
XIV Международная научно-техническая конференция АПЭП – 2018

572
978-1-5386-7054-5/18/$31.00 ©2018 IEEE

Development Platform for Controlling the
Infrastructure of the Internet of Things

Alexander A. Yakimenko1,2, Anton I. Belov1, Pavel S. Goncharuk1, Igor M. Stubarev1

1Novosibirsk State Technical University, Novosibirsk, Russia
2Institute of Computational Mathematics and Mathematical Geophysics SB RA, Novosibirsk, Russia

Abstract — The work presents a technology for remote
monitoring and control of devices connected to the Internet.
The architecture of the platform is proposed, which allows
automating the process of monitoring and management. A
prototype with an example of functioning was developed and
demonstrated. This work was supported by RFBR grant №16-
37-00240.

Index Terms — Internet of things, platform, service, essence,
restful api.

I. INTRODUCTION

OWADAYS, TECHNOLOGIES that allow automating
the environment surrounding human are gaining

popularity. However, the problem of managing multiple
devices and monitoring their behavior and state is not trivial.
These needs are met by the Internet of things industry (IoT).
The Internet of Things (IoT) is a technology and perspective
direction of market development based on the combination of
everyday items among themselves. IoT allows you to create
an ecosystem of smart applications and services that will
improve and simplify the lives of individuals and societies in
general [1].

II. PROBLEM DEFINITION

The IoT’s underlying challenge is that there are no clear
and agreed-upon architectures for building connected
systems. Your light switch may have one level of data-
security encryption, while your TV remote control has
another. Wireless protocols may differ, too: One device
might use ZigBee while others rely on Bluetooth or Wi-Fi.
Bridges to connect across all these options will proliferate.
And even if independent systems are secure, we will have to
cobble them together—and the resulting chain will only be as
strong as the weakest link [4]

The market has plenty of solutions for aggregation of IoT
things. For example, there are projects based on PaaS
technology. They have a large number of functionality, but at
the same time they occupy the high-price segment on the
market. Therefore, to compare our service with this kind of
solution is not correct. We can only think that open source
projects are trusted instruments, which could be analyzed by
everybody interested in. This gives advantages in the form of
rapid and multilateral development from the side of
community.

Therefore, the purpose of this work is to develop a system
that will manage devices and monitor their status through the
Internet. It should be a flexible and, at the same time, easily
customizable platform. To achieve this goals, a prototype
platform was developed, this is a web server written in the
Java language. It was called IOPT (Internet of Pretty
Things). It is planned that the platform will be an open
source project.

It will have a modular structure that will allow you to
combine it with various third-party projects. This will
provide the wide expansion and rapid development of this
platform. Particular attention is paid to the scalability and
speed of data exchange. Modularity will provide the
flexibility of the project, and open source code will allow
communities to develop user-friendly interfaces for various
modules.

During the development of the platform, definitions
"model" and "object" were introduced. The model in this
context means the copy of the "Smart Organization". For
example, an automated greenhouse in a platform is
understood as a model of the "Smart Greenhouse". The
object in turn is an isolated observable (and/or controlled)
unit of the model. For example, a section or room in a
greenhouse. Each object has a configurable set of properties
that can be monitored and modified. In turn, a script can be
attached to each property, which will be executed when
certain events occur. Fig. 1 illustrates relational structure of
the connections described in this paragraph.

III. USED TECHNOLOGIES

A. Technologies of the Platform’s Core

The implementation of the platform is a RESTful web-
service (REST, REpresentational State Transfer -
architectural style of interaction between components of a
distributed application on the network) [2].

Today, the IoT is an abstract collection of uses and
products using a huge variety of protocols. It’s imperative
that we establish paradigms for effective implementation and
use [4].

Web-services allow you to make the program functions
available via the Internet, i.e., having developed some
universal functionality, we can provide it to applications on
other computers (and other computing devices such as
tablets, smartphones, etc.). The main thing is to connect to
the Internet. Consequently, web-service technology makes it

N

2018 14th International Scientific-Technical Conference APEIE – 44894

573

possible to develop cross-platform solutions, and use
different programming languages to write the service and its
consumer (client) [5]. It is done so to avoid necessity of
implementing compatibility of different messaging protocols
between devices and server.

Fig. 1. Relational data model.A simplified scheme of the
implementation of the REST architecture is depicted in Fig. 2

In general, REST is a very simple information
management interface without the use of any additional
internal layers. A global identifier, such as a URL, uniquely
identifies each piece of information. Each URL in turn has a
strictly defined format. The absence of additional internal
layers means the transfer of data in its original form. I.e. data
is not wrapped in XML, as SOAP and XML-RPC do, we do
not use AMF, as Flash does, etc. Sending original data [2].

Fig. 2. Simplified scheme of the REST implementation.

As stated above - the URL uniquely identifies each unit of
information - this means that the URL is essentially the
primary key for the data unit. E.g., the third book from the
bookshelf will look like /book/3, and the 35 page in this book
is /book/3/page/35. The result is a strictly defined format.
And it does not really matter what format the data is at
/book/3/page/35 - it can be HTML, a scanned copy as a jpeg-
file, and a Microsoft Word document.

A way of management organizing of the service’s
information fully depends on the data transfer protocol. The
most common protocol is of course HTTP. So, for HTTP, the
action on data is specified by methods: GET (get), PUT (add,
replace), POST (add, change, delete), DELETE (delete).
Thus, the actions CRUD (Create-Read-Update-Delete) can
be performed as with all 4 methods, and only with the help of
GET and POST.

REST is considered an alternative to SOAP. REST is not
strictly defined standard; it is like a style of constructing and
programming. SOAP, on the contrary, is a documented
standard. The advantage of SOAP is the ability to use the
service without documentation, documentation in the case of
SOAP is automatically generated. The advantage of REST is
a cost-effective use of bandwidth..

The RESTful service itself is developed with the help of
Java EE technologies: Jersey, Glassfish, HTTP Servlets, etc.
To this service, you can perform HTTP requests from any
application that has access to the Internet using the REST-
API. There is no built-in GUI. It is possible to develop your
own graphical interface. It is assumed that there will be open
source implementations. This ensures that there is no binding
to a specific graphical interface.

As already mentioned, Java was used for development. It
was chosen as one of the most widely developed and rapidly
improving tools, system applications, web services and other
network (and not only) information systems.

Fig. 3 demonstrates structural scheme, expressed by the
components of Java EE. Client Machine illustrates an
endpoint client (or middleware broker) using http protocol to
for communication with server. The server has a public part
represented by a set of web-interfaces. Jersey library is a
main part of web interfaces. These web interfaces are API’s
endpoints. Client perform HTTP request, add specific
attributes to the request and send it to the appropriate
endpoint (URL). Inside the server placed business logic
modules. They developed under such technologies like EJB,
CDI, JSP, etc.

B. Other Used Technologies

The data is transferred in the form of JSON-structures.
JavaScript Objective Notation (JSON). JSON is a young
format based on a subset of the JavaScript language. From
XML, it differs in the simplicity of data description, both for
humans and for the parser program, the lack of syntax
redundancy inherent in markup, and also the direct
orientation to data exchange.

JSON is one of the most common formats that offer
different web-APIs. The data in JSON is one of two
structures: a set of key pairs: a value is an object, or an

XIV Международная научно-техническая конференция АПЭП – 2018

574

ordered set of values is an array. The key can be only a
string, the value is any type, including a nested structure [3].

The JSON format allows you to reduce the amount of data
transferred due to the lack of framing tags and service
information. All the service information is posted to the
documentation, and not sent every time along with the data.
To build a graphical interface, it is enough to parse the
model’s data and build a visual representation. Fig. 4 shows
an example of a structure reduced to a compact form used in
the platform.

Fig. 4. JSON-structure of the platform’s model.

Fig. 3. JSON-structure of the platform’s model.

Creating a basic application for working with IOPT is a
simple process. First, create classes that describe the model,
object, property, script. Then create a data access layer that
will receive the current root model at certain intervals. This
model already includes all submodels with their
objects/properties/scripts. It is also necessary to map
add/delete/change/etc in local model to
PUT/DELETE/POST/etc requests. Finally, create a graphical
interface that work with this local model.

Diagram of classes illustrated at Fig. 5. Classes called
“Script”, “Property”, “Object” and “Model” represents
entities from real world and their properties. “Snapshot” is a
class, which contains the state of all “Pretty Organization”.
Classes with postfix “Resource” are the connectors between
endpoints and business logic. Classes with postfix “Proc”
implements business logic. “JDBCConnection” is a class
adapter between JDBC resource and server.

Resource classes are the implementation of Jersey
application resources. They are annotated with
@Path(“/url_to_resource”) annotation which make mapping
between Java class and http document. Processors classes
(classes with Proc postfix) are written in style of Statless
Local Bean. It provides new instance for each request, all
requests executes in their own thread. Processors connected
with Resources via CDI mechanism.

The platform provides the use of configurable data stores,
it can be standard relational databases for your choice, such
as PostgreSQL DBMS, or it can be distributed data
warehouses. This will help to avoid the restriction of
particular database architecture, thereby expanding the range
of consumers.

Depending on the way the platform is used, a particular
data store may be a bottleneck and will not scale. For
example, a platform in a cluster that operates with a large
amount of data. Thus, this implementation feature does not
limit the user in choosing a DBMS. This was achieved by
using the JDBC driver.

2018 14th International Scientific-Technical Conference APEIE – 44894

575

Fig. 5. Relational data model.

For convenient interaction with the platform, you need to
implement complex scripts or develop your own application
in any programming language that supports networking. At
the same time, for the purpose of demonstration, an
application with a graphical interface was written. This
application refers to this system as a third-party module. Its
appearance is shown in Fig. 6.

Fig. 7 shows the architecture of the platform. The basis of
the platform is a module called IOPT-Server. This module is
the central part of the platform. It handles all requests - from
devices, from user applications and from third-party
modules. It also interacts with the configured data store. This

module will include a data warehouse; it can be run on any
server with a pre-installed Java distribution. It provides
coverage to a wide audience and transparency of the platform
(due to open source and the ability to deploy on isolated
servers).

It is planned to cluster and scale the platform, which will
make it possible to use the platform both in small enterprises
with a small number of "smart" objects, and on large
corporations that serve a large number of "smart"
organizations that generate impressive traffic of messages
and data.

Fig. 6. Scheme of the platform’s architecture.

XIV Международная научно-техническая конференция АПЭП – 2018

576

Fig. 7. Scheme of the authentication and further interactions with the platform.

In general, the query structure is represented as links to
resources. In particular, for this project, the reference is a
nested entity (object).

For example, http://url/models/farm/garden1/temp_prop,
where farm is the farm model, garden1 is the greenhouse
with the number 1, and temp_prop is the air temperature. The
action is indicated via the type of the HTTP header (e.g., get
the HTTP temperature data of the GET header and the link,
which is presented above).

This provides a human-like form of query, which reduces
the number of errors and makes it easier to understand the
operating principle of the software interface. The only
inconvenience, for example, in comparison with SOAP, is
the need to develop documentation for the REST API.

IV. FEATURES OF THE PLATFORM

Due to the fact that interaction with the platform occurs
only through the program interface RESTful API, excluded
direct interaction with databases, so an erroneous query will
not damage its structure. Protection against XSS attacks and
data theft is configured similarly to the protection of any
website, for example, using TLS/SSL and HTTPS
certificates [7].

To automate the behavior of devices, the platform provides
the ability to program logic by developing custom scripts,

which have already been mentioned. Now only the
JavaScript programming language is supported, it is planned
to implement support for Python and other popular scripting
languages. Now, this functionality is implemented as an
internal module (IOPT-Executor in Fig. 7).

The IOPT-executor is written with Java Scripting API,
which first came with Java 6. Nowadays new engine called
Nashorn is implemented in Java 8, an implementation of the
ECMAScript Edition 5.1 Language Specification. It comes
bundled with Java SE 8. It can be used as a scripting tool
along with Java to create polyglot applications.It gives wide
variety of actions. It gives the access to Java from scripts and
other way round. IOPT-Server listen for property change
event and when it happens, IOPT-Server sends to IOPT-
Executor command to execute all script subscribed for
current property’s change event.

One of the sensitive problems of the Internet of things is
the weak security of the endpoint devices and the whole
architecture from hacking. To solve this problem, a system
for authentication and authorization of users and devices was
developed. This system allows you to use a third-party
authentication module or develop your own if the required
functionality is missing [7].

Fig. 8 shows a diagram of interaction of users and devices
with the platform. To date, only basic authentication by login
and password has been developed. The implementation of

2018 14th International Scientific-Technical Conference APEIE – 44894

577

other popular authentication methods (e.g., Kerberos, LDAP
and Active Directory) is planned.

User cannot modify or view the models of other users. At
the first access, the user provides a login and password to the
server. In case of success, the server sends a hash key to the
user, which will later allow you to access the server without
using a username and password, the similar algorithm
implemented on web sites. The only difference is that the
user should send the hash key manually, not automatically,
as the web-browser does. Using the REST API, the user can
generate a special hash key, which is required for the devices
to communicate with the server. Each device is associated
with only one model, so a separate hash key is generated for
each model.

V. CONCLUSIONS

At the moment, the system architecture is being improved
and upgraded, and the platform is tested. It is planned to
improve the composition of technologies and components
used in developing platform, which will reduce memory
usage and simplify the procedure for deploying the
application on servers, and provide scalability that is more
flexible. This is planned using containerization technology,
which is implemented in a different product - Docker.

“Heavy and bulky” application server Glassfish is planned
to be replaced by Jetty in conjunction with Weld. This will
make it easier to launch the platform and reduce memory
consumption.

The Docker is an open source platform for the
development, delivery and running applications. Docker is
designed to quickly deploy your applications. Using the
Docker, you can separate your application from your
infrastructure and handle the infrastructure as a managed
application.

Docker is lightweight and fast. It provides a stable, cost-
effective alternative to virtual machines based on the
hypervisor. It is especially useful in high load environments,
for example, when creating your own cloud or platform-as-
service. However, it is also useful for small and medium-
sized applications when you want to get more out of
available resources.

Docker helps spread code faster, faster testing, faster
deploy applications, and reduce the time between writing
code and running code. Docker does this with a lightweight
container virtualization platform, using processes and
utilities that help manage and deploy your applications.

Integration with the docker will allow you to easily scale to
an unlimited number of servers or platforms. As the balancer
acts Kubernetes.

 Kubernetes is an open source project designed to manage a
cluster of Linux containers as a single system. Kubernetes
manages and runs Docker containers on a large number of
hosts, and provides the co-location and replication of a large
number of containers. The project was launched by Google
and is now supported by many companies, including
Microsoft, RedHat, IBM and Docker.

Scheme of interaction between Docker and Kubernetes
products with a platform IOPT illustrates Fig. 8.

Also there are plans to analyze data coming from sensors,
for anomalous behavior. To do this in the database will
introduce a new table which will store the logs data from
sensors. And to check the deviation will apply specially
trained for this neural network in a separate module.

Fig. 8. Scheme of the planning integration with Docker and Kubernetes.

Monitoring and analyzing system would be a module
developed in the same style as whole platform. It would be
the RESTful web service with its own API. For storing data
could be used time series databases (for example, InfluxDB)
and for visualization in the pair with Influx could be used
Grafana. Grafana is an open platform for analytics and
monitoring.

REFERENCES

[1] A.V. Leonov, “Internet of things as the basis for smart applications,”
Young Scientist – Kazan: Publishing house Young Scientist, 2015. –
vol. 2. – pp.141-142.

[2] V.L. Chugreev, “Development of service-oriented architecture in
ISEDT RAS,” Young Scientist – Chita: Publishing house Young
Scientist, 2013. – vol. 1. – pp.23-25.

[3] F.M. Kurilov, “Visualization tools for structured data in client web
applications,” Technical science in Russia and abroad – Moscow: Buki-
Vedi, 2014. – p.17.

[4] Internet of Things [Electronic resource] // MIT Technology Review,
2017. URL: https://www.technologyreview.com/s/601013/the-internet-
of-things-roadmap-to-a-connected-world/

[5] Y.A. Vorontsov, “Standarts of web-services,” Age of Quality –
Moscow: Sientific journal “Age of Quality”, 2015. p.56.

[6] Y.A. Vorontsov, A.V. Kozinets “Standarts of web-services,” Age of
Quality – Moscow: Sientific journal “Age of Quality”, 2015. – vol. 3. –
p.56.

XIV Международная научно-техническая конференция АПЭП – 2018

578

[7] R. Hairetdinov, “Quality of code in business applications: problems and
solutions,” Age of Quality – Moscow: Sientific journal “Age of
Quality”, 2015. – vol. 2. – p.49-50

Yakimenko Alexander, Ph.D., Associate
Professor, Department of Computer
Science of NSTU, researcher at the
Institute of Computational Mathematics
and Mathematical Geophysics SB RAS.
Research interests - information
technology, computer systems, computer
simulation, parallel computing. Author of
more than 30 scientific papers.

Goncharuk Pavel - master of computer
science at the NSTU.
The developer for the company "VEON
(Vimpelcom Ltd)".
Research interests: development and
implementation of distibuted systems and
web-applications, BI-systems.
Author 4 scientific and educational works.

Belov Anton - master of computer science
at the NSTU.
The developer of Infor-CRM for the
company "FB Consult".
Research interests: Data Mining,
development and implementation of
CRM-systems, BI-systems.

Stubarev Igor - master of computer
science at the NSTU. The developer of
Infor-CRM for the company "FB
Consult". Сertified business analyst and
data architect. Research interests: Data
Mining, development and implementation
of CRM-systems, BI-systems.

