. Note also that the quantities U

(n)
1 and U

(n)
2

in (33) can be computed independently and simultaneously.
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