
5

ISSN 0361-7688, Programming and Computer Software, 2016, Vol. 42, No. 1, pp. 5–16. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © V.P. Il’in, I.N. Skopin, 2016, published in Programmirovanie, 2016, Vol. 42, No. 1.

About Performance and Intellectuality
of Supercomputer Modeling

V. P. Il’ina, b and I. N. Skopina, b

a Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 6, Novosibirsk, 630090 Russia

b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
e-mail: iskopin@gmail.com
Received February 12, 2014

Abstract—The concept of supercomputer technologies is traditionally related to mapping algorithms onto the
computer architecture, which, taking into account the explosive growth of computational capabilities, implies
the necessity for an adequate increase in the performance of algorithms and programs. At the same time, it is
well known that the rate of building “computer muscles” far exceeds the rate of increasing the labor produc-
tivity of software developers, which becomes a bottleneck of computer evolution. The only way to deal with
this problem is to automate the construction of models, algorithms, and programs, which directly implies the
revolutionary change in the level of artificial intelligence in supercomputer technologies. In this paper, it is
from this standpoint that main computational stages of mathematical modeling of various processes and phe-
nomena are discussed, some aspects of high logical complexity of modern high-performance methods for
solving “large” applied problems are pointed out, and some intelligent solutions for various modeling prob-
lems are proposed.

DOI: 10.1134/S0361768816010047

1. INTRODUCTION
Developing knowledge-intensive software for solv-

ing very large mathematical modeling problems on
modern post-petascale computers faces two essen-
tially different algorithmic problems. The first prob-
lem is traditionally regarded as of paramount impor-
tance: mapping algorithms onto the architecture of a
multiprocessor computing system (MCS) to maximize
the performance or to minimize the computational
complexity of the methods used for solving a particular
problem. The second problem is associated with the
automatic construction of programs and algorithms,
which eventually determines the labor productivity of
application programmers, the growth rate of which is
known to lag far behind the rate of improving com-
puter capabilities. Moreover, as has been noted in the
roadmap developed by the experts of the International
Exascale Software Project (IESP) [1], the forthcom-
ing entry into the era of exascale computers (with hun-
dreds of millions of cores) implies the transformation
of quantity into quality and poses before the world’s IT
community the challenge problem of developing a new
generation of software (X-Stack), which would be able
to provide the effective use of extremely large compu-
tational resources.

The fundamental solution in this direction is seen
primarily as a considerable rise of the intellectuality
level in the development of application software,

including program packages and software systems.
We regard the intellectuality level as a degree of cre-
ativity in the work of the domain experts, who are
responsible for the conformance between the idea of a
software system and actual needs of the users: mathe-
maticians who formalize problems and construct algo-
rithms and programmers who implement a particular
software product. For these experts, creativity (in its
various aspects) always accompanies their activity
when creating a fundamentally new product. At the
same time, in contrast to the technology, which theo-
retically guaranties the timely fabrication of a proper-
quality product, the creativity is actually a source of
uncertainty and risk. Therefore, the solution of the
problems mentioned above calls not for technologies
but for the technological support, which provides as
maximum automation of routine processes as possi-
ble, as well as for the freedom of making creative deci-
sions given all reliable information on all alternatives
available. Such a support is based on general software
development tools and special-purpose instruments
for a particular class of problems.

An example of well-organized technological sup-
port is compiler construction. After some works by
Knuth had been published [2, 3], which were charac-
terized by quite a high level of intellectuality, it became
possible to standardize the software development pro-
cess and, therefore, to build various tools for support-

6

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

IL’IN, SKOPIN

ing the construction of the frontend, which represents
the initial compiling phases (see, for example, [4]) that
do not require any creativity from the developer. How-
ever, the same technological elaboration of backend
phases, which are related to the architecture-depen-
dent optimization, has not yet been reached, particu-
larly because of the diversity and complexity of possi-
ble variants of the optimum code. Constructing this
part of the compiler requires high intellectual abilities
of the developer.1

It should be stressed that the intellectuality, which
is related to elaborating good ideas, theories, methods,
and algorithms, as well as to introducing them into a
programming tool, improves the technological level of
the development support, thus ridding a project of the
creative work that is performed in advance. This intel-
lectuality depends on the specificity of a particular
domain for which application software is developed.
Examples of such a dedicated support are software
tools that help to overcome logical complexity of activ-
ities, such as solving “large” functional systems of
equations, handling cumbersome formulas, and con-
structing algorithms with increased computational
accuracy, improved robustness, and other mathemati-
cal properties, which characterize the knowledge
intensity of application software. In turn, the degree of
automation of these activities characterizes the intel-
lectualization of the corresponding computational
and information technologies.

Alongside with the domain-specific dedicated sup-
port, the technical, system, organizational, and meth-
odological facilities, as well as software development
tools that are not problem oriented, also make their
contribution to the technological level of project activ-
ities. Each of the types of support is progressing with
implementation of its achievements, which are based
on elaboration of its intelligent products. It is hard to
tell which of them makes a greater contribution to the
intellectuality level of a project. It should be noted,
however, that, when developing a project, the general
support creates conditions for the effective use of the
dedicated support; this combination improves the
technological support of projects and, therefore, the
productivity and quality of the programmer’s work.

In this paper, we mostly discuss and evaluate the
intellectuality of the dedicated support and refer to the
other aspects of project technologization only to the
extent to which they contribute to the solution of com-
putational programming problems related to mathe-
matical modeling. The paper is organized as follows.
Section 2 presents a survey of the processes that are
involved, in one way or another, in organizing large-
scale computer-aided experiments. The methodologi-
cal aspects of setting and carrying out computational

1 In [5], some examples of other software solutions are presented;
analysis of these solutions shows that, given an appropriate intel-
lectual elaboration, they can lead to new methods for improving
robustness of distributed computing systems.

experiments are addressed in Section 3; these two
phases of the experiment are implemented in particu-
lar projects in the form of certain stages, including
mathematical model development, computational
process, and model-based decision making. Section 4
describes some possible ways of automating the algo-
rithm construction in terms of the radical increase in
labor productivity when designing the functional and
system content of application program packages.
Some actual problems of intellectualization and auto-
mation of algorithm construction are discussed in
conclusion.

2. SETTING AND CARRYING OUT
COMPUTATIONAL EXPERIMENTS

Raising the level of dedicated intellectuality is
characteristic of individual software development, in
which one of the basic quality criteria is the perfor-
mance of using MCS recourses for computations.
Here, one of the most important classes of problems is
the description of real processes and phenomena. This
class involves interdisciplinary (direct and inverse)
initial boundary value problems for systems of differ-
ential and integral equations (or their corresponding
variational formulations). Such problems are generally
formulated in multidimensional computational
domains with complex configurations of multicon-
nected piecewise-smooth boundaries and contrast
material properties of mediums, which requires a
developed mathematization of modeling.

The technological chains of setting and carrying
out large-scale computational experiments involve a
great variety of activities. At the top level of consider-
ation, the following stages of a computational project,
which characterize both the model development and
the computational process, can be distinguished:

• geometric and functional modeling: the concreti-
zation of a computational domain and its subdomains
with equations the properties of which specify certain
requirements for using computational schemes;

• discretization of the modeling problem that was
represented at the previous stage in a continuous form;
this stage implies generation of meshes, including
adaptive unstructured meshes, which take into
account specific characteristics of the formulated
problem;

• high-order approximation of the original relations
by equations on the mesh structure constructed at the
previous stage; thus, the problem is algebraized by
reducing it to a system of linear and nonlinear equa-
tions, which often prove to be cumbersome and ill-
conditioned;

• solving algebraic problems, including the equa-
tions constructed at the approximation stage, by
methods that take into account specific features of the
matrices involved and capable of solving high-dimen-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

ABOUT PERFORMANCE AND INTELLECTUALITY 7

sional, time-consuming, and ill-conditioned prob-
lems;

• postprocessing, which is aimed at recasting initial
computational results in the form appropriate for the
further analysis and use.

When solving inverse problems, an additional stage
is required:

• organization of iterations for optimization com-
putations, which involves calculating objective func-
tionals and updating boundary conditions, as well as
other parameters, in order to return to the previous
stages if it is required to continue searching for solu-
tions.

The last two stages imply using the information
obtained in the process of modeling:

• visualization of computational results, i.e., prepar-
ing the results for interactive processing at the final
stage;

• decision making based on mathematical model-
ing, which implies validating the results, understand-
ing them, and selecting some final actions.

These stages, as well as special conditions in which
they are performed, specify particular requirements
for the process of developing the corresponding appli-
cation software. First of all, mention should be made
of the necessity for the system approach to this large-
scale problem and for the complex solution of the
problems related to the modeling. The continuous
evolution of mathematical models and algorithms,
which assumes a long life cycle of a software product,
requires minimizing the time of implementing its
achievements in the product, while the ongoing prog-
ress in computer architectures poses the problem of
adapting software to new MCS capabilities. The prob-
lems of modern and advanced modeling cannot be
successfully solved without joint efforts of a great
many teams of software developers, as well as end
users.

Understanding of the necessity for such coopera-
tion results in new ideas, as well as in attempts to
implement them in software systems for technological
support of modeling. Examples of such integration
projects are OpenFOAM [6] and Distributed Unified
Numerical Environment (DUNE) [7]. In this line of
projects, special mention should be made of the basic
modeling system (BMS) [8], which adopts principles
of developing and running software tools for all basic
types of problems in mathematical physics: electro-
magnetism, strain–stress states of solids, hydro- and
gas-dynamic f lows, multiphase heat-and-mass trans-
fer, etc. This system cannot yet be regarded as an inde-
pendent software product, but the experience gained
in developing its components allows us to conclude
that this approach, which enables extending the avail-
able methods and adapting them to certain hardware,
is rather promising.

3. METHODOLOGICAL ASPECTS OF
IMPLEMENTING THE STAGES OF

COMPUTATIONAL MODELING
In practice, the above-mentioned stages of setting

and carrying out computational experiments are con-
cretized as project development stages; each of these
stages needs support, which takes into account both
specifics of activities and connections between the
stages.

Below, we discuss basic characteristics of the
stages, which are peculiar to modeling projects, with
the emphasis being placed on the logical complexity of
the functional and algorithmic content of the stages.
The provisions presented below have been developed
based on the conceptual analysis of the BMS, as well
as on the analysis of the experience of implementing
and running the components of the BMS core [8–13].

3.1. Geometric and Functional Modeling
Solving an initial boundary value problem, or other

problem on which the mathematical model is based,
begins with specifying initial data with the help of
graphical or text tools. This stage of the project corre-
sponds to the stage of geometric and functional mod-
eling; in the general case, the mathematical model
being described contains a representation of the mul-
tidimensional computational domain and its geomet-
ric properties. The domain can be bounded or
unbounded and have a multiconnected piecewise-
smooth boundary of complex configuration, on vari-
ous segments of which certain initial and/or boundary
conditions are specified. The computational domain
can consist of subdomains with different material
properties, which involve “their own” systems of dif-
ferential and/or integral equations with specific terms
and coefficients, which, in turn, are given by formulas
and/or functional relations or numerically. Altogether,
all these are functional objects of the model.

Two important classes of problems are nonstation-
ary problems, in which data vary with time in the pro-
cess of solving, and nonlinear problems, in which
boundaries or coefficients depend on the desired solu-
tion and also vary in the process of computations.
In addition, inverse problems deserve special consid-
eration, in which initial data contain certain variable
parameters the values of which are to be optimized
according to additional conditions; these conditions
imply minimizing a particular objective functional,
which depends on the solution, with linear or nonlin-
ear constraints being imposed on the parameters to be
sought.

Obviously, geometric objects can be described in
lots of ways. For example, a sphere is uniquely defined
by the position of its center and by its radius, as well as
by the corresponding equation in polar or Cartesian
coordinates, with the first way being more efficient.
A truncated cone, cylinder, parallelepiped, and other

8

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

IL’IN, SKOPIN

standard but more complex figures can be defined
similarly. On the other hand, first- or second-order
surfaces are defined by coefficients of their equations,
while the bodies formed by these surfaces can be iden-
tified by finding intersection lines and by executing
set-theoretic operations. Finally, the computational
domain can be constructed manually on the screen
with the aid of standard graphical tools.

In different situations, a particular way of defini-
tion can be more or less appropriate; therefore, it is
natural to provide for an excessive variety of represen-
tations of geometric (and functional) data by enabling
their mutual conversion. For example, a great number
of geometric formats are available in CAD products
[14]. It should also be remembered that geometric
modeling must provide tools for executing various
operations on objects: shifts, rotations, scaling, copy-
ing, etc. A detailed analysis of these technological
issues is presented in [10].

It can be seen from the above discussion that the
variety of problem formulations and methods for their
solution, including methods for defining geometric
and functional objects of the model, or, in other
words, the intellectuality level of the first stage of
mathematical modeling, leaves no hope for a real
technology for this stage. And yet, this fact shows the
topicality of developing the technological support,
which assumes a specific classification of problem
types and methods associated with these types,
including conditions of their application. It is neces-
sary that verifiable criteria for estimating candidate
solutions be always available for the developer of a par-
ticular model.

Another aspect of the support is associated with the
fact that the analytical work performed at the first
stage lays the foundation of all subsequent project
activities, including the possibility (oftentimes, the
necessity) of checking alternative solutions. There-
fore, the support system should be constructed so as to
enable identifying operational routes of project devel-
opment and to ensure easy returns to already com-
pleted activities in order to perform them in alternative
ways, including returns to the construction of the
mathematical model to optimize the construction
process, parameter identification, etc. To avoid the
risk of chaos in project activities, which can result in
lots of errors, to simplify the comparison of alternative
constructions of the model, and to enable the use of
results of previously performed activities, it is highly
important to implement the storage and retrieval of
information about actions performed. In other words,
the first stage of modeling must involve constructing
the project repository with an advanced version con-
trol system.

Unfortunately, presently-available development
support systems mostly ignore the support of opera-
tional routes of project development. As a typical
example, we can point to the SALOME system [15],

which was designed as a middleware for CAD-CAE.
In the course of its evolution, this system has trans-
formed into a platform for mathematical modeling
support, which includes some modules for organizing
computational experiments. The toolset of this plat-
form is sufficient for solving many problems; however,
the absence of mandatory regulations and tools for
checking the correctness of their use under particular
conditions results in the fact that, when constructing
the model, one has to look over the SALOME docu-
mentation. And yet, the guidelines contained in this
documentation cannot replace automated tools for the
dedicated support of proper organization of experi-
ments.

Taking into account the specific character of this
stage, the following provisions can be formulated,
which characterize the technological support required
for this stage:

• in the course of this stage, mathematical proper-
ties are determined on which the computational plan
depends (on the one hand, the existence and unique-
ness of a solution, its stability, etc.; on the other hand,
characteristics of the computational domain and its
subdomains as objects to be modeled);

• the stage ends with a mathematical model con-
structed, which represents a real problem in the form
of a mathematical object, and with some computa-
tional methods for this object found;

• thus, the geometric data structure (GDS) and
functional data structure (FDS) of the model are con-
structed, which form the foundation of the model for
the problem being solved in the project;

• the technological support of this stage is associ-
ated with system-wide tools, which provide access to
initial information about the problem and make it pos-
sible to construct and modify the GDS and FDS (with
version control enabled) for the direct use at the other
stages (particularly, for version control);

• verification of the results: the competent exper-
tise aimed at validating the quality of reflecting the
processes under investigation in terms of the condi-
tions of the modeling problem. This activity is sup-
ported by providing access to information about the
problem and about its representation in the GDS
and FDS.

The first stage of mathematical modeling is associ-
ated with making strategic creative decisions, which
are crucial for the project; hence, among other com-
putational activities, the intellectuality of the geomet-
ric and functional modeling stage is the highest. So, to
increase the labor productivity of the developers at this
stage and at later stages, a high level of the introduced
intellectuality of the general and dedicated technolog-
ical support is required.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

ABOUT PERFORMANCE AND INTELLECTUALITY 9

3.2. Discretization of the Initial Boundary
Value Problem

Based on the GDS and FDS, the initial continuous
formulation is discretized. This development stage
consists in constructing an adaptive quasi-structured
mesh; this term means that the generated mesh
domain can be partitioned into mesh subdomains,
each involving various types of cells or finite elements:
tetrahedra, prisms, and various polyhedra with some
curvilinear edges.

There are lots of publications on mesh generation
algorithms, on criteria for determining their quality,
and on their software implementations (see a detailed
survey in [11]). It should be noted that modern effective
methods for solving boundary value problems employ
rather complex approaches, such as local condensing,
multimesh technologies, and domain decomposition,
which require specific support software. The techno-
logical tools of this stage include mesh generators and
tools for domain partitioning with allowance for some
quality criteria. For a particular project, this stage
yields a mesh data structure (MDS) of the model,
which describes (together with the GDS and FDS) all
properties of the discretized problem. This structure
can be static; i.e., it remains constant during computa-
tions, or dynamic, when the mesh is refined or even
redefined upon revealing certain properties of the
model in the process of computations. The simplest
example is reaching a desired accuracy by ascertaining
the necessity for condensing the mesh around certain
singular points of the computational domain on the
basis of a priori and/or a posteriori information.

The dedicated technological support of the discret-
ization stage is reduced to selecting and automating a
mesh generation method. It is characterized by the
necessity for providing alternative variants of defining
the mesh domain and its subdomains taking into
account their peculiarities and ways in which initial
and boundary conditions are specified. Particularly,
for a dynamic MDS, parameterization is required. It is
important that the developer be provided with infor-
mation about these peculiarities on the f ly and that the
support system be capable of identifying the potential
noncompliance of discretization with quality require-
ments and other errors.

The control of the discretization process is associ-
ated with the following opportunities offered to the
users:

• specification of features of the computational
domain (singular faces, edges, and points);

• consistency of domain decomposition into sub-
domains and correctness of mesh partitioning of sub-
domains with subsequent approximation;

• visualization of structures, color highlighting of
partitioned segments, and other means for visualizing

and editing the image of the computational domain
and, therefore, for modifying the GDS and FDS.

The system-wide technological support assumes
the possibility of returning to the previous MDS state
to correct the actions performed, as well as the possi-
bility of resuming the stage (upon performing subse-
quent stages) to compare variants of the model with
the partial use of the results of previous discretizations.
The requirement of such returns is of crucial impor-
tance not only for the discretization stage but also for
all stages of modeling in any formulation of computa-
tional experiments and any organization of project
activities. This is one of the key requirements; its
implementation in the support system enables the
automated comparison of project development alter-
natives, as well as the check of quality criteria and
other important characteristics of the computational
experiment. It is natural to consider the operation pro-
cess that assumes returning to previously performed
activities in more general terms. The point is that the
advanced modeling support system must support the
development of multiversion applications, specifi-
cally, enable their adaptation to particular conditions
of use. Therefore, the information support of correct
returns should be regarded as one of the instruments of
the subsystem for version control support. This sub-
system is capable of providing conditions for a consid-
erable increase in the labor productivity of both devel-
opers and users.

It is evident from the above discussion that the
introduced intellectuality has a more important place
in discretization than the direct intellectuality, which
takes into account certain peculiarities that require the
adaptation of standard (or new) mesh generation algo-
rithms. In the case of modeling with the use of a
sophisticated support system, this stage proves to be
more technologically advanced as compared to the
stage of geometric and functional modeling, since it is
based on the decisions made at the previous stage, and
the use of tools introduces the intellectuality, which
involve predeveloped regulations for work activities.

3.3. Approximation of Original Equations

The approximation phase, which is represented in
the project by the corresponding stage of model con-
struction, completes the transition from the original
continuous problem to its discrete formulation; at this
stage, a mesh system of linear or nonlinear algebraic
equations (SLAE or SNAE), which generally involves
sparse matrices of very high orders (up to 108–1010), is
constructed. Such matrices are usually compressed:
only nonzero elements and the coresponding indices
are stored to save memory. There are a variety of
approximation approaches, including finite-differ-
ence methods, finite-volume methods, finite-element
methods, discontinuous Galerkin methods of various

10

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

IL’IN, SKOPIN

orders, collocation methods, and spectral methods
(associated with the Fourier expansion). However, an
abstract algebraic data structure (ADS) of the model,
which is regarded as a conceptual basis of a particular
ADS to be approximated, does not depend on this
variety. In spite of considerable theoretical distinctions
between ADS algorithms, all the ADSs have a remark-
able common property: naturally-parallelizable ele-
ment-by-element methods, which are based on find-
ing local matrices and assembling the global matrix of
a problem [12, 16, 17]. It should be noted that the use
of high-accuracy algorithms theoretically gives a con-
siderable gain in efficiency but results in cumbersome
multipage formulas, the software implementation of
which poses a complex technical problem.

Compared to the previous stages, when construct-
ing an ADS, the freedom of choice is confined by pre-
viously made project decisions, particularly, by prop-
erties of the already generated mesh. The intellectual-
ity of the approximation is most often related to the
methods developed in the frameworks of the corre-
sponding theoretical investigations. The key creative
problem of this stage is selecting a method for approx-
imation of the original problem that would provide a
sufficiently high accuracy and efficiency of computa-
tions. It should be noted that this problem is not so
simple and has a complex character, since higher-
order schemes result in more complex and denser
matrix structures, which raises the “cost” of algebraic
methods.

The technological support of this stage consists in
checking quality criteria: order of errors, potential
accuracy of the solution and the rate of convergence to
it, stability against perturbations of initial data and
against rounding errors, etc. Not all useful criteria can
be determined by analyzing the ADS. Some of them,
for example, the criterion of maximizing the efficiency
of using MCS resources at the next stage of algebraic
equation solving, may require additional computa-
tional experiments. Generally speaking, this require-
ment poses a problem, because, for a theoretically
admissible computational scheme, it can by no means
always be proved that the constructed ADS provides
optimally organized parallel computing on available
resources. When selecting a scheme, one has to adopt
a particular strategy of machine loading and to com-
pare between alternative variants reasoning from the
results of further computations, i.e., to organize the
return to the definition of the ADS on the basis of pre-
liminary results obtained at subsequent stages of mod-
eling. Thus, checking the approximation quality
requires both the support of returning to previous
stages and the support of resuming the approximation
process upon performing subsequent stages.

The interconnection between the approximation
and discretization should be noted. In some projects,
the MDS and ADS are constructed simultaneously.
Conceptually, such projects use the following scheme:

an algorithm and a computational scheme are selected
a priori and, then, are iteratively refined. This, how-
ever, implies only that the two stages are performed
jointly, i.e., the completion of the discretization is not
fixed as a check point of the project.

Among the tools of the approximation stage, auto-
mated tools for determining properties of the gener-
ated matrix play a crucial role. The use of such dedi-
cated support tools considerably improves accuracy
and efficiency of computations and, in particular,
makes it possible to get rid of solving a more compli-
cated eigenvalue problem. These tools also increase
the labor productivity of the developers by ridding
them of routine operations.

3.4. Solution of Algebraic Problems

Methodologically, the stage related to solving sys-
tems of linear or nonlinear equations can be regarded
as a process of finding unknown ADS variables. Proj-
ect developers often have to deal with very large
SLAEs, the solution of which is the most resource
consuming stage in the process of modeling, since the
amount of computation grows nonlinearly with
increasing number of degrees of freedom. It is at this
stage that the adopted parallel computing strategy is
fixed to maximize the efficiency of using MCS
resources.

This direction is one of the rapidly developing
branches of computational mathematics. Here, the
most effective approaches are based on parallel meth-
ods of domain decomposition and on preconditioned
iterative processes in Krylov subspaces (see the refer-
ences in [13]). To illustrate the variety of algorithms
used for solving SLAEs, we can refer to the problems
involving various types of matrices: real and complex,
square and rectangular, Hermitian and non-Hermi-
tian, positive-definite and indefinite, etc. In these
problems, one has to deal not only with computational
complexity but also with huge amounts of transferred
data, so certain problems of computational algebra are
presently associated with data-intensive computing.

A broad spectrum of approaches potentially appli-
cable for solving systems of equations, which is
regarded as the intellectuality introduced into the
project, becomes much more involved because model
developers have to deal with real computational
resources. They have to make decisions about applica-
bility of a particular method in the context of available
MCSs, to take into account perspectives of their devel-
opment, and to make modeling systems capable of
adapting to various hardware configurations with as
full and efficient use of resources as possible. Because
of the steadily increasing complexity of computer
hardware, including the development of new architec-
tures, the adaptability is an “endless” problem to be
permanently solved throughout the history of model-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

ABOUT PERFORMANCE AND INTELLECTUALITY 11

ing. This, however, is a shared problem for computa-
tional programming as a whole.

For developers of a particular project, the main
problem of this stage involves the algorithm selection
and the construction of programs implementing the
computational scheme fixed at the previous stages by
using libraries of the modeling support system and by
taking into account the architectures used for the
computational experiment. This problem also assumes
the specification of requirements for computational
resources needed for a particular experiment. Today,
the developers have at their disposal lots of libraries for
solving SLAEs, each having its own pros and cons in
terms of functionality and other characteristics. When
deciding which libraries are to be used under particular
conditions, it is rather useful to experiment with various
SLAE collections, which are available in the Internet.

The ambiguity of these problems suggests that their
technologization should be associated with the sup-
port of creative processes, which are released from
routine and are accompanied by the protection against
making wrong decisions. Since the basic requirement
for this stage is maximizing the efficiency of computa-
tions, when using the support, it is necessary to avoid
situations in which the developer cannot prefer any
particular strategy for local selection of variants among
available alternatives. When designing such a support,
it is required to provide the possibility of tuning algo-
rithms of algebraic libraries to specific characteristics
of problems and hardware, as well as to take into
account questions concerning computational accu-
racy, selection of preconditioners for computation
speedup, and other aspects of real projects.

The above considerations substantiate the assertion
concerning the high intellectuality of technological
support systems used at the stage of algebraic problem
solving. Here, the share of the introduced intellectual-
ity—methods, algorithms, etc.—is higher than that of
the intellectuality associated with the specific charac-
teristics of the project, which call for some creativity to
select a solution method. Such specificity includes
particular characteristics of the computational scheme
and model matrix, as well as MCS resources allocated
to the computational modeling experiment.

3.5. Postprocessing

Investigation of complex phenomena or processes
by means of modeling is a long-term process involving
intensive human–computer interaction. This requires
supporting at least two types of activity, which charac-
terize the stages of development and use of models:
processing of computational results and their subse-
quent representation in a usable form. The first type of
activity—postprocessing—prepares data obtained at the
previous stages for the second type called visualization.
Without postprocessing and visualization, the on-line

analysis and control of the computational process are
impossible.

The postprocessing stage is aimed at reducing the
modeling results obtained at the approximation and
equation solving stages (i.e., the MDS and ADS that
contain the data obtained as a result of computations)
to the form required for analysis and decision making.

The postprocessing can be concretized in various
ways, but developers of the model are usually aware of
the structure required. For example, in automated
process control systems, control signals are generated
that stimulate the activity of a process to be controlled.
Given a high level of automation, there can be no real
user of the model, i.e., the user can take no part in
decision making. The situation is reversed when mod-
eling is used for research and analysis. Here, various
formats for visual representation of multidimensional
fields are required: isolines, isosurfaces, gradient char-
acteristics, plots, etc. (with or without animation).
The number of useful representation types can be con-
siderable, and, which is quite important, the choice of
particular representation formats is beyond the scope
of model development. Hence, it is reasonable to
regard the postprocessing as a process of obtaining a
buffer representation, which assumes, first, the check
of modeling quality criteria (which should be simple to
set and easy to perform by the user) and, second, the
fullest set of tools for visual representation of informa-
tion about the model. Moreover, when solving inverse
problems, the automatic organization of computa-
tional iterations is required (see the following subsec-
tion).

The tools for computational data representation
can be characterized as a possibility for constructing
various particular data structures of modeling results
(PDSMRs). The role of postprocessing is to create an
abstract data structure of modeling results (ADSMR),
which is regarded as a basis for implementing PDS-
MRs required for the project developers or users. Tak-
ing into account a great variety of PDSMRs, it is rea-
sonable to standardize the ADSMR format for the
technological support of postprocessing. An import-
ant requirement for this standard is defining abstract
control of operations on the modeling results, for
which a user interface is designed at the visualization
stage. This makes it possible to organize a technologi-
cal support in accordance with the well-known
model–view–controller (MVC) design pattern [18]:
postprocessing is responsible for the model and con-
trol, while visualization is responsible for the view. As a
result, the level of the introduced intellectuality for
particular projects is raised.

The technological connection between the post-
processing stage and the discretization stage should be
noted, which is due to the requirement of matching
mesh representations of model data. The end result of
postprocessing the ADSMR forms a basis for demon-
strating the computational data to the user. Moreover,

12

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

IL’IN, SKOPIN

the same structure can be used to visualize data for
project developers, who modify the MDS on the f ly to
improve the model. Therefore, it is reasonable to con-
struct tools for ADSMR visualization so that to enable
the use of the same toolset for discretization and
approximation. In other words, the visual representa-
tions of the MDS and ADS in the project should be
regarded as variants of a PDSMR, which are adapted
to be used by the developers.

3.6. Organization of Iterations
for Optimization Computations

An important stage of the modeling process is the
solution of inverse problems on the basis of optimiza-
tion principles, which consist in the conditional mini-
mization of a predescribed objective functional. This
approach assumes solving a sequence of direct prob-
lems with parameterized data. In recent decades, a
great number of effective algorithms for finding
desired parameter values (interior point method,
sequential quadratic programming, method of confi-
dence intervals, etc.) have been developed, which are
now being actively put into practice.

The organization of the iterative computational
process is the key condition for solving inverse prob-
lems. However, the need for returning to previous
stages also arises when solving direct problems. The
point is that an obtained solution may prove, for vari-
ous reasons, to be unsatisfactory, so, in order to obtain
useful results, the correction of previously performed
activities is required, which is organized as iterative
returning to previous stages. The optimization of algo-
rithms for solving direct problems is essentially an
inverse problem, which implies finding desired
parameters of the method used. As noted above when
discussing approximation, such an iterative process is
organized, for example, when constructing the ADS
and computational scheme, which use MCS resources
to the maximum extent possible (see Section 3.3). The
difference between the two types of iterativeness is
that, first, they have different termination criteria and,
second, for inverse problems, both criterion checking
and returning to the previous stages are automated (for
direct problems, the decision concerning the return
requires a special analysis to substantiate the necessity
for correction of previously performed activities).

The technological support of both types of itera-
tiveness is reduced to standard (common for program-
ming systems) version control tools. These tools
enable easy returning to any previous state and make it
possible to compare and use previous versions of pro-
grams and data. As noted above, such an operating
mode must be provided for in the project by default.
So, the intellectuality of the iterativeness support
proves to be system-wide and introduced. The dedi-
cated part of this support is required only for inverse
problems due to the automation of returns to previous
stages upon calculating the target functional.

3.7. Visualization of Computational Results

Dividing the process of computational data prepa-
ration for external use into the abstract and concrete
parts makes it possible to considerably simplify the
presentation of computational results to the user.
In other words, postprocessing is responsible for data
mining, while visualization is responsible for data
viewing (demonstration of data for the purpose of
analysis or process control). Data viewing and control
activities are associated, first, with graphical and inter-
facing tools and, second, with data transfer between
the MCS and the user’s workstation. These are two
different problems. The first problem is solved at the
visualization stage. As for the second problem, it
should be considered in a broader context, since the
data communication between the MCS and worksta-
tions should be provided not only for users but also for
model developers. Moreover, it is sufficient for users
to operate with a PDSMR only, while developers need
access to all model data structures and to all relevant
information throughout the development of the proj-
ect. The developers have to deal with project docu-
mentation, tests and test results, various versions of
basic structures, etc.; it is not necessary and, in most
cases, not desirable or even impossible to store a lot of
that on workstations.

Viewing of data, which are represented in the
ADSMR and are mediated via a PDSMR, to the users
depends on various reasons (user needs). Using a
developer’s PDSMR (even simplified to a desired
level) for this purpose requires special considerations.
In addition to factors directly associated with the con-
tent of modeling, user needs also depend on the spe-
cific nature of the activity in which the information
obtained from the model is used. It is this specificity
that determines which tools are required for operating
with model data and which interfaces are needed for
these tools. To satisfy user needs as fully as possible, it
is reasonable to develop these tools as programs writ-
ten in domain specific languages (DSLs) [19], which
take into account the specificity of particular fields of
interest. The choice of a particular language depends
on the general abstract model of computations and
particular representations of this model, which are
specific to each user community. As applied to com-
putational modeling, the ADSMR is used as a basis for
the abstract model, while particular representations
are based on corresponding PDSMRs. As for compu-
tational programming, this approach is employed, for
example, in the OpenFOAM system [6]. Designing
certain DSL families required in the computational
modeling project is regarded as a dedicated intellectu-
ality, while the support environment for developing
their programming systems is regarded as an intro-
duced intellectuality of the project.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

ABOUT PERFORMANCE AND INTELLECTUALITY 13

3.8. Decision Making

Model construction is always aimed at providing
the user (researcher, engineer, or other specialist) with
some information required for decision making. This
information is generated by model-based computa-
tions and is used in a particular problem domain.
Decision making is an activity which is not performed
by model developers, so it should be regarded as a
post-project activity, which, strictly speaking, is not a
project stage. Nevertheless, at least some project
developers take part in this activity; their role is related
not to the creation of a user product but to the support
and maintenance of a final model, to the training of
users with different skill levels and research orienta-
tions, and to the development of the basic modeling
support system. These related activities may require
developing special visions of software, which imple-
ment new models and algorithms taking into account
cognitive and ontological aspects of the evolution of
the computing and information environment.

The post-project activity and its intellectuality are
beyond the scope of this paper. However, its obvious
connection with the modeling problem deserves spe-
cial consideration. This connection goes beyond the
use of computational data for selecting a solution
among available candidates and, first of all, consists in
the cooperation between users specialized in certain
application domains and model developers. Such
cooperation is mostly aimed at the model validation
(i.e., checking the agreement between modeling
results and realities of an application domain) and at
the analysis of information extracted from computa-
tional data. The inadequacy of the results points to the
necessity for correcting the model, parameter rela-
tions, requirements for computations, etc. The further
analysis shows the limits of applicability of the results
for decision making. In the process of model con-
struction, domain specialists act as consulting experts
for the developers; in the post-project phase, the
developers become such experts, who consult domain
specialists on the use of modeling results and estimate
the feasibility of suggestions concerning the improve-
ment of the model, including the corresponding
resource requirements.

The cooperation between the developers and users
of the model suggests that it would be reasonable to
use general tools in the process of model-based deci-
sion making, which are available in the basic toolset of
a modeling environment (as applied to the BMS, such
tools are discussed in [8–12]). The generality of the
technological support increases the labor productivity
and reduces costs associated with analysis and deci-
sion making owing to the introduced intellectualiza-
tion of the corresponding processes.

4. SURVEY OF ARCHITECTURAL
REQUIREMENTS FOR THE BASIC

MODELING SYSTEM

Software implementation of the methodological
stages described above and their representation in the
technological support required for particular project
stages form a kernel of the BMS, which is directly
responsible for the functionality of models and for the
labor productivity of the developers. It should be
stressed that the BMS kernel consists of almost inde-
pendent units, i.e., self-sufficient subsystems, which
interact only via the above-mentioned data structures
related to the model construction (GDS, FDS, MDS,
and ADS) and to the effective use of modeling results
(ADSMR and user-adapted PDSMR). Each individ-
ual unit and the kernel as a whole offer an integrated
tool environment, which satisfies all technological
requirements for the extensibility of the set of available
models and algorithms, for the adaptability to the
BMS architecture, and for the inclusion and use of
external software. The units have a library (modular)
structure with standard internal interfaces, which
make it possible to assemble algorithmic components
and to control correctness of their execution.

These functions actually consist in controlling the
operation of the modeling system and constitute the
system content of the BMS, which is aimed at the gen-
eral version control support of the whole toolset, soft-
ware applications, and collections of applications for
solving particular problems. Such an architectural
solution, which is hereinafter referred to as the version
assembly, is similar to the Lego construction kit, which
offers a set of standardized pieces that allow for con-
struction of a variety of stable models.

The version assembly is aimed at overcoming the
eternal contradiction between universality and effec-
tiveness. Of course, it assumes redundancy of the
functional content, when the library contains several
algorithms for solving the same subproblem, which are
automatically selected according to certain features
specified in the configurator. Similar variety makes it
possible to support multilingual model implementa-
tions and adaptability to various operating systems.
These undoubtedly positive qualities of the BMS,
however, can create certain difficulties for the devel-
opers who have insufficient knowledge of its compo-
nents. The solution of this problem is that the environ-
ment must present the full set of tools available for cor-
rect operation, along with admissibility conditions of
their use. It would be a mistake to offer tools without
indicating the activity to which the tools are applica-
ble. Such a mistake leads to the decrease in robustness
of BMS applications.2

2 The increase of robustness is a special problem of software
development, which deserves special consideration; some
approaches to solving this problem can be found in [5].

14

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

IL’IN, SKOPIN

To implement the version assembly, a special regu-
lation concerning components of the technological
support environment is required. Such regulations
were developed and successfully used for various
branches of system programming. The most wide-
spread of them is the component object model (COM)
[20], which supports the development of interacting
components in lots of Microsoft products (particu-
larly, in Windows family operating systems). The com-
mon object request broker architecture (CORBA) [22]
supports the development of distributed computing
applications [21]. For computational programming,
the common component architecture (CCA) [23] was
proposed, which supports massive parallel processing.
Unfortunately, these and other regulations not fully
satisfy the requirements for supporting the effective
implementation of high-performance computing, so
their direct use in the basic modeling support environ-
ment makes no sense. The developers of the SPAR-
SKIT system [24] have proposed some approaches to
overcome this drawback (see [25, 26]).

In contrast to well-known commercial products,
such as ANSYS, NASTRAN, etc. (the related infor-
mation can easily be found in the Internet), the BMS,
a large corporate product, is designed and imple-
mented in the framework of the open source para-
digm, which, in a wider context, corresponds to the
concept of open innovations [27]. Of course, such a
policy is not in contradiction with the development of
special-purpose closed source packages on the basis of
open tools.

Since the BMS is principally oriented to the high-
performance solution of very-large-scale interdisci-
plinary problems, it is reasonable to use this system in
cloud data centers (this technology is now being
widely accepted) taking into account the extending
range of computer services (software as a service,
SaaS). The BMS itself becomes a multiuser system,
which inevitably affects its architecture. Particularly,
in accordance with the IESP paradigm, this system is
being developed with no formal software constraints
imposed on the number of problem orders and on the
number of processors and computational nodes
(cores).

CONCLUSIONS

Now, returning to the central problem of this
paper—intellectualization and automation of algo-
rithm construction—we want to cite a figurative slogan
from [19]: the transition from paleo-informatics to
neo-informatics. This slogan reflects some evolution-
ary trends in application software (particularly, in
computational modeling), which are associated with
the development of requirements for scenario formu-
lation and for computational experimentation. Appli-
cations that can be attributed to neo-informatics are

inevitably associated with multiple transformations of
data, as well as with the variety of tools for operating
with data. Therefore, for the efficient technological
support of developing these applications, a system for
constructing domain-specific languages is actually
required, which reflects this variety. Above, we have
already spoken about the DSL as a method that pro-
vides the users with tools for operating with model
data. It is easy to see that the diversity of data struc-
tures and their modifications to deal with is character-
istic of model construction problems. So, it is very
tempting to use the idea of DSL for supporting the
activities associated with the development of the BMS.
Hence, the concept of model implementation inevita-
bly changes: a so-called mogram (model program)
rather than a program, which only transforms input
data into output data, is required. The term “mogram”
was introduced by Kleppe in [19] to describe software
that allows for multiple and multivariate experiments
with an essentially unified model, which employ gen-
eral information support and a toolkit required for
operating with data. In terms of the data structures
introduced above, a mogram is a system of GDS,
FDS, MDS, and ADS, as well as the ADSMR and
PDSMR, structures.

A serious problem of the transition to neo-infor-
matics is the necessity to maximize the applicability of
previously developed software. In the case of system
programming, this problem is solved in many respects
by using object-oriented design and other modern
solutions; in the case of computational programming
and mathematical modeling with their increased
requirements for computational efficiency, one has to
search for special approaches, which support multiple
use of presently-available programs, including FOR-
TRAN programs written in the days of paleo-infor-
matics. This objective is set in the scientific interface
definition language (SILD) project for support of the
so-called scientific computing. Here, the Babel multi-
lingual system is proposed, along with the correspond-
ing toolkit, which makes it possible to adapt old soft-
ware to modern MCS [28]. Unfortunately, despite the
considerable advance in this direction (see, for exam-
ple, [29]), the technological progress in solving the
problem of reuse, which would satisfy the increasing
requirements for efficiency, has not yet been made.

The problem of developing domain-specific soft-
ware, as well as examples of solving this problem, has
been known for many decades [30], and the corre-
sponding multifunctional systems such as MAPLE,
MATLAB, etc. are now being widely used. Unfortu-
nately, embedding such “monsters” into application
software packages poses a nontrivial and most often
unsolvable technical problem. Hence, the practice of
developing small special-purpose subsystems for auto-
matic implementation of specific applications (e.g.,
for analytical computations) has become globally

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

ABOUT PERFORMANCE AND INTELLECTUALITY 15

accepted. As an example directly associated with
mathematical modeling, we can point to the construc-
tion of Nedelec’s finite-element vector basis functions
with orders from first to fourth inclusively, which is
implemented in the HELMHOLTZ 3D software
package [31]; based on these functions, modules for
finding local matrices and for electromagnetic field
postprocessing are constructed. The following exam-
ple substantiates the sufficient credibility and effec-
tiveness of this approach: for cumbersome formulas
(which occupy up to ten text pages), automated ana-
lytic transformations yield about 9 MB of the C++
code. It should be stressed that, given the further evo-
lution of finite-element tools, such a subsystem will
increase the labor productivity of the application pro-
grammer by orders of magnitude.

The technological problems considered above form
a broad field of activity for system programmers: ana-
lytic geometry algorithms, decomposition of a mesh
domain into balanced subdomains with specified
degrees of intersections, construction and optimiza-
tion of computational algebra methods, special tools
for working with graph structures, etc.

In conclusion, it should be underlined that the
ongoing global transition from the simplest algorithms
to the most efficient ones leads to a considerable
increase in their logical complexity, so only active
intellectual innovations, which provide a real possibil-
ity of using integrated environments (which offer,
along with various toolkits, basic component modules
as building blocks), can accelerate the implementation
of the latter. Essentially, this implies the transforma-
tion of the craft-like approach to modeling into the
advanced, complex, expandable, adaptive, and tech-
nologically supported activity.

ACKNOWLEDGMENTS
This work was supported by the Russian Science

Foundation, project no. 14-07-0048.5.

REFERENCES
1. International Exascale Software Project (IESP).

http://www.exascale.org/iesp.
2. Knuth, D.E., Top down syntax analysis, Acta Inf., 1971,

vol. 1, no. 2, pp. 79–110.
3. Knuth, D., On the translation of languages from left to

right, in Information and Control, 1965, pp. 607–639.
4. Levine, J., Mason, T., and Brown, D., Lex & Yacc,

O’Reilly Media, 1992, 2nd ed.
5. Skopin, I.N., An approach to the construction of robust

systems of interacting processes, Parallel Programming:
Practical Aspects, Models, and Current Limitations, Tar-
kov, M.S., Ed., 2014.

6. OpenFOAM open source CFD toolbox. http://www.
openfoam.com.

7. Distributed and unified numerics environment
(DUNE). http://www.dune-project.org.

8. Il’in, V.P., Strategies and tactics of “beyond-the-
clouds” mathematical modeling, Trudy mezhdunarod-
noi konferencii PAVT 2014 (Proc. Int. Conf. PAVT
2014), Chelyabinsk: South Ural State Univ., 2014,
pp. 99–107.

9. Il'in, V.P. and Skopin, I.N., Computational program-
ming technologies, Program. Comput. Software, 2011,
vol. 37, no. 4, pp. 210–222.

10. Golubeva, L.A., Il’in, V.P., and Kozyrev, A.N., On
software technologies in geometric aspects of mathe-
matical modeling, Vestn. Novosib. Gos. Univ., Ser. Inf.
Tekhnol., 2012, vol. 10, no. 2, pp. 25–33.

11. Il’in, V.P., DELAUNAY: A technological mesh gener-
ation environment, Sib. Zh. Ind. Mat., 2013, vol. 16,
no. 2(54), pp. 83–97.

12. Butyugin, D.S. and Il’in, V.P., CHEBYSHEV: Princi-
ples of automation of algorithm construction in an inte-
grated environment for mesh approximations of initial
boundary value problems, Trudy mezhdunarodnoi kon-
ferencii PAVT'2014 (Proc. Int. Conf. PAVT 2014), Che-
lyabinsk: South Ural State Univ., 2014, pp. 42–50.

13. Butyugin, D.S., Gur’eva, Ya.L., Il’in, V.P., Perevo-
zkin, D.V., Petukhov, A.V., and Skopin, I.N., Func-
tionality and technologies of algebraic solvers in the
Krylov library, Vestn. Yuzhno-Ural. Gos. Univ., Ser.
Vychisl. Mat. Inf., 2013, vol. 2, no. 3, pp. 92–105.

14. Malyukh, V.N., Vvedenie v sovremennye SAPR (Intro-
duction to Modern CAD Systems), Moscow: DMK,
2010.

15. SALOME open source integration platform for numer-
ical simulation. http://www.salome-platform.org.

16. Il’in, V.P., Metody konechnykh raznostei i konechnykh
ob’’emov dlya ellipticheskikh uravnenii (Finite-Differ-
ence and Finite-Volume Methods for Elliptic Equa-
tions), Novosibirsk: Inst. Comput. Math. Math. Geo-
phys. Sib. Branch Russ. Acad. Sci., 2001.

17. Il'in, V.P., Metody i tekhnologii konechnykh elementov
(Finite-Element Methods and Technologies), Novosi-
birsk: Inst. Comput. Math. Math. Geophys. Sib.
Branch Russ. Acad. Sci., 2007.

18. Rogachev, S., Generalized model-view-controller.
http://rsdn.ru/article/patterns/generic-mvc.xml.

19. Kleppe, A., Software Language Engineering: Creating
Domain-Specific Language Using Metamodels, New
York: Addison–Wesley, 2008.

20. Oberg, R.J., Understanding and Programming COM+,
Prentice Hall, 1999.

21. Tel, G., Introduction to Distributed Algorithms, Cam-
bridge University Press, 2001, 2nd ed.

22. Common Object Request Broker Architecture
(CORBA). http://www.corba.org.

23. Common Component Architecture Forum. http://
www.cca-forum.org.

24. SPARSKIT: A basic toolkit for sparse matrix computa-
tions (version 2). http://www-users.cs.umn.edu/ ~saad
/software/SPARSKIT/index.html.

25. Malony, A., Shende, S., et al., Performance technology
for parallel and distributed component software. http:
//people.cs.uchicago.edu/ntrebon/docs/gridperf02.pdf.

16

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 1 2016

IL’IN, SKOPIN

26. Alexeev, Yu., Allan, B.A., et al., Component-based
software for high-performance scientific computing.
http://iopscience.iop.org/1742-6596/16/1/073/pdf/
1742-6596_16_1_073.pdf.

27. Chesbrough, H.W., Open Innovation: The New Impera-
tive for Creating and Profiting from Technology, Harvard
Business Press, 2006.

28. Babel high-performance language interoperability tool.
http://computation.llnl.gov/casc/components/index.html
#page=home.

29. Prantl, A., Imam, Sh., and Sarkar, V., Interfacing
Chapel with traditional HPC programming languages,

Proc. 4th Conf. Partitioned Global Address Space (PGAS)
Programming Model, New York, 2010.

30. Ershov, A.P. and Il’in, V.P., Software packages: A tech-
nology for solving applied problems, Preprint of Com-
puting Center, Siberian Branch, USSR Acad. Sci., Novo-
sibirsk, 1978, no. 121.

31. Butyugin, D.S. and Il’in, V.P., Solution of problems of
harmonic electromagnetic field simulation in regular-
ized and mixed formulations, Russ. J. Numer. Anal.
Math. Modell., 2014, vol. 29, no. 1, pp. 1–12.

Translated by Yu. Kornienko

