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Abstract – An algorithm for the simulation of elastic wave 
propagation in 2D isotropic inhomogeneous media with 
complex geometrical structure is presented. A parallel 
implementation of the FDTD method of fourth order in space to 
perform calculations on high-performance computing systems 
with different architectures (CPUs, GPUs, or Xeon Phi 
coprocessors) is discussed. The proposed technique of 
mathematical modeling with the use of MPI and CUDA is used 
to design program codes for computations for a realistic long-
distance model. Program codes for single device and multi 
device use are developed. A large-scale geophysical model of the 
Baikal rift zone is reconstructed. New synthetic data depicting 
the structure of the seismic field for the rift zone are presented. 
 
Index Terms – Simulation, seismic waves, parallel algorithm, 
large-scale, cluster. 

I. INTRODUCTION 

HEORETICAL and experimental studies of seismic 
wave propagation in inhomogeneous media with 

complex subsurface structure are very important [1-3]. In this 
paper, a large-scale model of the Baikal rift zone is presented 
as the main object of investigation [4]. Because of geological 
investigations, several geophysical models of the rift zone 
can be found (for instance, the Baikal Explosion Seismic 
Transect Project and a Program for the Seismic Study of 
Continental Lithosphere). Experiments on  mathematical 
modeling of elastic wave propagation will allow obtaining a 
new knowledge about the seismic field structure and, 
possibly, help us to clarify the velocity model. Obtaining of 
numerical results can be a difficult problem due to simulation 
for long distances. The rift zone has average linear sizes of 
several hundreds of km along the horizontal coordinate. It is 
of great interest to reconstruct the subsurface structure of 
large-scale models. It can be achieved when finding the most 
appropriate solution from a set of models for which 
simulation was performed. 

Supercomputers have become an important tool for 
successful solving of problems in different areas of 
knowledge [5-7]. There is a variety of supercomputer 
architectures. These clusters can be designed based on CPUs, 
graphic cards (GPUs), or many-core computing devices 
known as Xeon Phi [5, 6]. Such clusters allow access to 
hundreds and thousands of computing cores. Today it is 
important to know the architecture of high-performance 
systems and the features of computing devices to develop 
program codes that will allow efficient use of the computing 
resources [8, 9]. Such systems and programs can help us to 
obtain numerical simulation results for highly detailed 

geophysical models. Research work on efficient parallel 
algorithm realizations and program code design for different 
supercomputer architectures is under way. This approach 
provides effective use of the computing capabilities of a 
computing system to obtain high accuracy in reasonable time 
[10-13].   

One of the goals of the present study is to develop and 
present a technique in the area of seismic simulation to 
perform calculations on high-performance multi- and many- 
core computing systems.       

In this case, search for and development of a mathematical 
method ensuring acceptable accuracy of calculations has 
become an important task. Various approaches and 
mathematical methods have been developed to help find a 
numerical solution to the dynamic problem of elasticity 
theory: finite-difference methods, finite element methods, 
and others. Finite difference methods are attractive because 
of their efficient and simple realization due to specific 
approximation of the partial differentials [14-17]. This 
method makes it possible to design parallel algorithms and 
program codes to perform calculations via multi core 
devices. 

In the present study, a technique for the simulation of 
seismic field in inhomogeneous media is developed. Design 
of a parallel algorithm and development of program codes 
for calculations on clusters with different architectures are 
considered. Such program codes are mainly designed for 
supercomputers of the General-Purpose Siberian 
Supercomputer Center of the Siberian Branch of the Russian 
Academy of Sciences, SSCC SB RAS. The developed 
realization can be ported in a simple way to work with 
another many core architecture of computing device, for 
example , Xeon Phi. The Xeon Phi and GPU have different 
architectures and different numbers of computing cores and, 
thus, one can have a choice to parallelize via OpenMP or 
CUDA. Sometimes it is much easier to adapt an algorithm 
and program written on C++ to design a parallel code for the 
Xeon Phi. One of the features when working with CUDA is 
the need to copy the data between CPU and GPU for an 
iterative method with data distributed among the parallel 
processes. Nowadays there are computing architectures 
constructed only with directly interconnected Xeon Phi, for 
example, the NKS-1P cluster at SSCC. In this case there is 
no need in data copying.   

In the paper, the problem statement and the mathematical 
method are presented and briefly discussed. To make the 
amplitude of waves reflected from the artificial boundaries of 
the computation area, the PMLs (Perfectly Matched Layers) 
are applied [18-23]. In the proposed study, a parallel 
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realization for numerical modeling of 2D seismic wave 
propagation is discussed.  The MPI and CUDA/OpenMP can 
be used for parallelization. The main features of the 
programs developed are presented, for example, the use of 
buffer arrays. The behavior of a multi-GPU program code is 
studied in various tests. New results of seismic field 
simulation for large-scale model on a high-performance 
cluster are presented. It is shown that practical application of 
the technique being proposed for scientific purposes is 
possible. 

II. PROBLEM DEFINITION 

In this paper, a solution to a forward problem of 
geophysics of the full wave field simulation for the isotropic 
case of inhomogeneous elastic media is considered. To solve 
the problem, a system of equations of elasticity theory (1) 
written in terms of the velocities and stresses is presented. 
The solution to the problem is considered in a two-
dimensional Cartesian coordinate system with Ox 
(horizontal) and Oz (vertical) axes. The model area has the 
form of a rectangle whose upper boundary (z = 0) is taken as 
the free surface (see Fig. 1). Models with only plane 
geometry of the free surface are considered in the present 
study. 

Fig. 1. Schematic representation of 2D volume. 

The elastic medium is described by the following three 
parameters: ρ, is the density, Vp and Vs are the longitudinal 
and transverse wave velocities, respectively. The geometry 
structure of the rectangular region of interest is determined 
by the distribution of the values of the elastic parameters. It 
should be noted that in the equations of the system (1) these 
parameters are constituents of the Lamé parameters. These 
parameters are two-dimensional functions of the coordinates. 
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The problem is to be solved with corresponding zero initial 
and boundary conditions. 

To obtain a successful solution without waves reflected 
from the interior boundaries, the PML (Perfectly Matched 
Layers) technique was applied [22, 23]. For this, rectangular 
subregions of small size are located along the side 
boundaries and along the bottom boundary of the rectangular 
region (see Fig. 1). In this area, the calculation formulas of 
the C-PML (convolutional PML) are used. 

A point source is used to perform the calculations and 
generate seismic waves.  In (1), the source enters as xf  and 

zf , respectively. The source can be realized as a 

“comprehensive force” being inside the modeling area 
excluding PML layers, or as a “vertical force” located at the 
free surface. 

III. THEORY 

When choosing a method for numerically finding a 
solution, itis important that it is flexible enough and is 
capable of designing a parallel realization to perform 
calculations on high-end computing architectures. It should 
also provide sufficient accuracy of calculations for long 
distances. In this case, a finite-difference method of fourth 
order with respect to space was chosen [24]. In addition, a 
realization of the finite-difference approximation of the free 
surface boundary conditions was made [25]. The finite-
difference approximations of the equations to calculate 
seismic wave propagation have a general form (3):  
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In (2)  ,i j  are the grid coordinates and , 1n n +  are the 

time layers. ,t xΔ Δ  are the grid step sizes in time and space, 

respectively. A finite-difference scheme was designed using 
staggered grids. In this case the velocities and stresses are 
located at different points with respect to the grid cell (see 
Fig.2). In the present study, the horizontal component of the 
seismic field u  and the stresses ,xx zzτ τ are located on the 

free surface. 

Fig. 2. Locations of velocity and stress components for the FD operators on 
a 2D mesh.  

The C-PML formulas include damping functions along the 
x and z coordinate axes. In the PML zones each spatial 
derivative is modified in the form of (4): 

1
j

j j jx k x
ψ∂ ∂= +
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where the so-called “memory variable” jψ has a time 

dependent evolution formula with damping coefficients 

ja and jb (5): 
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A detailed description of the C-PML technique being used 
can be found in [23].  

III. PARALLEL IMPLEMENTATION 

All the calculation programs are designed for clusters 
based on CPUs (Central Processing Units) or special 
computing devices, for example, GPUs (Graphics Processing 
Units). The program codes were parallelized based on the 
data decomposition approach. The 1D domain decomposition 
technique was used to organize subdomains (layers) along 
the Oz axis for parallel computation for each of them. 
Therefore, the full modeling area of rectangular form 
consists of several regions (rectangular sub-domains), see 
Fig. 3. 

Fig. 3. Multiple device organization of parallel computations on CPU+GPU 
cluster.  

Thus, the parallel computing technique includes design of 
program codes realizing the 1D topology for the MPI 
processes, data exchange procedures, and calculation parts. 
The main program includes allocation of memory on the 
computing devices, devices management, initialization  of 
parallel processes, creation  of 1D MPI (Message Passing 
Interface) topology, performing data send/receive 
procedures, and data copying between the CPUs and 
computing devices (in the GPUs realization). To create the 
topology, the MPI_Dims_create, MPI_Cart_create, 
MPI_Cart_coords, and MPI_Cart_shift procedures are used. 
Their specifications and sample codes can be easily found. 
The calculation part of the algorithm was realized in another 
program code. This code includes computing procedures to 
perform 1D and 2D calculations for the mesh partitioned 
between layers. Such procedures can be parallelized with the 
OpenMP (Open Multi-Processing) or CUDA (Compute 
Unified Device Architecture) technology [24]. Each layer is 
computed on the (CPU, GPU, or Xeon Phi) device. Several 
types of computing procedures have been developed. One of 
them is to perform calculations for a set of points located on 
the boundaries of neighboring layers (devices), see Fig.4. 
Such points are computed first in a parallel realization. 
Another procedure runs the non-blocked data exchange 
procedures MPI_Isend and MPI_Irecv for the buffers 
allocated on the CPUs. At the same time 2D parallel 
computations (CUDA kernels) are run on the GPUs. 

Therefore, all data exchanges are “hidden behind” the 
execution of the procedures for 2D calculations for the other 
points of the mesh. 

 

Fig. 4. Representation of grid cell locations for data exchanges between 
neighboring layers/subdomains (computing devices).  

In the program codes, all arrays that can be 2D data, for 
example, the velocity and stress fields and elastic parameter 
values on the 2D mesh, are converted into 1D arrays. It 
allows easy operation with CUDA. 

The buffers are designed for data exchanges between the 
neighboring devices located at separate computing nodes of 
the cluster. This approach is necessary for a multi-GPU 
realization, because each device has its own memory space. 
There are two buffer types: for data exchange with the 
bottom layer and with the top layer in the linear topology. In 
contrast to the parallel realization for the FD scheme of 
second-order accuracy with respect to space [25], in the 
present study it is important to make data exchanges between 
two sets of 1D points placed on the top or bottom of a layer 
(see Fig.4). The buffers contain information about the values 
of velocities and stresses that need to be copied to the top or 
bottom layer with respect to the selected one, excluding the 
layers with the MPI ranks 0 and N-1 in the topology (see Fig. 
3). Buffers are initialized only on the CPUs. The values in 
the grid cells (points) are interchanged in the following way. 
After the points on the layer boundaries are calculated, they 
should be copied into the corresponding parts of the buffers 
on the CPU with “cudaMemcpy” procedures. The next step 
the MPI_Isend and MPI_Irecv procedures are runs. At the 
same time, the 2D kernels are performed on the GPUs for 
every MPI process. After all the exchange procedures are 
completed, the MPI processes can check this with the 
MPI_Wait.  After the data from the CPU buffers are copied 
back into the 1D arrays, the next iteration step can be 
executed. To present a well-developed program code for 
multi-GPU use, some tests for the parallel algorithm are 
carried out. 

The parallel realization proposed works only with the 
“global memory” common to all parallel threads on the GPU. 
The FD computations were performed with procedures run 
on GPUs with the following code lines: 
<<<dim3(nblocks_x,1,1),dim3(block_lenght,1,1)>>> for a 
1D parallelization and <<<dim3(nblocks_x,nblocks_y, 
1),dim3(block_lenght,block_height,1)>>> for a 2D one. This 
representation is common because of the code executed on 
the GPU via “kernels”. The number of parallel working 
threads is controlled by the values of block_length and 
block_height. The procedures are parallelized with the 
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indexes along the Ox and Oz axes depending on threadIdx.x, 
blockIdx.x, and block_length/block_height.  

TABLE I 
BEHAVIOR OF THE PROGRAM CODES IN TESTS  

 Number of GPU devices 
Test 1 3 6 9 
Acceleration 882 sec 474 sec 264 sec 211 sec 
Scalability - 395 sec 482 sec 482 sec 

For the scalability test, a model of inhomogeneous media 
with a mesh of 9998x2000 cell points per one process was 
taken. The number of time iterations was 28873. The 
scalability test was performed for 3, 6, and 9 computing 
devices. The results of the program code behavior for the test 
are given in Tab. I. The presented time values show almost 
the same results. It should be noted that the result for thee 
computing devices differs from that for the rest ones. It is 
due to program code runs on one computing node and, thus, 
there is no need for data exchange between devices placed on 
different computing nodes. 

The acceleration test was performed for a mesh of 
9998x2000 cell points for all devices. The total mesh was 
partitioned among the devices into subdomains of 
approximately equal computational size, number of cell 
points. In the test two program codes were used. The first 
code is for a single-GPU, and the second one, for multi-GPU 
use. The results are presented in Tab. I.  

IV. EXPERIMENTAL RESULTS 

The proposed technique of 2D mathematical modeling in 
geophysics and the developed program codes are designed 
for full seismic field simulation for long distances. The 
purpose is to study the subsurface structure and determine 
the values of the elastic parameters for the Baikal rift zone. 
This object is characterized by sufficiently large linear sizes 
along the coordinate axes. It is over 400 km along the Ox 
axis and about 80 km along the Oz axis. Wellbore data were 
used to prepare input data with the distribution of elastic 
parameters onto the mesh. These files contain information 
about the parameter values on vertical horizons (points with 
the z coordinate in the km format and with the corresponding 
values of the elastic parameters). To reconstruct the rift zone 
structure and to define the elastic parameter values into the 
grid cells, a model builder program was used. This program 
can help to construct a geophysical model based on borehole 
input data using the cubic spline interpolation algorithm. In 
the program, first 1D interpolation along the Oz axis is used, 
and then 1D interpolation along the Oz axis. This method 
helps to get interpolated values for a 2D mesh. As a result of 
the program operation, three data sets were obtained for the 
2D seismic simulation.  

To reconstruct the model, more than 10 reference points 
showing 1D distribution of the elastic parameter values in the 
vertical profiles were used. The model area of 400 km x 73 
km was reconstructed (see Fig. 5). This model demonstrates 
highly inhomogeneous non-contrast character of distribution 
of the elastic values. It is obtained from input data with a 

maximum value of Vp of 8.3452 km/s and a minimum value 
of Vs of 2.4672 km/s. 

Fig. 5. Subsurface structure of the Baikal rift zone model. Distribution of S-
wave velocity.  

To simulate the seismic field along a 400 km profile, a 
seismic source with a dominant frequency of 7 Hz was used. 
A source of the "vertical force" type has been chosen. It 
means that the force was applied to a selected point (grid 
cell) placed on the free surface. The x coordinate of the 
source location was taken about 15 km. For sufficient 
accuracy of the results, 50 grid points per minimum 
wavelength were taken in the calculations. These results have 
been obtained in studies on the algorithm verification using 
test models. 

A mesh with 56743 x 10356 grid points was reconstructed 
to simulate a 2D full seismic field. The program output files 
are presented in the binary format. The files contain 
information about the amplitudes of the vertical and 
horizontal (positive or negative) components of the seismic 
field on the mesh. Moreover, files with seismograms are 
obtained, since in natural experiments only seismogram data 
can be obtained for the subsequent investigations. The so-
called snapshots of the seismic field help in interpreting the 
seismograms and revealing different types of elastic waves.   

All calculations of the seismic field for the rift zone were 
carried out on the NKS-30T cluster of the SSCC SB RAS, 
http://www.sscc.icmmg.nsc.ru. The program code for 
calculations on CPUs was used. 12 computational nodes of 
the cluster with 12 cores in one node were used in the 
calculations. Each core is allocated one MPI process. In Fig. 
6 one can see the propagation of elastic waves in the rift zone 
structure. All pictures in Fig. 6 were obtained with the 
Matlab software. 

Fig. 6. Snapshots of the vertical component of the rift zone seismic field for 
time series of 15, 20, and 25 seconds (from top to bottom). 

Various types of elastic waves (reflected, refracted, 
surface, and others) are presented, see Fig. 6. The obtained 
synthetic data contain a new knowledge about the seismic 
field structure and the object of study. 
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V. CONCLUSIONS 

A technique to solve a dynamic problem of elasticity 
theory associated with modeling of the full seismic field 
from a point source has been proposed. A parallel 
implementation of the FDTD method for numerical 
experiments has been presented. The developed 
mathematical modeling technique and program codes for 
calculations on high-performance computing systems with 
CPUs or GPUs/Xeon Phi’s are suitable for a wide range of 
geophysical models. The programs use a single GPU device 
for test or small size calculations and multiple device 
parallelism for long-distance calculations. With the help of 
the developed programs, a geophysical model of the Baikal 
rift zone has been reconstructed. To determine the values of 
the elastic parameters at the grid points, wellbore input data 
were used. Such data contain information about the 
distribution of the elastic parameter values along the vertical 
profiles. For the model, a FD simulation of seismic wave 
propagation has been made. For such a geophysical object, 
synthetic data in the form of seismic wave snapshots have 
been presented. All theoretical experiments were carried out 
on the high-performance cluster of the SSCC SB RAS.  The 
results obtained can help to carry out study on comparison of 
synthetic and experimental data, which will allow refining 
and correcting the geophysical model.  

This work was supported by the Russian Foundation for 
Basic Research (projects no. 16-07-01052, no. 17-07-00872) 
and by the Russian Science Foundation (project no. 18-11-
00044). 
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