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Abstract – The problem of the location determining of a 
borehole source, represented as low-power explosions, moving 
along the depth of the borehole, is considered. The problem is 
solved by the method of the inverse problem solving, where 
initial parameters are arrival times of the waves. As a result of 
the solution are the source spatial coordinates and the speed 
characteristics of the medium near the well, depending on the 
source immersion depth. The method of automatic measuring 
the waves arrival times is considered. Combination of both 
methods in the model experiment to determine the source 
location in the borehole and the velocity characteristics of the 
medium near the well in depth is used. The results of 
experimental measurements are given. 
 
Index Terms – Borehole explosions, location, inverse problem. 

I. INTRODUCTION 

HE ACCURACY of determining the seismic parameters 
of the borehole environment – in-seam seismic velocities 

and the geometry of the boundaries is mainly determined by 
the data for the borehole trajectory in the three-dimensional 
space. Both problems are interrelated: the accuracy of the 
solution to the latter depends on that of the former. The 
determination of the borehole trajectory, in particular, the 
inclinometry of inclined boreholes, is rather difficult. It is 
well-known that the solution becomes more complex when 
the problem is solved in real time. To solve this problem, 
new algorithms and programs for automatic measurement of 
the arrival times of direct and reflected waves have been 
developed. This measurement uses the data on the recording 
of signals from the source by the areal observation system 
and by solving the inverse problem of reconstructing the 
parameters of the borehole source: the time in the source and 
its coordinates, like the seismic velocity in the medium.  

The effectiveness of the algorithms and programs created 
was estimated by the data processing obtained on the basis of 
a scheme of direct and inverse VSP from ground-based and 
pulsed borehole sources. The results of numerical and model 
experiments have shown the accuracy in determining the 
coordinates within the first meters, which indicates that the 
methods created to solve the problem are rather effective. 

II. PROBLEM DEFINITION 

Let the axes x and y in the Cartesian system of coordinates 
x, y, z be directed along the Earth’s surface, and let the axis z 

be directed down to the earth’s center. Let v denote the 
average propagation speed of the seismic wave in the vicinity 
of the borehole. The sensors that record (or radiate) seismic 
signals are located at the Earth’s surface or in small 
boreholes, at points with coordinates ( )i i ix , y ,z . Let it  

denote the propagation time of the seismic signal from the 
source at the borehole bottom (for instance, from the drilling 
bit) to the i-th point (or vice versa). It is necessary to 
determine the coordinates ( )x*,y*,z*  of the borehole 

bottom and the velocity v. One can also formulate a problem 
in which it is difficult to fix the radiation time of the seismic 
signal, and it has to be included in the unknowns to be 
determined. Then it will be necessary to determine the 
coordinates ( )x*,y*,z*  of the borehole bottom, the time in 

the source t*, and the velocity v. The minimal number of 
sensors will increase to five. When estimating the unknown 
parameters of the borehole bottom, we use a nonlinear 
system of the so-called conditional equations [1, 2, 3]: 

εθη 
+= ),(Xt   (1) 

where ),,,( 21 Ntttt 


=  is the vector of travel times of 

seismic signals, ),( θη X


 is the N-dimensional vector of 

measured travel times (a theoretical hodograph) or the regression 

function, 
T

N ),,( 1 εεε 
=  is the residual vector, 

Ttvzyx ),,,,(=θ


 is the m- dimensional vector of the 

parameters being estimated, ),,,( 21 NxxxX
=  is the 

matrix of the coordinates of sensors (or radiation points), and N is 
the number of sensors (or radiation points). Information about the 

distribution of errors ),(),( θηθε


iiii xxt −=  is used to 

estimate the parameters. From here on we assume that iε denotes 

mutually independent random variables distributed with the zero 
average and given variances: 0,iEε =  

2 , ( ),i j i ij i iE xε ε = σ δ σ = σ 
 ijδ  is the Kronecker delta, 

i=1,2,…,N. In case of difficulties with the specification of 
variances, they are assumed to be equal, and an unbiased 
estimate of the observation variance with a unit weight in the 
problem solution is obtained. The latter approach is used in this 
paper. 
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III. COMPUTATIONAL METHODS 

The problem of estimating the parameters θ


 is part of the 
so-called regression analysis, and estimates of the least-
squares method are its solution: 

arg min ( ), ( ) ( ( , ))
N

2 2
i i i

i 1

Q Q t x−

θ∈Ω =
θ = θ θ = σ − η θ
   

.   (2) 

To find the minimum of the functional )(θ


Q , the Gauss-

Newton iterative method or its modifications based on a 
linear approximation of the regression function in the 

vicinity of the point kθ


 are used: 
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Estimates θ


 are found as a result of the iterative process 

lim k

k→∞
θ = θ
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Here TXtXy )),((),( θηθ


−= , α  is the regularization 

parameter, and I is the unit matrix. 
The other approach to solving problem (1)-(4), also used 

by the authors, is to solve system (3) directly at each step of 
the iterative process. At the present time, the method of 
pseudoinversion (or generalized inversion) based on singular 
decomposition (SVD-decomposition) is most widely used to 
solve this system [4-7]. Modern versions of the MATLAB 
system have a built-in function svd(A) that realizes this 
decomposition for an arbitrary matrix A of the order n m× . 

IV. PLANNING THE OBSERVATION SYSTEM 

No matter how good the methods of solving systems (3) 
and (5) may be, in practice they are not very effective in the 
case of bad conditionality of matrix (4). Often, this is caused 
by poor organization of observations, namely, by 
inappropriate arrangement of seismic sensors with respect to 
the borehole bottom. One can conclude that observations 
should be planned, that is, one should select such an 
arrangement of sensors within the given territory that could 
maximally increase the conditionality of matrix (4) and, 
hence, improve the estimate of the borehole parameters. 
Specific problem statements of designing seismic 
observation systems are considered in [1-3]. Special software 
has been developed to solve these problems. 

 
 
 

IV. ALGORITHM FOR AUTOMATIC DETEMINATION 
OF WAVE ARRIVAL TIMES 

To determine the vector of wave arrival times t in the 
automatic measurement mode, one uses an algorithm of 
determining the arrival times of a quasi-periodic sequence of 
pulses at the background of Gaussian noise and estimating 
their shape [8, 9]. The following expression is taken as a goal 
function: 
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where , , , ,i jt t i j 1 M=    are the arrival times of first waves;  

, , , , , ,
j jt k t ky y i j 1 M k 0 q 1+ + = = −  are the waves of 

given duration q; 
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min max,T T  specify the minimal and maximal values of the 

quasi-period, and М is the number of seismograms. 
The criterion (6) is based on the maximum likelihood 

method. As a result of some transformations presented in [5], 
relation (6) is equivalent to the following expression: 
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An algorithm based on the method of dynamic 
programming described in (6) is proposed to solve the 
minimization problem (7). The following recurrence 
formulas of dynamic programming are valid for the 
minimization problem (7) on the set Ω: 

( ) 0,S n =  [ ]max max min, 1n T T T q∈ − − − − , 

max min
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n T n Tm
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1 min
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max min

( ) min ( ) ( )
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Ind n Arg S m G m
− ≤ ≤ −

= + , 

min0, 1n N q T= − + − . 

where S(n) and Ind (n) denote the minimum value of the 
functional and the minimum indicator at the n-th step. The 
number of waves and their location in the sequence is 
determined by the recurrent calculation in the reverse order 
by using the minimum indicator: 

( )0

1

1min

min ( ) ( )

( ), 1,2,...,i i

N q N q Tn
m Arg S n G n

m Ind m i−

− ≤ ≤ − + −
 = +

 = =

  (8) 

And the process stops at such step i=r that ( ) 0rInd m = . 
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As a result of calculation by using formula (8), we obtain a 

sequence 1 1, ,...,r rm m m−  such that 1 2 1( , , ..., , )M Mt t t t−      

= 1 1( , ,..., )r rm m m− . The quantity r gives the estimate M  of 

the number of pulses that got in the frame. As a result of 
solving the minimization problem, we find an optimal set of 
the times of wave arrivals and their number:  


1 2 1 1( , ,..., , , ) min ( ,..., )M M Mt t t t M Arg S t t−

Ω
=      . 

Taking into account the estimates of maximum likelihood 

and the found parameters 1,it M=  , M
~

, one can easily find 
the sought-for components of the U-wave:  

1
ˆ , 0,... 1k

M
i kti

y
u k q

M

= += = −




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IV. EXPERIMENTAL RESULTS 

Model experiments were made with the help of the method 
of inverse vertical seismic profiling (IVSP) by using a water-
filled borehole 135 m deep. A scheme of the experiments is 
presented in Fig. 1. 

 
Fig. 1.Scheme of model experiments. 

Powder explosions of 12.5 g and 30 g, respectively, were 
used as a source of seismic oscillations. Blasting control was 
remote, with electric current passing from a 220 V supply 
line through a wire in a glass with the explosive. The process 
of wire burnout initiated the powder blasting. The reference 
signal was recorded from sensor S1 located at the borehole 
head. The signal was initiated by a hydroacoustic wave, 
which propagated from the source along the liquid column 
filling the borehole cavity. The reference signal was 
transmitted via the lines to the recording seismic station. A 
12-channel digital seismic station “Lakkolit-M” is used to 
record seismic signals. For each 12-channel arrangement of 
seismic sensors (Fig. 1), explosions at depths of up to 120 m 
were recorded. The arrival times of direct waves were 
determined automatically with the help of the algorithm (8). 
The results of determining the arrival times of first waves are 
illustrated graphically in Fig. 2. The arrival times are denoted 
by points in each of the 11 seismograms. The measured 
values were used to solve the inverse problem (1) in order to 
determine errors in the calculation of the coordinates of the 
borehole bottom and wave velocities for various source 
depths. The results of the calculations are presented in Table 
I. The Table presents source depths, errors in determination 

of the borehole bottom by the coordinates x, y, z, velocity 
values of direct waves, and errors in their determination, 
successively. The table data illustrate a rather high accuracy 
in determination of the source coordinates (the error along 
the coordinate z at maximal depths does not exceed (1-2)%, 
and the horizontal deviation does not exceed 2 m).  

 
Fig. 2. The results of determining the arrival times of first waves. 

TABLE I 
COORDINATES OF BOREHOLE BOTTOM AND WAVE 

VELOCITIES FOR VARIOUS SOURCE DEPTHS 

Source 
Depth   

(m) 

Error of determination (m) 
 

Speed 
of 

seismic 
waves 

Error. 
speed 

determin
ation 

x y z 
V 

(km/s) 
Ev 

br1 0.55 0.757 0.08 1.599 0.0058 

br5 0.678 0.927 3.116 1.586 0.0061 

br10 0.789 1.07 3.783 1.745 0.0077 

br25 0.877 1.208 1.985 2.044 0.0099 

br100 1.070 1.478 0.887 3.219 0.0186 

br120 1.577 2.163 1.014 3.343 0.0276 

VI. CONCLUSION 

The problem of determining the position of the well 
source, presented in the form of low-power explosions, 
moving along the depth of the well, is considered. Its 
solution is represented by the method of solving an inverse 
ill-posed problem. The initial parameters for the solution are 
the wave arrival times. A method for automatically 
measuring the arrival times of waves is proposed and 
implemented, based on the discrete optimization of a 
purposeful search of seismograms. Combination of both 
methods allows to determine the spatial coordinates of the 
source and the speed characteristics of the near wellbore 
environment. The latter, in turn, are related to the depth of 
immersion of the source. The performed model experiment 
with charges of low power from the source coordinates in the 
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range of depths 0-120 m with the help of the created 
algorithms and programs showed the accuracy of the 
estimation of the parameters in the region (1-2)%. Thus the 
high efficiency of the created algorithms and programs is 
experimentally shown. 

REFERENCES 

[1] Bakut P.A., Djulina J.V., Ivantchuk N.A. Detection of the moving 
objects/ Edited by. P.A. Bakut. – M.: Soviet Radio, 1980. – 288 p. (in 
Russian). 

[2] Reutov C., Safronov E. Complete shipment of instruments of labour as 
a means of the machine system creation // Economic questions, 1985. № 
1. pp. 57-67. (in Rissian). 

[3] Stewartson K. On the flow near the trailing edge of a flat plate // Proc. 
Roy. Sec. London. Ser. A. 1968. V. 306. No. 1486. pp. 275-290. 

[4] Omelchenko O.K. Numerical realization of a wave method to determine 
the borehole bottom coordinates. Proc. of Computing Center, SB RAS, 
Ser. Mathematical Modeling in Geophysics, Issue 4, Publ. House of CC 
SB RAS, Novosibirsk, 1996, pp. 207-214. 

[5] Omelchenko O.K.. Numerical realization of the wave method for 
determining the coordinates of the bottomhole. Proceedings of the 
Computing Center of the SB RAS, series: Mathematical modeling in 
geophysics, Vol. 4, Publishing House of Computing Center of SB RAS, 
Novosibirsk, 1996, P. 207-214. (in Russian). 

[6] Krivoputsky V.S., Novakovsky Yu.L. A method of borehole bottom 
location in the process of boring. // Proc. of Computing Center, SB 
RAS, Ser. Mathematical Modeling in Geophysics, Issue 3, Publ. House 
of CC SB RAS, Novosibirsk, 1994. P. 38-43. 

[7] Omelchenko O.K., Gusiakov V.K. Designing a network of seismic 
stations for tsunami warning service. // Volcanology and Seismology. 
1996. No. 2.  P. 68-85. 

[8] Voskoboynikova G., Khairetdinov M. Numerical modeling of posteriori 
algorithms for geophysical monitoring // Communications in Computer 
and Information Science Springer, 2015. Vol. 549. P. 190-200. 

[9] Kel'manov A.V., Jeon B. A posteriori joint detection and discrimination 
of pulses in a quasiperiodic pulse train // IEEE Trans. Signal Processing. 
V.52, N.3. pp. 1-12 (2004). 

 
 

 

Khairetdinov Marat S., Professor of the 
Novosibirsk State Technical University; Principal 
Researcher of the Institute of Computational 
Mathematics and Mathematical Geophysics SB 
RAS, e-mail: marat@opg.sscc.ru. Author and co-
author of over 250 scientific papers. 

 

Voskoboynikova Gyulnara M. PhD, Research 
Associate of the Institute of Computational 
Mathematics and Mathematical Geophysics SB 
RAS, e-mail: gulya@opg.sscc.ru. Author and co-
author of over 70 scientific papers. 
 

 

Yushin Vyacheslav I. Doctor of Technical 
Sciences, Leading Researcher of the Trofimuk 
Institute of Petroleum Geology and Geophysics 
of Siberian Branch of RAS, e-mail: 
YushinVI@ipgg.sbras.ru. Author and co-author 
of over 120 scientific papers. 
 

 
 


