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Abstract. Domain decomposition methods (DDM)for parallelized solv-
ing of large SLAEs with sparse matrices, arising from approximations of
multi-dimensional boundary value problem (BVP) at quasi-structured
grids, on a heterogeneous multi-processor system (MPS) with distributed
and hierarchical shared memory, are proven to be a manifold actual
computational area. In an algebraic sense, it includes a two-level multi-
preconditioned iterative process in Krylov subspaces. The efficiency of a
numerical environment and the corresponding software performance are
significantly defined by the quality of various parallelization techniques’
usage: Message Passing Interface (MPI) system to arrange the upper
level of iterations over subdomains, multi-threaded computations in a
simultaneous solution to the auxiliary subsystems by OpenMP (tech-
nologies for multi-core CPUs), vectorization of the machine’s operations
by AVX instruction set, and a usage of graphic accelerators GPGPU
with CUDA Nvidia architecture. This paper describes some architecture
solutions used in Krylov software library of algebraic solvers.

Keywords: domain decomposition, distributed matrix, iterative algo-
rithm, exchange buffers

1 Introduction

Solution to systems of linear algebraic equations (SLAEs) is an actual indis-
pensable stage of various processes and phenomena mathematical modelling.
The most important and interesting case is one with large sparse matrices which
arise in a finite difference, finite element, and finite volume method approxi-
mations of the multi-dimensional boundary values problems (BVPs) at some
non-structured grid. For a big number (109 and more) of the degrees of freedom
(d.o.f.) such problem is a bottleneck for a large-scale numerical experiment be-
cause of the non-linear dependence of the computational resources on the SLAE’s
dimension.

The main universal approach to the parallel solution of such a problem is
based on the additive domain decomposition method (DDM) in the Krylov sub-
spaces, which presents a two-level iterative process of the block Jacobi-Schwarz

? The work has been supported by grant N 16-29-15122-ofi-m of Russian Foundation
for Basic Research and by Russian Science Foundation grant N 15-11-10024

Параллельные вычислительные технологии (ПаВТ’2017) || Parallel computational technologies (PCT’2017)
agora.guru.ru/pavt

110



type [1]. In this approach, speaking in the geometric language, the grid compu-
tational domain is divided into its grid subdomains with a parametrized over-
lapping, in general. The original grid-algebraic problem

Au = f, A = {ai,j} ∈ RN,N , u = {ui}, f = {fi} ∈ RN , (1)

is transformed into an equivalent set of sub-problems each in its “own” sub-
domain and corresponding “’sub-solutions” for the neighboring blocks are con-
nected via an interface conditions of Poincare-Steklov type. Historically, DDM
was described as a tool to solve differential BVPs, see [1], and a lot of literature
cited therein, but we consider only a discretized version of these approaches.
The idea of a parallel DDM is very simple: all sub-problems in subdomains are
solved synchronously on a corresponding processor.

Let Ω be a grid computational domain (or in other words, some set of grid
nodes ) which can be identified with a set of grid numbers i = 1, . . . , N . We define
a decomposition of the domain Ω into its P subdomains without overlapping as

Ω =
P⋃

q=1

Ωq, Ωq′
⋂
Ωq′′ = ∅, q′ 6= q′′, (2)

and suppose that each block component of the vectors u = {uq}, f = {fq}
corresponds to its own grid subdomain Ωq ∈ Ω with the number of nodes

Nq,
∑P
q=1Nq = N . For the sake of simplicity, we consider a decomposition

without overlapping. For a block form of the original matrix A = {Aq,r}, the
simplest iterative DDM can be written as

(Aq,q +D(n)
q )(u(n+1)

q − u(n)q ) = (f −Au(n))q = rq,
q = 1, . . . , P, n = 0, 1, . . . ;Aq,q, Dq ∈ RNq ,

(3)

where rq is a residual vector and D
(n)
q are some matrices introduced (may be

in a dynamic way, i.e. depending on the iteration number n) to accelerate the

iterative process [2]. If the matrices B
(n)
q = Aq,q + D

(n)
q are invertible and the

iterative process (3) converges then u
(n)
q for n→∞ satisfies the preconditioned

equation
Au = fn, A = B−1n A, fn = B−1n f,

Bn = block-diag{Aq,q +D
(n)
q }.

(4)

In fact, we solve, instead of (4), the SLAE (1) by some block dynamically
preconditioned iterative method in Krylov subspaces. If matrix A is a non-
symmetric one, it is natural to use the flexible generalized minimal residual
(FGMRES) or semi-conjugate residual (SCR) methods with restarts, see [2] –
[3]. Solution for the auxiliary SLAEs in subdomains, i.e. the inversion of the
block-diagonal preconditioning matrix Bn is carries out by some direct or itera-
tive method. If the number P of the subdomains is too large then the convergence
rate of the iterative process (4) is very slow. For example, for 3D SLAEs we can
have N = 10003 = 109 and the condition number of matrix A can be about
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1013. In such cases, for P ≈ 1003 = 106 we will have the value of the number of
iterations n(ε) around several thousands. Here ε ≈ 10−7 is the conventional “ac-
curacy”, or a tolerance, of the iterative solution. In practice, the usual stopping
criterion of the iterative process is

||rn(ε)|| ≤ ε||r0||, ||r0|| = (r0, r0)1/2.

Let us notice, that the standard double precision arithmetics is supposed to be
used during all computations. In order to decrease the value of n(ε), a special
additional acceleration, which will be discussed below, is applied to the iterative
process.

An efficiency of a parallel implementation of such a multi-level computational
process is supported by various tools: Message Passing Interface (MPI) system
to arrange the upper level of iterations over subdomains, multi-threaded com-
putations in a simultaneous solution to the auxiliary subsystems by OpenMP
(technologies for multi-core CPUs), vectorization of the machine’s operations by
AVX instruction set, and a usage of graphic accelerators GPGPU with CUDA
Nvidia architecture.

The paper is organized as follows. Section 2 contains a general description
of the computational scheme and the data flows in a parallel implementation
of DDM. In Section 3 we present some architecture solutions for hybrid pro-
gramming applied to the problem under consideration intended to be run on a
heterogeneous multi-processor system (MPS) with distributed and hierarchical
shared memory. The final Section is devoted to some concluding discussion on the
technological issues and on the creating of the integrated numerical environment
for computational algebra of large sparse SLAEs.

2 DDM computational structure

We present the general scheme of a multi-preconditioned semi-conjugate residual
(SCR) method [2]

un+1 = un + Pnαn, αn = (αn1 , . . . , α
n
mP

)T ∈ Rm
rn+1 = rn −APnαn, Pn = (pn1 , . . . , p

n
mP

) ∈ RN,m. (5)

Here Pn are some rectangular matrices whose columns consist of the direction
vectors which are obtained from the recurrent relations

p0l = B−10,l r
0, pn+1

l = B−1n+1,lr
n+1 +

n∑

k=n−ml

mP∑

l=1

βnk,lp
k
l ,

n = 0, 1, . . . ,mr; l = 1, . . . ,mP ,

(6)

where Bn,l are some predefined preconditioning matrices. The iterative coeffi-
cients are computed via the scalar products:

αnl = (AB−1n,l r
n, rn)/(Apnl , Ap

n
l )

βnk,l = (Apkl , Ap
n,k
l )/(Apnl , Ap

n
l ),

pn,kl = B−1n+1,lr
n+1 −∑k−1

i=0 β
n
i,lp

n
l ,

(7)
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If ml = n and mr >> N then formulae (5)–(7) provide the orthogonalization of
all different vectors Apkl as well as a minimization of the residual norm ||rn+1||

K∑
n+1

(r0, A) = Span{B−10,1r
0, ..., B−10,M0

r0,

AB−11,1r
1, ..., AB−11,M1

r1, ..., AnB−1n,1r
n, ..., AnB−1n,mP

rn}, (8)

in the block Krylov subspace [4] of the dimension
∑
n+1 = M0 + ...+Mn.

In order to save memory, we need to use restarts after each mr << N iter-
ations, i.e. to define on the iteration number n = qmr + 1 the residual vector
from the original equation instead of the recurrent formula

rqmr+1 = f −Auqmr+1

and then follow again the recurrent formulas for the next iteration number n.
Besides, we can apply the limitation of the orthogonalization and save only last
ml < n direction vectors pnl , p

n+1
l , . . . , pn−ml

l for l = 1, . . . ,mp.
The rate of convergence of the iterative process (5) depends on the number

of the subdomains, or more precisely, on the diameter of a graph representing a
macro-grid formed by the decomposition. This can be clearly explained by the
fact that on a single iteration the solution perturbation in one subdomain is
transmitted only to the neighboring, or adjacent, subdomains. To speed up the
iterative process, it is natural to use not only the nearest but also the remote
subdomain couplings at every step. For this purpose, different approaches are
used in decomposition algorithms: deflation, coarse grid correction, aggregation,
etc., which to some extent are close to the multigrid principle as well as the low-
rank approximations of matrices, see numerous publications cited at a special
site [5].

We will consider the following approach based on an interpolation principle.
Let Ωc be a coarse grid with the number of nodes Nc � N in the computational
domain Ω, moreover, the nodes of the original grid and the coarse grid may not
match. Let us denote by ϕ1, ..., ϕNc a set of the basis interpolating polynomials
of order Mc on the grid Ωc which are supposed to have a finite support and
without loss of generality form an expansion of the unit, i.e.

Nc∑

k=1

ϕk(x, y) = 1.

Then a sought for solution vector of SLAE (1) can be presented in the form of
an expansion in terms of the given basis:

u = {ui,j ≈ uci,j =

Nc∑

k=1

ckϕk(xi, yj)} = Φû+ ψ, (9)

where û = {ck} ∈ RNc is a vector of the coefficients of the expansion in terms of
the basis functions, ψ is an approximation error, and Φ = [ϕ1...ϕNc ] ∈ RN,Nc is
a rectangular matrix with every k-th column consisting of the values of the basis
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function ϕk(xi, yj) at N nodes of the original grid Ω (most of the entries of Φ
equal zero in virtue of the finiteness of the basis). The columns, or the functions
ϕk, can be treated to be the orthonormal ones but not necessarily. If at some
k-th node Pk of the coarse grid Ωc only one basis function is a non-zero one
(ϕk(Pk′) = δk,k′), then ûk = ck is the exact value of the sought for solution at
the node Pk. With a substitution of (9) into the original SLAE, one can obtain
the system

AΦû = f −Aψ, (10)

and if to multiply it by ΦT one can obtain

Âû ≡ ΦTAΦû = ΦT f − ΦTAψ ≡ f̂ ∈ RNc . (11)

Assuming further that the error ψ in (9) is sufficiently small and omitting it,
one can obtain a system for an approximate coarse grid solution ǔ:

Âǔ = ΦT f ≡ f̌ . (12)

If A is a non-singular matrix and Φ is the full-rank matrix (the rank is much
less than N), we assume these facts to hold further, then from (12) we have

u ≈ ũ = Φǔ = ΦÂ−1f̂ = B−1c f, B−1c = Φ(ΦTAΦ)−1ΦT .

The matrix B−1c introduced above can be regarded as a low rank approx-
imation of the matrix A−1 and used as a preconditioner to build an iterative
process. In particular, for an arbitrary vector u−1 we can choose an initial guess
as

u0 = u−1 +B−1c r−1, r−1 = f −Au−1. (13)

In doing so, the corresponding initial residual r0 = f − Au0 will be orthogonal
in the sense of fulfilling the condition

ΦT r0 = ΦT (r−1 −AΦÂ−1ΦT r−1) = 0. (14)

Such relations are the basis for the deflated conjugate gradient method
(DCG) to solve symmetric SLAEs, wherein an initial direction vector is cho-
sen by the formula

p0 = (I −B−1c A)r0, (15)

which ensures that the following orthogonality condition holds:

ΦTAp0 = 0. (16)

Further iterations are implemented using the following relations:

un+1 = un + αnp
n, rn+1 = rn − αnApn,

pn+1 = rn+1 + βnp
n −B−1c Arn+1,

αn = (rn, rn)/(pn, Apn), βn = (rn+1, rn+1)/(rn, rn).
(17)

In this method, at every step the following relations hold:

ΦT rn+1 = 0, ΦTApn+1 = 0. (18)
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3 Technological and performance issues

As was mentioned above, the essence of a parallel DDM is to solve all sub-
problems in subdomains synchronously, each on its “own” processor. To start
the iterative process, one should have all sub-problems’ submatrices distributed
among the processors or MPI processes (we consider a DDM program flow on
some cluster MPS having some MPI system on it, so we suppose that each sub-
domain is treated in its “own” MPI process). Here we have just named two
important moments: the matrix of the system should be distributed and each
computational process has its own subdomain to carry out calculations over
it. Naturally, to make a calculation load uniform on all the processes, matrix
division into submatrices should be as balanced as possible. One can do it man-
ually, but a conventional approach is to represent the matrix as a graph and
use a graph theory for the graph partitioning. If one use free software, the best
choice is to use METIS [6], a set of serial programs to partition graphs (its
parallel analogue, ParMETIS [7] which is an MPI-based parallel library that ex-
tends the functionality provided by METIS requires prior approval). A balanced
data distribution provides more uniform calculation load for the processes and
a downtime reduction.

Fig. 1. Decomposition of 2D domain with a subdomain-divider

The next point needed to be mentioned is about a type of the domain divi-
sion, which can be carried out with or without intersections between adjacent
subdomains. The simplest way to start here is to make the division of the compu-
tational domain into subdomains firstly without any intersections and then add,
if necessary, these intersections (“overlapping”) in a layer-by-layer manner. Here
a term “layer” stands for the layer consists of the grid nodes, adjacent (having
links, or grid edges) to the previous subset of the grid nodes. E.g., let one have
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a domain division, then for a grid subdomain, the nodes that have links with
the nodes from other subdomains form a “boundary” layer of this subdomain,
neighbors (in graph sense) of these boundary nodes that lie in other subdomains
form the first outer layer, neighbors of the neighbors form the second outer layer,
etc. In such a manner, one can perform layered intersections of the subdomains.
It is worthy to notice that in practice, it is enough to use 3–4 grid layers to boost
convergence of the outer iterative DDM process, otherwise overheads to save the
additional grid and submatrix data grow without giving additional acceleration
of the convergence.

A separate question in organizing parallel DDM calculations is in the data
management for SLAEs presented in the Compressed Sparse Row format (CSR,
see, e.g., [8]). If one have a whole matrix of system (1) on a separate cluster
node (on a separate MPI process), then it is necessary to perform the matrix
division and submatrices’ distribution. In doing so, one can face a memory limit
– if the matrix is too big, a memory available within one cluster node could be
insufficient even to save the matrix coefficients. The ideal way to overcome this
limit is to make submatrices on a stage of grid construction and approximation,
every on its own node. A special case here is when one have the problem produced
from outside, with its right-hand side and the matrix given in the block form
already ready to be distributed between the nodes (probably, each block in a
separate file, or all the blocks but in indexed file).

For parallel DDM programming and coding, it is important to understand
how a division of the domain is carried out and what namely is a “divider”.
A domain decomposition can be done either with (Fig. 1) or without (Fig. 2)
the divider. A decomposition without a divider is the most natural one - it is
just a division into subdomains without intersections as mentioned above. In
(Fig. 2), the dividing assumed runs via black bold lines, the neighboring nodes
from different subdomains are marked by empty small circles. Data exchange
between subdomains is carried out for the adjacent (in the approximation stencil
sense) nodes from different subdomains. If exists, a divider is such a set of the
grid nodes that every subdomain has the links with the divider only but not
with other subdomains. So, the divider binds all the subdomains. In (Fig. 1),
nodes of the divider are crosses on the black bold lines, neighboring nodes from
adjacent to divider subdomains are empty small circles. One can think of the
divider as of some special separate subdomain with a property that only this
subdomain has the links with all the rest subdomains of the division; all the
subdomains except the divider have the links only with the divider. Therefore,
the information transfer between the subdomains is done only via the divider.

To reduce the run time of a parallel DDM program one should reduce both
the volume of the transferred information and the number of the data exchanges.
The latter depends on the rate of convergence of the iterative process chosen.
Besides, an important moment is a necessity to combine computation flow with
exchanges as they are carried out by different devices. If one use some MPI-like
tool, then the best choice for this is to use non-blocking functions MPI Isend
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Fig. 2. Decomposition of a grid domain without divider

and MPI Irecv and make some calculations without additional waiting until
communication is complete.

Fig. 3. The grid stencils for the mixed statement at the staggered grid

4 Component architecture of DDM

As one can see from the above, the algebraic DDM approaches for parallel solv-
ing of a wide class of big sparse SLAEs on heterogeneous multi-processor sys-
tems with the distributed and hierarchical shared memory present a complicated
computational problem. A mathematical efficiency of the algorithms used and
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high performance of the corresponding code are both very important for vast
modelling applications. It is worthy to mention that a program implementation
should be adapted to distinctive features of new methods and to the evolution
of computer platforms. In general, we can name the following steps in algebraic
DDM technologies:

– automatic construction of algebraic balanced decomposition of the given
grid domain in two stages: without intersection and with a parametrized
overlapping;

– creating the submatrices for corresponding grid subdomain with predefined
modifications taking into account the interface conditions of Poincare-Steklov
type on the internal boundaries of the adjacent subdomains, as well as a de-
flation preconditioner;

– organizing the distributed submatrices for subdomains that are saved in its
own MPI process;

– forming of buffers for the data exchange between subdomains at each exter-
nal iteration as well as for a coarse grid correction;

– implementation of external iterations in the Krylov subspaces over subdo-
mains;

– solution to auxiliary SLAEs in subdomains.

At two latter steps, different algebraic solvers from the Krylov library can be
used [9]. The concept of the Krylov library consists in support of the integrated
numerical environment to solve SLAEs under constraints of strong technical re-
quirements: a flexible possibility to extend library’s functionality, i.e. possibility
to add new models and algorithms, adapting to evolution of computer platforms,
a possibility of some external software product usage, coordinated participation
of other groups of developers. These requirements will provide the long life cycle
of the project and its wide exploitation by end users.

5 Conclusion

In this paper, architecture solutions to create a parallel integrated DDM envi-
ronment have been discussed. They are based on modern approaches taking into
account geometric and algebraic DDM parallel nature. Theoretical evaluation
of the resulting code performance seems to be unreachable because of a high
complexity of the computational model and it depends on its every specific im-
plementation in a high-level programming language. Further verification of the
approaches could be in a development of the Krylov library to make it, e.g., more
adaptable to a given specific problem. Experimental data on some model prob-
lems solved with taking into account several of the aspects named can be found
in the preceding authors’ works, e.g., [4],[10]. Surely, a large related work consists
in a methodical comparison of other modern high-performance approaches like
OpenMP, AVX, GpGPU+CUDA usage with the current Krylov implementation
from a performance point of view. This could be a step to an open question of
building a low-cost specialized high-performance DDM software.
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