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Abstract — This article describes the process of developing a 
neural network (NN) capable of restoring the structure of the 
geological and physical model of the medium (GPMM) based on 
a known picture of the propagation of a wave field. The 
architecture of the NN itself and its components are indicated, 
information on the process of its training is provided. Also, the 
time of operation of the NN on different devices and the results 
obtained are shown. The work was supported by the 
Novosibirsk State Technical University (Project C-19, 2018). 
 
Index Terms — Neural network, wave field, geophysics, cavern, 
inverse problem. 

I.  INTRODUCTION 

HE PROBLEM OF RECONSTRUCTING the GPMM 
structure from the wave-field propagation pattern can be 

considered as the task of analyzing the sequence of images. 
There are known NN architectures in which convolutional 
layers are used to transform an image into a number vector 
and recurrent layers to analyze the resulting sequence of 
vectors. [2, 3] As an example, we can cite the HC realized in 
[1]. In this case, each cell of the recurrent LSTM layer has a 
separate convolutional neural network. In this article, the 
network has shown good results in tasks of activity 
recognition, description of a single image and description of 
the video stream.  

The architecture presented in [1] has a drawback: with the 
increase in the number of cells in the LSTM layer, the 
number of convolution models also increases, and therefore 
the total number of variable parameters of the NC increases, 
which leads to more occupied RAM. Also, when processing 
this model, time. 

II. PROBLEM DEFINITION 

According to the existing picture of the propagation of the 
wave field, to reconstruct the structure of the geological and 
physical model of the medium, over which the signal 
propagation took place. As input, there is a sequence of field 
propagation images. At the output, it is proposed to obtain an 
image of the desired medium. 

III. THEORY 

A. Development of a Neural Network 

When developing the NN for the solution of the problem, 
the model from [1] was used as the basis, however, many 
convolutional models at the input of the recurrent LSTM 
layer were replaced by one deep model, an image analyzer 
trained to represent all images of the wave field propagation 
in the form of a number vector equally well. 

The sequence of numerical vectors obtained as a result of 
processing all the images of the wave field and representing 
the process of propagation of the wave field in the medium is 
fed to the input of the LSTM layer. It should be noted that 
this layer of the network is specially adapted to work with 
sequences in which there are some short-term or long-term 
dependencies [4]. 

The result obtained with the LSTM layer is transferred to 
the restorer, which interprets it in the image of the medium 
over which the signal passed. 
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Fig. 1 General architecture of the NN. The images of the wave field are compressed by the analyzer into a numerical vector, after which the obtained 
sequence of vectors is transferred to the GPMM reducer, which gives out the assumed structure.

B. Neural Network Training 

The learning process of the NN was carried out in three 
stages: 

1) Image analyzer training 
2) Formation of input data for the reductant using a trained 

image analyzer 
3) Training of the reductant 
The image analyzer was implemented using an autocoder - 

a neural network having a narrowing in its center, which is 
trained to reproduce its own input. The key point here is that 
at the end of the training, the network that best learned to 
reproduce its input can produce the most representative 
numeric vector in which the image is encoded at the 
narrowing point. At the end of the training, the network can 
encode the image into a form of numbers from which it can 
later easily recover it. A ready-made image analyzer is the 
first "encoding" part of the autocoder.  

 
Fig. 2 Loss function graphs obtained during the training of the image 
analyzer at different epochs. The upper graph is the value of the loss 
function on the training sample. The bottom graph is for the test plot. As the 
loss function, the mean square error was used. 

After training the analyzer, the wave-field propagation 
patterns for each GPMM were transformed into an ordered 

sequence of numerical vectors. Thus, the input data for the 
reducing agent were obtained. At the output, the reductant 
had to give out the image of the GPMM, which, according to 
the network, the signal propagation took place. 

 

Fig. 3 Reductor architecture. The sequence of vectors is transmitted to a 
special recurrent layer of the neural network, after which the output from 
this layer is processed by the structure restoring part, consisting mainly of 
the scanning operation. 

To train the models we used a personal computer with a 
graphics accelerator Nvidia GTX Titan with 12 GB of video 
memory and Pascal architecture. This accelerator was chosen 
because of the large amount of video memory, since 
stochastic gradient descent uses portions of input data of a 
certain size. The more data you can place on a video card, the 
more the right step will be made by the model in the 
direction of the global optimum in the space of its 
parameters. 

A great deal of importance is also attached to the number 
of possible simultaneous threads, since this determines the 
learning time of a particular model. Due to the large number 
of learning parameters, the use of CPU and RAM for model 
training is impossible due to the small number of concurrent 
threads.  
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Fig. 4 Graphs of the loss function in the training of the reductant. The upper graph is the value of the loss function on the training sample. Lower - on the test. 
The function also used the mean square error between the images.

IV. EXPERIMENTAL RESULTS 

Results were not obtained from different models from the 
training and test sample. It can be seen that the implemented 
NN has learned quite well how to restore the GPMM. 

 
Fig. 5 The results of the reduction of the NN structure of GPMM. Left - the 
right answer. On the right is the result of the work of the NN. 

It is also worth noting that when restoring some of the 
caverns of the network, it proved difficult to accurately 
determine their characteristics. Perhaps, a small number of 
pictures of the wave field at the time of the passage of the 
cavern itself or the analyzer's own error was transmitted to 
the restorer. 

 
Fig. 6 The results of the recovery of GPMM with errors. 

Below in Table I the time for network processing of several 
GPMM models on the CPU and on the GPU is given. 

TABLE I 
THE TIME OF THE NEURAL NETWORK OPERATION ON THE 

CPU AND GPU 

 CPU, ms GPU, ms 
Model 1 147 47 
Model 2 149 50 
Model 3 149 47 
Model 4 145 48 
Model 5 148 49 
Average time 147.6 48.2 

V. FEATURES OF THE PLATFORM 

In order to obtain a more accurate NN model, it is planned 
to increase the number of convolution filters, both an image 
analyzer and a reducer, in the playback of GPMM. It is also 
planned to increase the number of bundles themselves, since 
a deeper model is capable of studying complex changes in 
the wave-field pattern. 

VI. CONCLUSIONS 

In each of the above HFMS models, the cavity was located 
at an arbitrary location and had an arbitrary shape and size, 
which shows that the processing time of the NS data does not 
depend on the geometric characteristics of the cavity. 

The best architecture of the computer system for learning 
the model will be an architecture with as many GPUs as 
possible to increase the number of simultaneously processed 
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streams and a large amount of video memory for a more 
accurate stochastic gradient descent of the model in the space 
of its parameters relative to the loss function. 

It is recommended to teach a deep model on a large 
number of synthesized GPMM with a large number of 
images of the propagation of the wave field. Such an 
approach will make it possible to obtain an NN model more 
resistant to unexpected situations, which will accurately 
depict the required GPMM. 

It is worth noting that the quality of recovery is highly 
dependent on the quality of the trained analyzer. In the 
implemented architecture, the error allowed by the analyzer 
is transmitted directly to the reworker and affects its 
operation. In the future, it is possible to change the 
architecture of the NN in favor of integrating the analyzer 
and the reductant into a single model, provided that the 
corresponding computing resources are available. 
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