
Leonid Sokolinsky
Mikhail Zymbler (Eds.)

17th International Conference, PCT 2023
Saint Petersburg, Russia, March 28–30, 2023
Revised Selected Papers

Parallel Computational
Technologies

Communications in Computer and Information Science 1868

Communications
in Computer and Information Science 1868

Editorial Board Members
Joaquim Filipe , Polytechnic Institute of Setúbal, Setúbal, Portugal
Ashish Ghosh , Indian Statistical Institute, Kolkata, India
Raquel Oliveira Prates , Federal University of Minas Gerais (UFMG),
Belo Horizonte, Brazil
Lizhu Zhou, Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0003-1548-5576
https://orcid.org/0000-0002-7128-4974

Rationale
The CCIS series is devoted to the publication of proceedings of computer science con-
ferences. Its aim is to efficiently disseminate original research results in informatics
in printed and electronic form. While the focus is on publication of peer-reviewed full
papers presenting mature work, inclusion of reviewed short papers reporting on work in
progress is welcome, too. Besides globally relevant meetings with internationally repre-
sentative program committees guaranteeing a strict peer-reviewing and paper selection
process, conferences run by societies or of high regional or national relevance are also
considered for publication.

Topics
The topical scope of CCIS spans the entire spectrum of informatics ranging from foun-
dational topics in the theory of computing to information and communications science
and technology and a broad variety of interdisciplinary application fields.

Information for Volume Editors and Authors
Publication in CCIS is free of charge. No royalties are paid, however, we offer registered
conference participants temporary free access to the online version of the conference
proceedings on SpringerLink (http://link.springer.com) bymeans of an http referrer from
the conference website and/or a number of complimentary printed copies, as specified
in the official acceptance email of the event.

CCIS proceedings can be published in time for distribution at conferences or as post-
proceedings, and delivered in the form of printed books and/or electronically as USBs
and/or e-content licenses for accessing proceedings at SpringerLink. Furthermore, CCIS
proceedings are included in the CCIS electronic book series hosted in the SpringerLink
digital library at http://link.springer.com/bookseries/7899. Conferences publishing in
CCIS are allowed to use Online Conference Service (OCS) for managing the whole
proceedings lifecycle (from submission and reviewing to preparing for publication) free
of charge.

Publication process
The language of publication is exclusively English. Authors publishing in CCIS have
to sign the Springer CCIS copyright transfer form, however, they are free to use their
material published in CCIS for substantially changed, more elaborate subsequent publi-
cations elsewhere. For the preparation of the camera-ready papers/files, authors have to
strictly adhere to the Springer CCIS Authors’ Instructions and are strongly encouraged
to use the CCIS LaTeX style files or templates.

Abstracting/Indexing
CCIS is abstracted/indexed in DBLP, Google Scholar, EI-Compendex, Mathematical
Reviews, SCImago, Scopus. CCIS volumes are also submitted for the inclusion in ISI
Proceedings.

How to start
To start the evaluation of your proposal for inclusion in the CCIS series, please send an
e-mail to ccis@springer.com.

http://link.springer.com
http://link.springer.com/bookseries/7899
mailto:ccis@springer.com

Leonid Sokolinsky · Mikhail Zymbler
Editors

Parallel Computational
Technologies
17th International Conference, PCT 2023
Saint Petersburg, Russia, March 28–30, 2023
Revised Selected Papers

Editors
Leonid Sokolinsky
South Ural State University
Chelyabinsk, Russia

Mikhail Zymbler
South Ural State University
Chelyabinsk, Russia

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-031-38863-7 ISBN 978-3-031-38864-4 (eBook)
https://doi.org/10.1007/978-3-031-38864-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9997-3918
https://orcid.org/0000-0001-7491-8656
https://doi.org/10.1007/978-3-031-38864-4

Preface

This volume contains a selection of the papers presented at the 17th International Sci-
entific Conference on Parallel Computational Technologies, PCT 2023. The PCT 2023
conference was held in St. Petersburg, Russia, during March 28–30, 2023.

The PCT series of conferences aims at providing an opportunity to report and discuss
the results achieved by leading research groups in solving practical issues using super-
computer and neural network technologies. The scope of the PCT series of conferences
includes all aspects of the application of cloud, supercomputer, and neural network
technologies in science and technology such as applications, hardware and software,
specialized languages, and packages.

The PCT series is organized by the Supercomputing Consortium of Russian Uni-
versities and the Ministry of Science and Higher Education of the Russian Federation.
Originating in 2007 at the South Ural State University (Chelyabinsk, Russia), the PCT
series of conferences has now become one of the most prestigious Russian scientific
meetings on parallel programming, high-performance computing, andmachine learning.
PCT 2023 in St. Petersburg continued the series after Chelyabinsk (2007), St. Peters-
burg (2008), NizhnyNovgorod (2009), Ufa (2010),Moscow (2011), Novosibirsk (2012),
Chelyabinsk (2013), Rostov-on-Don (2014), Ekaterinburg (2015), Arkhangelsk (2016),
Kazan (2017), Rostov-on-Don (2018), Kaliningrad (2019), Perm (2020), Volgograd
(2021), and Dubna (2022).

Each paper submitted to the conference was scrupulously evaluated in a single-blind
manner by three reviewers based on relevance to the conference topics, scientific and
practical contribution, experimental evaluation of the results, and presentation quality.
The Program Committee of PCT selected the 25 best papers from a total of 71 to be
included in this CCIS proceedings volume.

We would like to thank the respected PCT 2023 platinum sponsor, RSC Group,
golden sponsor NORSI-TRANS, and track sponsor, Karma Group, for their continued
financial support of the PCT series of conferences.

Wewould like to express our gratitude to every individual who contributed to the suc-
cess of PCT 2023. Special thanks to the Program Committee members and the external
reviewers for evaluating papers submitted to the conference. Thanks also to the Organiz-
ing Committee members and all the colleagues involved in the conference organization
from ITMO University, South Ural State University (national research university), and
Moscow State University. We thank the participants of PCT 2023 for sharing their
research and presenting their achievements as well.

Finally, we thank Springer for publishing the proceedings of PCT 2023 in the
Communications in Computer and Information Science series.

June 2023 Leonid Sokolinsky
Mikhail Zymbler

Organization

Steering Committee

Berdyshev, V. I. Krasovskii Institute of Mathematics and
Mechanics, UrB RAS, Russia

Ershov, Yu. L. United Scientific Council on Mathematics and
Informatics, Russia

Minkin, V. I. South Federal University, Russia
Moiseev, E. I. Moscow State University, Russia
Savin, G. I. Joint Supercomputer Center, RAS, Russia
Sadovnichiy, V. A. Moscow State University, Russia
Chetverushkin, B. N. Keldysh Institute of Applied Mathematics, RAS,

Russia
Shokin, Yu. I. Institute of Computational Technologies, RAS,

Russia

Program Committee

Dongarra, J. (Co-chair) University of Tennessee, USA
Sokolinsky, L. B. (Co-chair) South Ural State University, Russia
Voevodin, Vl. V. (Co-chair) Moscow State University, Russia
Zymbler, M. L. (Academic

Secretary)
South Ural State University, Russia

Ablameyko, S. V. Belarusian State University, Belarus
Afanasiev, A. P. Institute for Systems Analysis, RAS, Russia
Akimova, E. N. Krasovskii Institute of Mathematics and

Mechanics, UrB RAS, Russia
Andrzejak, A. Heidelberg University, Germany
Balaji, P. Argonne National Laboratory, USA
Boldyrev, Yu. Ya. St. Petersburg Polytechnic University, Russia
Carretero, J. Carlos III University of Madrid, Spain
Gazizov, R. K. Ufa State Aviation Technical University, Russia
Glinsky, B. M. Institute of Computational Mathematics and

Mathematical Geophysics, SB RAS, Russia
Goryachev, V. D. Tver State Technical University, Russia
Il’in, V. P. Institute of Computational Mathematics and

Mathematical Geophysics, SB RAS, Russia
Kobayashi, H. Tohoku University, Japan

viii Organization

Kunkel, J. University of Hamburg, Germany
Kumar, S. South Ural State University, Russia
Labarta, J. Barcelona Supercomputing Center, Spain
Lastovetsky, A. University College Dublin, Ireland
Likhoded, N. A. Belarusian State University, Belarus
Ludwig, T. German Climate Computing Center, Germany
Mallmann, D. Jülich Supercomputing Centre, Germany
Malyshkin, V. E. Institute of Computational Mathematics and

Mathematical Geophysics, SB RAS, Russia
Michalewicz, M. A*STAR Computational Resource Centre,

Singapore
Modorsky, V. Ya. Perm Polytechnic University, Russia
Pan, C. S. Cloudflare, UK
Prodan, R. Alpen-Adria-Universität Klagenfurt, Austria
Radchenko, G. I. Silicon Austria Labs, Austria
Shamakina, A. V. HLRS High Performance Computing Center

Stuttgart, Germany
Shumyatsky, P. University of Brasilia, Brazil
Sithole, H. Centre for High Performance Computing,

South Africa
Starchenko, A. V. Tomsk State University, Russia
Sterling, T. Indiana University, USA
Sukhinov, A. I. Don State Technical University, Russia
Taufer, M. University of Delaware, USA
Tchernykh, A. CICESE Research Center, Mexico
Turlapov, V. E. Lobachevsky State University of Nizhny

Novgorod, Russia
Wyrzykowski, R. Czestochowa University of Technology, Poland
Yakobovskiy, M. V. Keldysh Institute of Applied Mathematics, RAS,

Russia
Yamazaki, Y. Federal University of Pelotas, Brazil

Organizing Committee

Bukhanovsky, A. V. (Chair) ITMO University, Russia
Klimova, A. S. (Deputy Chair) ITMO University, Russia
Khramova, A. V. (Secretary) ITMO University, Russia
Antonov, A. S. Moscow State University, Russia
Antonova, A. P. Moscow State University, Russia
Goglachev, A. I. South Ural State University, Russia
Kraeva, Ya. A. South Ural State University, Russia

Organization ix

Mamieva, D. G. ITMO University, Russia
Nikitenko, D. A. Moscow State University, Russia
Nizomutdinov, B. A. ITMO University, Russia
Polyanichko, A. V. ITMO University, Russia
Sidorov, I. Yu. Moscow State University, Russia
Sobolev, S. I. Moscow State University, Russia
Voevodin, Vad. V. Moscow State University, Russia
Yurtin, A. A. South Ural State University, Russia
Zymbler, M. L. South Ural State University, Russia

Contents

High Performance Architectures, Tools and Technologies

Evaluating the Impact of MPI Network Sharing on HPC Applications 3
Anna Khudoleeva, Konstantin Stefanov, and Vadim Voevodin

Parallel Data Preprocessing Library for Neural Network Training 19
Dmitry Buryak, Vadim Vakhrushev, Mikhail Shubin, Nina Popova,
Kamil Khamitov, and Oleg Ivanov

An Efficient LRnLA Algorithm and Data Structure for Manycore
and Multicore Computers with Hierarchical Cache . 33

Vadim Levchenko and Anastasia Perepelkina

Parallel Numerical Algorithms

Implementation of a Fuzzy Inference Method with Nonsingleton
Fuzzification Based on CUDA and GPGPU Technologies 51

Sergey Karatach and Vasiliy Sinuk

Solving the Three-Dimensional Faddeev–Merkuriev Equations via Spline
Collocation and Tensor Product Preconditioning . 63

V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky, and S. L. Yakovlev

Monitoring and Forecasting Crop Yields . 78
Tatiana Makarovskikh, Anatoly Panyukov, and Mostafa Abotaleb

On Parallel Multigrid Methods for Solving Systems of Linear Algebraic
Equations . 93

Maxim Batalov, Yana Gurieva, Valery Ilyin, and Artyom Petukhov

Optimized Relativistic Code for Massive Parallel Systems 110
Elena N. Akimova, Vladimir E. Misilov, Igor M. Kulikov,
and Igor G. Chernykh

Using Parallel SAT Solving to Study Hard Combinatorial Problems
Associated with Boolean Circuits . 123

Victor Kondratiev, Stepan Kochemazov, and Alexander Semenov

xii Contents

Parallelization of the Generalized Multimode Nonlinear Schrödinger
Equation Solver: A Performance Analysis . 137

Evgeniy Kazakov, Jiexing Gao, Pavel Anisimov,
and Viacheslav Zemlyakov

On a Template Programming Approach for Shared Memory Parallel
Architectures with Applications to the Fully Implicit Stokes Solver 152

N. M. Evstigneev and O. I. Ryabkov

Parallel Computing in the Tikhonov Regularization Method for Solving
the Inverse Problem of Chemical Kinetics . 167

Konstantin Barkalov, Marina Usova, Leniza Enikeeva,
Dmitry Dubovtsev, and Irek Gubaydullin

Parallel Implementation of theTime-ReversalMirrorMethod forRetrieving
the Position and Type of a Seismic Source from Observational Data 182

Anastasia Galaktionova and Galina Reshetova

Parallel Implementation of Fast Algorithms in the Vortex Particle Method 197
Alexandra Kolganova and Ilia Marchevsky

Supercomputer Simulation

Implementation of an Asymptotically Compact Algorithm for GPU
Simulation of an Acoustic Equation . 215

Andrey Zakirov and Anastasia Perepelkina

Quantum-Chemical Simulation of High-Energy Azoxy Compounds 231
Vadim Volokhov, Ivan Akostelov, Vladimir Parakhin, Elena Amosova,
and David Lempert

Parallel Algorithms for Simulation of the Suspension Transport in Coastal
Systems Based on the Explicit-Implicit and Splitting Schemes 244

A. I. Sukhinov, A. E. Chistyakov, V. V. Sidoryakina, I. Yu. Kuznetsova,
A. M. Atayan, and M. V. Porksheyan

Parallel Numerical Implementation of Three-Dimensional Mathematical
Models of Hydrodynamics Taking into Account Vertical Turbulent
Exchange . 259

Elena A. Protsenko, Alexander I. Sukhinov, and Sofya V. Protsenko

Comparison of Two Methods for Modeling the Dynamics of Gas Flows
in a Protoplanetary Disk . 269

Vitaliy Grigoryev and Tatiana Demidova

Contents xiii

Computer Modeling of Metal Nanoclusters and Substrate Interaction
at Mesoscopic Level . 285

Nikita Tarasov, Viktoriia Podryga, Sergey Polyakov,
and Vladimir Usachev

Supercomputer Simulation of Plasma Flow in the Diamagnetic Mode
of Open Magnetic Systems . 299

A. Efimova, M. Boronina, K. Vshivkov, and G. Dudnikova

Computer Simulation of the Three-Dimensional Synthesis of Phase
Images of Nanometer Scale Objects . 311

Gennady Levin, Gennady Vishnyakov, and Yaroslaw Ilyushin

A Parallel Algorithm for a Two-Phase Gas-Solid-Particle Model
with Chemical Reactions and Laser Radiation . 323

Elizaveta Peskova

MPI-Based Computational Algorithm for Modeling a Cylindrical Catalyst
Grain During Oxidative Regeneration . 336

Olga S. Yazovtseva, Irek M. Gubaydullin, Elizaveta E. Peskova,
Arina A. Usmanova, and Andrey N. Zagoruiko

Research of the Influence of the Thermal State of an Air-Intake Model
on In-Flight Icing Conditions . 351

Anton O. Mikryukov, Vladimir Ya. Modorskii, Stanislav L. Kalyulin,
and Danila S. Maksimov

Author Index . 365

High Performance Architectures, Tools
and Technologies

Evaluating the Impact of MPI Network
Sharing on HPC Applications

Anna Khudoleeva(B) , Konstantin Stefanov , and Vadim Voevodin

Lomonosov Moscow State University, Moscow, Russian Federation
khudoleeva.anna98@gmail.com, {cstef,vadim}@parallel.ru

Abstract. In any modern supercomputer system, a so-called noise
inevitably occurs. It can be defined as an external influence of the soft-
ware and hardware environment leading to a change in the execution time
or other properties of applications running on a supercomputer. Although
the noise can noticeably affect the performance of HPC applications in
some cases, neither the nature of its occurrence nor the degree of its influ-
ence have been investigated in detail. In this paper, we study how much
a certain type of noise, caused by sharing of MPI network resources, can
impact the performance of parallel programs. To do this, we conducted
a series of experiments using synthetic noise on the Lomonosov-2 super-
computer to determine to what extent such noise can slow down the
execution of widely used benchmarks and computing cores.

Keywords: Supercomputer · Noise · Noise influence · MPI ·
Performance analysis

1 Introduction

A supercomputer is an extremely complex system in which a huge number of
different software and hardware components work and interact simultaneously.
The supercomputer environment is not static but changes over time, which leads
to changes in execution time, performance, and other properties of identical
launches of user applications. “Noise” is often the cause of such changes. There
is no unambiguous definition of the concept of noise; we define it as the influence
of the software and hardware environment that leads to a change (most often
slowdown) in the execution time or other properties of applications running on
a supercomputer.

At the moment, the influence of noise on HPC applications is rather poorly
studied. It has been shown, though, that this influence can be very significant
in some cases [8,10,15]. For this reason, it is exceptionally important to study
how significant the impact of noise on different applications can be.

In this work, which is part of the ExtraNoise project [14], aimed at disclos-
ing and tackling key questions of system-noise influence on HPC applications,
we focus on a particular type of noise associated with sharing a communica-
tion network. We consider situations when some external program (another user
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-38864-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_1&domain=pdf
http://orcid.org/0000-0001-7542-5167
http://orcid.org/0000-0002-0930-2713
http://orcid.org/0000-0003-1897-1828
https://doi.org/10.1007/978-3-031-38864-4_1

4 A. Khudoleeva et al.

application or some system process) interferes with the workflow of a user par-
allel application since it occupies a shared resource: the communication network
for transferring MPI messages. We have studied two different situations: 1) noise
is present on the same computing node where the parallel application is running,
and 2) noise is present on other computing nodes. Our task was to find out how
much that noise can slow down the execution of various widely used applica-
tions and benchmarks. For this purpose, we manually added synthetic noise to
interfere with the analyzed programs.

The main contribution of this paper is the study and description of the impact
of MPI-related noise on the execution time of different parallel applications. The
research showed which applications are more or less affected by this noise and
how significant such an influence can generally be. The experiments were carried
out on the Lomonosov-2 supercomputer [20], but the conclusions regarding the
influence on applications are valid for other systems.

The paper is structured as follows. Section 2 outlines existing studies related
to the supercomputer noise topic. We provide a thorough description of the ana-
lyzed tests and noise generators in Sect. 3. Section 4 is devoted to the descrip-
tion and analysis of the conducted experiments. Section 5 summarizes the results
obtained.

2 Related Work

Several studies have dealt with the influence of noise on the behavior of super-
computer applications. However, we cannot say that the topic has received
enough consideration. Even more, there are only a few studies investigating
what the source of the noise is. Those papers pay the most attention to the OS
noise. For example, papers [3,5–7,11,18] are devoted to the study of specific OS
noise sources and methods to exclude them. Other sources of noise have been
studied to a much lesser extent. We can single out the papers [16,17], in which
the mutual influence of applications simultaneously running on different nodes
of a supercomputer is considered. This influence is caused by the parallel use of
any shared resource as the file system or communication network. These papers
describe an approach that allows assessing the impact of applications on each
other via dividing them into segments, which are then analyzed and clustered
based on system monitoring data.

Several studies do not focus on the source of noise. These include, for exam-
ple, the paper [15], considered one of the first works devoted to this topic. The
authors of that work investigate the causes of performance loss on a particular
supercomputer and looked for ways to reduce the detected noise. The paper [13]
explores the possibility of noise reduction using SMT technology. The effect
of noise on the execution of collective MPI operations is also studied (see, for
instance, [2,9]). The so-called “idle waves” are considered in the paper [2]. These
waves arise because different processes in a parallel program are idle while wait-
ing for slower processes (slowed down by the influence of noise), and with each
next collective operation, this effect can accumulate or decrease. The changes in

Evaluating the Impact of MPI Network Sharing on HPC Applications 5

the behavior of applications caused by the noise from the monitoring system as
a result of collecting data from performance monitoring counters in multiplexing
mode are considered in [21].

One of the most extensive studies on noise is described in [10]. The authors
researched in detail the impact of noise on application performance, considered
many works on this topic, and proposed a model and its implementation to sim-
ulate the noise impact, thereby helping to evaluate the behavior and scalability
of applications in a noisy environment.

3 Description of Noise Generators and Tests

The source of MPI-related noise can be another parallel application or system
process executed simultaneously and using the same communication resources as
the analyzed user application. We will hereinafter refer to a parallel program that
simulates noise as a noise generator and to a parallel program that is analyzed
under noise influence as a test. We assume that such noise (simulated by noise
generators in our case) can have a significant impact, so we want to study it in
detail.

3.1 Tests

We chose the following widely used benchmarks and typical computing cores to
study noise effect:

– MPI implementation of NPB benchmarks [4] (npb-bt, npb-cg, npb-ft,
npb-is, npb-lu, npb-mg, npb-sp).

– OSU benchmarks osu alltoall and osu multi lat. These tests operate with
long messages.

– Tests based on MPI Barrier and MPI Allreduce (barrier, allreduce).
These simple tests, developed at MSU Research Computing Center, are used
as the most noise-sensitive benchmarks. Their principal part is a loop with
many corresponding collective operations. The allreduce test operates with
short messages.

The NPB tests were chosen to evaluate the noise impact on real-life applica-
tions. With the OSU tests, we intended to assess the effect on widely used MPI
benchmarks. In our opinion, barrier and allreduce are the most susceptible
to the influence of the studied noise.

3.2 Test and Noise Layout

Figure 1 depicts the noise generator and test layout cases on a supercomputer.
Some of the parameters of noise generators, such as the number of nodes or
the number of processes per node, are specific to each platform. The research
was carried out on the computing nodes of the Lomonosov-2 supercomputer.
Each is equipped with one Intel Xeon E5-2697 processor, featuring 14 physical

6 A. Khudoleeva et al.

cores (plus hyper-threading, for a total of 28 logical cores). Eight computing
nodes are connected through nonblocking FDR InfiniBand switches, linked in a
flattened butterfly topology [12]. Although the layout is specific to our target
HPC architecture, we present a generalized description of noise options that can
be extended to other platforms.

Fig. 1. Different test and noise generator layouts on a supercomputer

The following four cases of the noise generator and test mapping on comput-
ing nodes are studied.

Case 1: the test and the noise generator use the same supercomputer node. This
case corresponds to the real-life situation of the nonexclusive launch of user
applications on one node (allowed at some supercomputers) or system services
actively using the communication network (an abnormal situation that needs to
be detected). In this case, we launch the noise generator and the test application
on two nodes, one of which is shared between the two programs (Fig. 1a). Both
programs send MPI data to the shared node or receive MPI data from it. Shared
MPI-related resources in this case are the network card on the node B and one
communication link between this node and a network switch.

Cases 2–4: the test and the noise generator run on separate nodes. Applications
on different computing nodes can have a noticeable effect on each other due to
competition for a shared resource: the communication network. In this case, we
take into account the network topology since different mappings of applications
can affect the impact of noise. We study three variations of noise when separate
nodes are used:

Evaluating the Impact of MPI Network Sharing on HPC Applications 7

– The nodes are connected to one switch (Fig. 1(b)). We consider the situation
when the test involves two nodes and the generator runs on the remaining
nodes connected to the same switch, i.e., on six nodes in the case of the
Lomonosov-2 supercomputer. Noise generator processes do not communicate
within nodes, so messages are sent between nodes only. This allows us to
study whether there is a way to load a switch with enough data transfer to
affect the performance during the test.

– The nodes are divided into two equal groups. The nodes in one group are
connected to one switch. Adjacent switches are used (Fig. 1(c)). The test runs
on two nodes; each node is connected to its own switch. The noise generator
uses 14 nodes; seven of them are connected to its own switch. The generator
sends messages from nodes of the first switch to nodes of the second switch
only. Here we study the effect of the high load on the communication link
between adjacent switches.

– Same as in the previous case, but switches are not adjacent (Fig. 1(d)). This
option is introduced to study whether noise influence and load on shared
resources change when applications run on more distant nodes.

3.3 Selection of Noise Generators

We intend to measure the performance of test applications in the presence of
the heaviest possible load on the communication network. Therefore we want to
choose a noise generator that creates the most interference in it for each case of
noise layout. Usually, two main characteristics are used to describe communica-
tion networks: throughput and latency. Throughput is important when sending
large amounts of data. Latency, on the other hand, plays a role in the transmis-
sion of small messages. Thus we select two generators: one uses the maximum
bandwidth (further referred to as BW); the other one produces the maximum
number of MPI packets per second (MR). We conducted a series of experiments
to choose generators that meet the requirements for each case of noise place-
ment and stress the communication network the most. Below we point out the
generators chosen in each case. Noise generators are implemented via MPI OSU
benchmarks [1].

Test and Noise Share One Node. As said before, we want two types of noise
generators: one with maximum BW and one with maximum MR. Moreover, since
the direction of data transfer in the noise generator can be essential, we consider
the following variants: the generator sends messages from node B to node C, from
node C to node B, or in both directions (as shown in Fig. 1a). Thus we need six
generators in total. The MPI OSU benchmarks listed below were heuristically
chosen as the most suitable.

– Noise with maximum BW:
• The osu bw benchmark is used for unidirectional data transfer. Further,

we refer to it as bw send when sending data from the shared node and
bw receive when sending data to the shared node. This benchmark shows

8 A. Khudoleeva et al.

a bandwidth of 6.5 GB/s, a very heavy load, amounting to 95% of the
theoretical peak throughput of 6.8 GB/s.

• The osu put bibw benchmark is used for bidirectional data transfer (fur-
ther, bw bidir).

All BW benchmarks are used with long messages of 4 MB.
– Noise with maximum MR:

• The osu mbw mr benchmark is used for unidirectional data transfer. Fur-
ther, we refer to it as mr send when sending data from node B to C and
mr receive when sending data from node C to B.

• The osu put bibw benchmark is used for bidirectional data transfer (fur-
ther, mr bidir).

All MR benchmarks are used with short messages of 1 byte.

One-directional noise generators are based on OSU benchmarks that call stan-
dard point-to-point operations MPI Send/MPI Recv. Bidirectional generators use
one-sided operations MPI Put/MPI Get. Although there is a minor difference, we
can make a qualitative comparison of these two types of noise. We consider noise
generators with different numbers of processes per node, from 1 to 14.

Test and Noise Run on Separate Nodes. In this case, the same OSU
benchmarks were used to generate maximum BW and MR. The direction of
data transfer also plays a role; however, this depends on whether one or more
switches are involved. This point is clarified further on.

The nodes are connected to one switch (see Fig. 1b). Lomonosov-2 computing
nodes are connected to nonblocking FDR InfiniBand switches. One switch unites
eight nodes. As it was mentioned before, we want to study the test performance
in the presence of maximum noise, which means the load on the switch should
have the biggest impact. Thus we place noise on the maximum available number
of nodes, which is six since at least two nodes are needed for the test. Generating
load on six separate nodes is a nontrivial task since there are many ways to do
it. We decided to use the following noise generators in this case:

– All-to-all noise generator. Fourteen copies of the OSU benchmark
osu alltoall run on all six nodes allocated for noise, no communication
happens within a node. We assume that the maximum load is created by
using the maximum number of processes per node, so 14 copies of the bench-
mark are used.

– Noise generator via point-to-point operations. Each node sends messages to
the remaining five nodes and receives messages from them. We implement
two options for this generator using two different OSU benchmarks.

– Six noise nodes are divided into three pairs. The messages are sent only within
each pair of nodes. Fourteen copies of the osu bw benchmark are used on each
pair of nodes.

It should be noted that the noise direction does not matter in this case. Thus
a total of eight different generators were used.

Evaluating the Impact of MPI Network Sharing on HPC Applications 9

The nodes are connected to two switches (see Figs. 1(c) and 1(d)). We consider
the same noise generators when nodes are connected to adjacent or nonadjacent
switches. The direction of noise data transfer between nodes matters in this
case since it affects the operation of the communication links between switches.
Therefore, three noise generators were considered: 1) noise data is transmitted in
the same direction as the test; 2) noise is transmitted in the opposite direction; 3)
both directions are used for noise. The first two variants were implemented using
osu bw, and the last one using osu put bibw. The evaluation showed that the
bidirectional noise generator has the maximum impact; the influence of the same-
direction generator is slightly less, and the test slowdown is insignificant when the
generator sends packets in the opposite direction. Thus, only the bidirectional
noise generator was further considered.

4 Experimental Results

As mentioned above, all the experiments were conducted on the Lomonosov-2
supercomputer. All jobs were submitted using the Slurm resource manager in
the test partition. We used the same computing nodes in each set of experi-
ments. We also set affinity to cores for both test and generator processes. All the
experiments in all four cases of communication network noise were conducted in
a similar vein. The same set of tests described in Sect. 3.1 was used for studying
each type of noise.

We adhered to the following experiment plan. First, we measured the time of
“clean” test runs (without noise) and then compared the value obtained to the
time of test runs affected by noise. Each experiment was repeated at least ten
times. Data outliers showing abnormal execution times were manually excluded
from the dataset. We resorted to 95% confidence intervals (CI) to determine
whether noise influence is statistically significant: if 1) the mean time for noisy
runs is greater than the mean time for clean runs, and 2) CI for runs with noise
does not overlap with CI for runs without noise, then the noise is considered
statistically significant.

To interpret the results more thoroughly, we need to understand how these
tests use the communicating network. This is quite easy for OSU benchmarks
and also for barrier and allreduce but not for NPB benchmarks. Thus we
performed the profiling of MPI usage in NPB employing the mpiP tool [19].
According to mpiP, npb-ft uses primarily MPI Alltoall, and npb-is also uses
MPI Allreduce. The other tests mainly use point-to-point operations. All tests
operate with long messages only.

4.1 Case 1: One Shared Node

The results of the experiments in Case 1 of noise mapping (described in Sect. 3.2)
are illustrated in Tables 1 and 2. If the noise is statistically significant, we report
the normalized mean difference (mean diff, %) between noisy and clean execution
times. Otherwise, if the noise is negligible, we omit the mean difference and

10 A. Khudoleeva et al.

insert a dash in the corresponding table cells. Table 1 contains the results of
barrier, allreduce, and OSU tests. Table 2 presents the results of NPB tests.
We launched the tests and generators on equal numbers of processes per node
(pr./node): 1, 4, 7, and 14 for barrier, allreduce, and OSU tests; 1, 2, 4, and
8 for NPB tests (as most of them operate only on a number of processes equal to
a power of 2). Different physical cores were used for test and noise in all cases,
except for 8 and 14 pr./node since there are not enough physical cores in these
cases, and it is necessary to use the logical cores available under hyper-threading.

Table 1. Case 1: noise on the shared node. Results of barrier, allreduce, and OSU
tests

test procs.

per node

time, s normalized mean diff, %

no noise noise types

bw send bw receive bw bidir mr send mr receive mr bidir

barrier 1 1.53 216.46 197.70 377.83 – 144.21 1.90

4 2.65 141.01 97.42 236.93 1.90 3442.47 3.85

7 2.68 170.52 107.48 285.80 16.98 5933.66 64.52

14 2.49 445.59 115.69 403.42 411.25 6142.20 154.12

allreduce 1 2.01 138.98 136.52 285.31 – 204.02 1.75

4 3.18 114.80 94.31 185.54 1.72 3811.73 3.57

7 3.20 134.83 95.90 190.42 12.21 5737.78 51.58

14 2.72 208.03 100.06 271.42 367.96 5863.35 123.78

osu

alltoall

1 21.44 64.45 68.00 87.73 – 103.20 2.32

4 19.20 137.33 78.23 145.49 1.39 1555.78 13.24

7 23.39 146.40 76.54 130.70 5.90 2402.32 23.92

14 27.61 161.60 85.49 142.31 8.88 982.85 59.30

osu

multi lat

1 27.44 53.75 54.24 106.63 0.43 44.55 6.67

4 20.69 52.65 51.66 102.34 0.83 1035.47 31.64

7 26.25 56.52 51.87 101.95 2.14 1390.14 47.00

14 27.93 55.55 49.90 93.28 7.75 1253.10 60.66

Noise influence on barrier, allreduce, and OSU tests. Table 1. We can see
that mr receive has a considerable influence on all the tests, resulting in a
slowdown by a factor of up to 60 (!). It is strange since this noise is generated
using the same program as in mr send but with a different mapping of MPI
ranks to nodes, so that messages flow in the opposite direction. The reason is
presumably as follows. The MPI eager protocol is used when transferring small
messages (1 byte is sent in each MPI message in the case of mr receive), and
the overheads of the eager protocol are significantly different when sending and
when receiving messages. The MPI message is sent only on the sender side,
but its processing can be postponed on the receiver side if there are too many
messages, so the message has to be saved to the buffer, which should be allocated
in advance. The results show that MPI overheads can be vastly different in these
two seemingly alike cases. We tested several OpenMPI parameters and managed
to reduce the mr receive noise to the level of mr send by changing various

Evaluating the Impact of MPI Network Sharing on HPC Applications 11

parameters (for instance, by enabling RDMA and increasing the buffer size).
However, everywhere below, we give the results without parameter optimization
to demonstrate the impact of this effect.

The following interesting points can also be highlighted in connection with
the results in Table 1:

– MR noise (except the abnormal case of mr receive) has a lesser impact than
BW noise. It means that applications that occupy the entire bandwidth are
noisier than programs sending packets at the maximum rate.

– MR influence grows as the number of processes per node increases. The
impact of mr send on barrier and allreduce exceptionally grows when
hyper-threading is on (case of 14 pr./node) and even exceeds the mr bidir
noise.

– BW noise, unlike MR noise, does not scale with the number of processes per
node. Probably, BW generators put a load heavy enough on the bottleneck
even when running on 1 pr./node.

– We can only provide a qualitative comparison of unidirectional and bidirec-
tional noises since OSU noise generators are based on different MPI opera-
tions (see 3.3). As expected, the experiments proved that bidirectional noise
has a higher impact than unidirectional message passing.

– osu alltoall produces a less pronounced slowdown than tests with other
collective operations, presumably due to the use of long messages in this test.

We also showed that barrier and allreduce are more exposed to all types of
noise than other tests as they use the communication network more intensively.
Interestingly, even though barrier does not send any user MPI data, it is more
exposed to noise influence than allreduce.

Noise influence on NPB tests. Table 2. As expected, the impact of noise on NPB
tests is less significant than in the previously shown tests. The following three
results are the same as for the previously discussed test group:

– MR noise is less than BW noise. Moreover, MR noise is often negligible in
this case.

– Bidirectional noise is stronger than the unidirectional load (except for npb-is
and the abnormal case of mr receive explained earlier).

– MR noise increases when hyper-threading is used (also true for BW noise
in this case). We can see that the noise impact grows significantly if hyper-
threading is on, even though only two hyper-threading logical cores are used
(the test and noise occupy 16 cores, although the processor has 14 physi-
cal cores). However, this impact can partially be caused by the computa-
tional part of NPB tests, which is also somewhat slowed down under hyper-
threading.

12 A. Khudoleeva et al.

Table 2. Case 1: noise on the shared node. Results of NPB tests

test procs.

per node

time, s normalized mean diff, %

no noise noise types

bw send bw receive bw bidir mr send mr receive mr bidir

MG 1 19.16 – – – – – –

2 10.50 – – 4.94 – 5.60 –

4 5.19 8.25 8.49 13.56 1.47 16.89 2.28

8 3.91 17.90 21.38 33.64 19.41 53.46 19.71

CG 1 142.03 1.95 – 5.59 – – –

2 74.00 2.50 3.15 5.96 – 2.11 –

4 31.52 – – – – 11.80 –

8 18.12 22.09 15.95 23.53 16.31 62.63 30.97

FT 1 96.67 – – – – – –

2 50.32 3.52 – 4.77 – 10.58 –

4 26.55 11.48 9.03 13.29 2.05 117.58 2.87

8 16.13 19.70 18.40 26.38 13.53 299.28 23.88

IS 1 3.49 18.52 15.12 11.04 – – –

2 47.77 12.59 9.78 12.99 – 26.60 –

4 29.11 10.67 8.64 8.81 – 102.65 –

8 18.09 29.69 14.80 25.00 – 602.83 6.33

LU 1 254.23 – – – – – –

2 129.45 4.36 4.70 4.89 3.63 3.79 4.31

4 74.38 2.93 3.79 5.63 2.03 4.28 2.36

8 43.48 27.06 28.10 33.97 29.15 34.51 31.26

BT 2 207.46 4.07 4.27 4.92 3.67 – –

8 65.58 40.07 41.58 49.44 46.06 57.87 45.91

SP 2 161.60 3.77 4.51 7.66 2.23 4.11 2.10

8 65.27 12.14 18.83 28.16 12.07 22.79 14.06

Note that the abnormal slowdown caused by mr receive is most significant
for npb-is and npb-ft, that is, the only NPB tests using MPI collective opera-
tions. We can also observe that the slowdown of tests does not directly correlate
with the percent of the time the tests perform MPI operations. For instance,
according to the mpiP profiling, npb-bt spends 11% of runtime in MPI on 8
pr./node, while npb-mg 32%, but the slowdown of the first is noticeably more
pronounced. This indicates that, apart from other reasons, the impact of noise
depends on peculiarities in the interaction with the communication network of
each particular application, e.g., on the frequency of MPI calls.

4.2 Case 2: One Shared Switch

Here we consider Case 2, when the test and noise generators are launched on
nodes connected to one InfiniBand switch (see 3.2). As we already stated, the
switch is nonblocking. It should manage any load without slowing down, but we
wanted to find out whether this is true in practice. We conducted the exper-
iments using the two tests most sensible to the noise, namely, barrier and

Evaluating the Impact of MPI Network Sharing on HPC Applications 13

osu bw with long messages. We used 14 pr./node and tried out eight noise gen-
erators (see Sect. 3.3).

The noise from all eight generators, both BW and MR, proved insignificant in
all cases. We concluded that parallel applications do not affect each other when
running on nodes connected to one switch since the switch handles all the load
and cannot be a bottleneck when using a shared MPI communication network.

4.3 Case 3: Two Adjacent Switches

Tables 3 and 4 contain the results of the experiments in Case 3.2. We studied
six noise-generator configurations: both BW and MR noise on 1, 4, and 7 nodes
per switch.

Noise influence on barrier, allreduce, and OSU tests. Table 3. In this case, the
tests were launched on two nodes, one node per switch. The results of the experi-
ments show that noise on separate nodes can slow down the execution by a factor
of as much as 21. Here, unlike the case of a shared node, MR noise has a more sig-
nificant impact than BW noise. The reason is supposedly that processing a large
number of packets, in case of congestion in the link between InfiniBand switches,
has a more significant impact on the switches than link bandwidth exhaustion.
We noticed that the slowdown in the tests is proportional to the number of
nodes with noise, which points to a linear growth of overheads. Tests with col-
lective operations suffer from additional load more than the osu multi lat test,
which is based on MPI point-to-point operations, although the slowdown of the
last is still significant. As in the case of a shared node (see Table 1), barrier
performance deteriorates the most. At the same time, osu alltoall is less influ-
enced by noise than other collective operations. A possible explanation is that
the ratio of communications between nodes connected to one switch is higher for
MPI Alltoall than for other collective operations, as a result of the difference
in difficulty of the implemented MPI algorithms.

Table 3. Case 3: noise on nodes connected with adjacent switches. Results of barrier,
allreduce, and OSU tests

test 1
node per switch

time, s mean diff, %

no noise noise type

BW MR

noise nodes per switch noise nodes per switch

7 4 1 7 4 1

barrier 2.65 1573.81 1098.00 194.55 2146.96 1097.99 173.71

allreduce 2.65 1428.79 824.11 177.21 1966.45 1011.73 144.41

osu alltoall, short msgs 10.90 778.67 443.06 93.51 1076.29 571.03 90.21

osu multi lat 35.65 747.35 433.15 106.67 944.84 519.24 121.71

14 A. Khudoleeva et al.

Noise influence on NPB tests. Table 4. NPB tests were launched on the following
configurations:

– With different numbers of processes and nodes: 2 nodes (1 per switch), 16
processes in total; or 8 nodes (4 per switch), 64 processes in total.

– Using two options for the distribution of processes per node: balanced (bl) or
nonbalanced (nb). In the balanced configuration, 8 pr./node are always used;
in the nonbalanced, the maximum number of processes (14) is launched on
the nodes of one switch, and the rest (2) are launched on the nodes of the
other switch.

Table 4. Case 3: noise on nodes connected with adjacent switches. Results of NPB
tests with a balanced distribution of processes

number of
nodes with
test

test time, s mean diff, %

no noise noise type

BW MR

noise nodes per switch noise nodes per switch

7 4 1 7 4 1

2 nodes,
1 per switch
16 processes

MG 3.91 10.14 5.50 1.04 13.98 6.42 1.50

CG 17.28 14.16 7.33 1.71 19.46 8.75 2.24

FT 16.09 73.12 41.58 10.34 102.07 47.54 11.40

IS 17.18 135.67 76.63 21.17 186.64 87.72 20.16

LU 43.56 1.27 – – 2.24 0.72 –

BT 65.59 2.64 0.87 – 3.73 1.34 –

SP 65.53 4.47 2.46 0.42 5.94 2.72 0.51

8 nodes,
4 per switch
64 processes

MG 1.05 6.43 – 7.60 –

CG 3.14 29.92 8.08 33.38 8.32

FT 5.41 55.48 13.46 66.91 15.24

IS 9.41 62.33 15.49 78.78 17.62

LU 11.94 – – – –

BT 16.07 – – 4.43 –

SP 13.29 11.89 2.05 15.99 2.40

In Table 4, we see the results of bl runs. The NPB slowdown is again sig-
nificantly less than that of tests shown in Table 3. NPB is more sensitive to
noise when more nodes are used since more transfers flow through the shared
link between the switches. Noise on more nodes is more noticeable for the same
reason. The measurements of npb-is and npb-ft tests are outstanding; these
tests show the greatest slowdown since they are the only NPB tests using MPI
collective operations. It can also be noted that the performance of npb-is with
MPI Allreduce deteriorates more than that of npb-ft with MPI Alltoall. Such

Evaluating the Impact of MPI Network Sharing on HPC Applications 15

relation corresponds to the results shown in Table 3: allreduce slowdown is
greater than alltoall slowdown. Other NPB tests are less sensitive to noise,
with npb-lu and npb-bt not changing at all.

We found out that the influence of noise on nb runs is less than on bl runs.
The noise is not detected for almost all nb tests with point-to-point MPI oper-
ations on two nodes. We detected the mean difference for npb-is and npb-ft
(tests with collective operations), but it was smaller by a factor of three to four.
It is generally the same for runs on eight nodes. We explain this result by the
fact that more communication happens within processes on one node in nb runs,
which means that fewer data are transferred between switches. However, we
should mention that the “clean” time of bl NPB runs is less than that of nb
runs. Thus, on the one hand, launching applications with a balanced distribu-
tion of processes is optimal compared to the nonbalanced mapping of processes.
On the other hand, the noise impact on the performance of tests is less if done
the second way. For example, in the presence of noise, nonbalanced variants of
npb-is and npb-ft run faster than their balanced counterparts, while it is the
opposite when no noise is introduced.

4.4 Case 4: Two Nonadjacent Switches

All experiments in Case 3.2 were conducted in the same manner as in Case 3 but
on different sets of nodes. Half of the nodes remained the same; the other nodes
were from a different rack of the Lomonosov-2 supercomputer. It was estimated
that the route between switches runs through two additional switches, meaning
that an MPI message has to traverse through five network links and four switches
in total.

The experiment measurements showed that Case 4 is very similar to Case 3.
Therefore all Case 3 results are also valid when several switches are used. The
only difference is the slowdown of barrier, allreduce, and OSU tests, which is
noticeably less in this case. This is apparently caused by the following reasons:
1) the work with MPI is organized less efficiently since sending the messages
takes longer because of the greater distance between nodes, which increases the
baseline time of “clean” runs; 2) in Case 4 (unlike the case of adjacent switches),
the additional load caused by the noise can be balanced across several switches.
These two reasons lead to a lesser noise impact.

According to the obtained results, NPB tests showed exactly the same per-
formance as in Case 3. Thus it does not matter whether NPB tests are launched
on close or distant nodes.

5 Conclusions

In this paper, we presented the results of extensive testing of noise influence
on HPC applications. We focused on MPI-related noise, which can happen if
some external program (another user application or some system process) inter-
feres with the workflow of a user parallel application since it occupies a shared

16 A. Khudoleeva et al.

resource: the communication network for transferring MPI messages. We studied
the maximum possible noise in terms of bandwidth and MPI message rate and
measured the slowdown for a set of well-known tests and benchmarks. All exper-
iments were conducted on the Lomonosov-2 supercomputer, but the conclusions
regarding the influence on applications are valid for other systems.

We found out that competition for the MPI communication network within
a computing node can significantly affect the execution time of user applica-
tions. For example, we showed that performance can be severely degraded if
a lot of short messages are received on a node. Also, we showed that high-
bandwidth noise has a greater impact than high-message-rate noise, and it has
more influence on MPI collective operations (especially on MPI Barrier) than
on point-to-point operations. NPB tests were less affected by the noise, but their
slowdown can also be significant and noticeable, especially when using collective
operations.

We confirmed the assumption that parallel programs do not interfere with
each other when running on nodes connected to one switch, i.e., the tested
InfiniBand switch can handle such a load. However, if the parallel program
uses computing nodes connected to two adjacent switches instead, then the link
between them can become a bottleneck, leading to a noticeable deterioration of
the application performance in some situations. In this case, unlike the case of one
shared node, high-message-rate noise has a more significant impact than high-
bandwidth noise. We can conclude that congestion in the link between switches
caused by a large number of messages affects the performance more than link
bandwidth exhaustion. Moreover, MPI collective operations prove more suscep-
tible to this type of noise than point-to-point operations. Thus, among NPB
tests, the IS and FT benchmarks, which use collective MPI operations, slow
down the most in the presence of noise. For other tests, the slowdown is minor
or even negligible in this case. The overall picture remains basically the same
when an MPI program uses the connections between nonadjacent switches.

Acknowledgments. The reported study was funded by the Russian Foundation for
Basic Research (project № 21-57-12011). The research was carried out on shared HPC
resources at Lomonosov Moscow State University.

References

1. OSU Micro-benchmarks. https://mvapich.cse.ohio-state.edu/benchmarks/
2. Afzal, A., Hager, G., Wellein, G.: Propagation and decay of injected one-off delays

on clusters: a case study. In: 2019 IEEE International Conference on Cluster Com-
puting (CLUSTER), pp. 1–10. IEEE (2019). https://doi.org/10.1109/CLUSTER.
2019.8890995

3. Akkan, H., Lang, M., Liebrock, L.: Understanding and isolating the noise in the
Linux kernel. Int. J. High Perform. Comput. Appl. 27(2), 136–146 (2013). https://
doi.org/10.1177/1094342013477892

4. Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., Yarrow, M.:
The NAS parallel benchmarks 2.0. Technical report, Technical Report NAS-95-020,
NASA Ames Research Center (1995)

https://mvapich.cse.ohio-state.edu/benchmarks/
https://doi.org/10.1109/CLUSTER.2019.8890995
https://doi.org/10.1109/CLUSTER.2019.8890995
https://doi.org/10.1177/1094342013477892
https://doi.org/10.1177/1094342013477892

Evaluating the Impact of MPI Network Sharing on HPC Applications 17

5. Beckman, P., Iskra, K., Yoshii, K., Coghlan, S.: The influence of operating sys-
tems on the performance of collective operations at extreme scale. In: 2006 IEEE
International Conference on Cluster Computing, pp. 1–12. IEEE (2006). https://
doi.org/10.1109/CLUSTR.2006.311846

6. De, P., Kothari, R., Mann, V.: Identifying sources of operating system jitter
through fine-grained kernel instrumentation. In: Proceedings - IEEE International
Conference on Cluster Computing, ICCC, pp. 331–340 (2007). https://doi.org/10.
1109/CLUSTR.2007.4629247

7. De, P., Mann, V., Mittal, U.: Handling OS jitter on multicore multithreaded sys-
tems. In: Proceedings of the 2009 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2009, pp. 1–12. IEEE Computer Society (2009).
https://doi.org/10.1109/IPDPS.2009.5161046

8. Ferreira, K.B., Bridges, P., Brightwell, R.: Characterizing application sensitivity
to OS interference using kernel-level noise injection. In: 2008 SC - International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2008 (2008). https://doi.org/10.1109/SC.2008.5219920

9. Garg, R., De, P.: Impact of noise on scaling of collectives: an empirical evaluation.
In: Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2006.
LNCS, vol. 4297, pp. 460–471. Springer, Heidelberg (2006). https://doi.org/10.
1007/11945918 45

10. Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the influence of sys-
tem noise on large-scale applications by simulation. In: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2010, pp. 1–11. IEEE (2010). https://doi.org/10.
1109/SC.2010.12

11. Jones, T.: Linux kernel co-scheduling for bulk synchronous parallel applications. In:
Proceedings of the 1st International Workshop on Runtime and Operating Systems
for Supercomputers, pp. 57–64 (2011). https://doi.org/10.1145/1988796.1988805

12. Kim, J., Dally, W.J., Abts, D.: Flattened butterfly: a cost-efficient topology for
high-radix networks. In: Proceedings - International Symposium on Computer
Architecture, pp. 126–137 (2007). https://doi.org/10.1145/1250662.1250679

13. León, E.A., Karlin, I., Moody, A.T.: System noise revisited: enabling application
scalability and reproducibility with SMT. In: 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 596–607. IEEE (2016). https://
doi.org/10.1109/IPDPS.2016.48

14. Nikitenko, D.A., et al.: Influence of noisy environments on behavior of HPC appli-
cations. Lobachevskii J. Math. 42(7), 1560–1570 (2021). https://doi.org/10.1134/
S1995080221070192

15. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer
performance: achieving optimal performance on the 8,192 processors of ASCI Q.
In: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, SC 2003,
p. 55. IEEE (2003). https://doi.org/10.1145/1048935.1050204

16. Shah, A., Müller, M., Wolf, F.: Estimating the impact of external interference on
application performance. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-
Par 2018. LNCS, vol. 11014, pp. 46–58. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96983-1 4

17. Shah, A., Wolf, F., Zhumatiy, S., Voevodin, V.: Capturing inter-application inter-
ference on clusters. In: Proceedings - IEEE International Conference on Cluster
Computing, ICCC (2013). https://doi.org/10.1109/CLUSTER.2013.6702665

https://doi.org/10.1109/CLUSTR.2006.311846
https://doi.org/10.1109/CLUSTR.2006.311846
https://doi.org/10.1109/CLUSTR.2007.4629247
https://doi.org/10.1109/CLUSTR.2007.4629247
https://doi.org/10.1109/IPDPS.2009.5161046
https://doi.org/10.1109/SC.2008.5219920
https://doi.org/10.1007/11945918_45
https://doi.org/10.1007/11945918_45
https://doi.org/10.1109/SC.2010.12
https://doi.org/10.1109/SC.2010.12
https://doi.org/10.1145/1988796.1988805
https://doi.org/10.1145/1250662.1250679
https://doi.org/10.1109/IPDPS.2016.48
https://doi.org/10.1109/IPDPS.2016.48
https://doi.org/10.1134/S1995080221070192
https://doi.org/10.1134/S1995080221070192
https://doi.org/10.1145/1048935.1050204
https://doi.org/10.1007/978-3-319-96983-1_4
https://doi.org/10.1007/978-3-319-96983-1_4
https://doi.org/10.1109/CLUSTER.2013.6702665

18 A. Khudoleeva et al.

18. Tsafrir, D., Etsion, Y., Feitelson, D.G., Kirkpatrick, S.: System noise, OS clock
ticks, and fine-grained parallel applications. In: Proceedings of the 19th Annual
International Conference on Supercomputing, pp. 303–312 (2005). https://doi.org/
10.1145/1088149.1088190

19. Vetter, J., Chambreau, C.: mpiP: lightweight, scalable MPI profiling (2005).
http://gec.di.uminho.pt/Discip/MInf/cpd1415/PCP/MPI/mpiP LightweightScal
ableMPIProfiling.pdf

20. Voevodin, V., et al.: Supercomputer Lomonosov-2: large scale, deep monitoring
and fine analytics for the user community. Supercomput. Front. Innov. 6(2) (2019).
https://doi.org/10.14529/js190201

21. Voevodin, V., Stefanov, K., Zhumatiy, S.: Overhead analysis for performance mon-
itoring counters multiplexing. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Sha-
galiev, R. (eds.) RuSCDays 2022. LNCS, vol. 13708, pp. 461–474. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-22941-1 34

https://doi.org/10.1145/1088149.1088190
https://doi.org/10.1145/1088149.1088190
http://gec.di.uminho.pt/Discip/MInf/cpd1415/PCP/MPI/mpiP_LightweightScalableMPIProfiling.pdf
http://gec.di.uminho.pt/Discip/MInf/cpd1415/PCP/MPI/mpiP_LightweightScalableMPIProfiling.pdf
https://doi.org/10.14529/js190201
https://doi.org/10.1007/978-3-031-22941-1_34

Parallel Data Preprocessing Library
for Neural Network Training

Dmitry Buryak1, Vadim Vakhrushev1(B), Mikhail Shubin1, Nina Popova1,
Kamil Khamitov1, and Oleg Ivanov2

1 Lomonosov Moscow State University, Moscow, Russian Federation
pristmanabern@yandex.ru, popova@cs.msu.ru

2 Federal Register of Experts in the Scientific and Technical Sphere,
Moscow, Russian Federation

Abstract. Data preprocessing is a commonly used method to improve
the efficiency of neural network training algorithms. In this paper, we
suggest an approach for organizing parallel computations that makes it
possible to preprocess data against the background of neural network
training. We assume that data preprocessing is performed on the proces-
sor using multiprocessing calculations, whereas training involves graphic
processors. The proposed algorithms differ in the way of organizing par-
allelism and interprocess communication. The methods are implemented
in Python and C++ and presented as a software library. We describe the
results of comparing the efficiency of the methods with the implementa-
tion of parallel preprocessing within the PyTorch framework on various
test problems. Also, we give some recommendations on the method choice
depending on the dataset and the batch preprocessing algorithm.

Keywords: Data preprocessing · Neural network training · HPC ·
Multiprocessing · Python

1 Introduction

At present, neural networks are widely used in solving applied problems. The
amount of data required to train modern deep-learning models increases every
year. In this regard, there is a problem with the scalability of data preprocess-
ing algorithms for training neural networks. During the training stage, there
may arise situations when the time required for preprocessing the input data is
comparable to the time spent directly on training the neural network or even
exceeds it. Such an effect may occur for various reasons, for example, because
of a relatively small number of neural network parameters or when the train-
ing stage includes GPU computing which significantly speeds up the learning
process. In such cases, training data can be preprocessed more slowly than the
neural network will process them. Therefore one must be able to prepare data
batches in parallel and asynchronously with the learning algorithm. There is

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 19–32, 2023.
https://doi.org/10.1007/978-3-031-38864-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-38864-4_2

20 D. Buryak et al.

also the question of whether it is possible to single out classes of datasets featur-
ing characteristics that allow solving the problem of parallel data preprocessing
more efficiently.

The paper proposes an approach supporting data preprocessing on many-core
hardware platforms. The approach has been implemented as a library providing
the user with several parameters for setting the preprocessing according to the
particular task. This implementation offers a solution to the CPU Load Balanc-
ing issue which often arises in multicore systems.

2 Related Work

Parallel and asynchronous preprocessing of data batches is critical for efficient
neural network training. For this reason, the most popular modern deep learning
frameworks, such as PyTorch, Keras, and TensorFlow, provide extensive support
for this kind of data preparation.

In TensorFlow and Keras, the preprocessing process is considered an ETL
(Extract, Transform, and Load) pipeline in which individual stages can be par-
allelized [1]. The module that implements parallel data preprocessing is written
in C++, which allows for the use of multithreading instead of multiprocess-
ing, thereby avoiding the global interpreter lock, which is specific to the Python
language.

In [1], a preprocessing library for TensorFlow is considered. The tf.data API
provides operators that can be parameterized with user-defined computation,
composed, and reused across different machine learning domains. These abstrac-
tions enable users to focus on the logic features of applying data processing, while
tf.data’s runtime ensures that pipelines run efficiently.

The Nvidia Data Loading Library (DALI) [2] is an approach alternative to
the proposed. DALI can accelerate data preprocessing operations using GPU-
accelerated data preprocessing operations. DALI also prefetches and pipelines
the data fetch and preprocessing with the GPU compute, similar to the default
dataloader in PyTorch. Though DALI shows high efficiency, the CPU Load Bal-
ancing issue remains in the system. The CoorDL library is presented in [3]; this
library uses DALI and can be used as a drop-in replacement for the default
PyTorch dataloader.

Let us now consider the implementation of parallel data preprocessing in
the PyTorch framework (Fig. 1). Each worker process has its own input queue,
in which the master process writes the indices of the objects that need to be
preprocessed and combined into a batch. Also, the main process writes the serial
number of this batch. Then, each worker process prepares the corresponding
batch and puts it along with its serial number in a single output queue, shared
among all worker processes. The master process keeps the serial number of the
next required batch to pass to the neural network. When extracting another
batch from the queue, the master process compares the serial number of this
batch and the number of the required batch and, if they do not match, caches the
batch to return it immediately when the corresponding batch number matches

Parallel Library for Neural Network Training 21

Fig. 1. Data preprocessing scheme in the PyTorch framework

the required number. Such algorithms guarantee that the batches are fed to the
input of the neural network in a deterministic order.

3 Overview of the Proposed Methods

Before proceeding to the analysis of the implemented methods, we should high-
light several general points that are taken into account in our implementation. All
developed algorithms support two modes of operation: blocking and nonblock-
ing. In blocking mode, the main process waits for the next batch, consisting of
completely new data, to be prepared. In nonblocking mode, the main process
does not wait for the next batch to be prepared but samples the required number
of objects from the buffer of previously preprocessed batches. The advantage of
this approach is that there are no delays in waiting for the preparation of the
next batch. However, in this case, the neural network will receive duplicate input
objects during one epoch, which can lead to overfitting. This negative effect can
be reduced by increasing the size of the buffer of preprocessed batches. As the
buffer size increases, each object will be sampled fewer times during the current
training epoch.

Also, note that deep learning tasks in many cases require reproducibility
of results. Therefore, the developed algorithms support ordered and unordered
data preparation modes. In ordered mode, it is guaranteed that the results of
the preprocessing algorithm will be the same in different runs with the same
input parameters. In unordered mode, reproducibility is not guaranteed, but the
learning process may be accelerated. The reasons for this effect will be explained
below, with a detailed analysis of the implemented algorithms.

It is important to point out that the developed library does not depend on
any third-party libraries or frameworks and uses only Python 3 multiprocessing
library.

Let us describe the implemented methods:

22 D. Buryak et al.

– Batch-level parallelism: each worker process prepares its own data batch at
a time. Then it puts the preprocessed batch into the channel, and the main
process retrieves the prepared batches from the channel.

– Object-level parallelism: each worker process prepares several objects and
puts them into the pipe. Then the main process reads them from the pipe
and groups the prepared data into batches.

– Shared memory buffer use: it works similarly to the previous method, except
that the shared memory is used as a process interaction method instead of
pipes. It leads to higher performance but imposes some restrictions upon
preprocessed data.

Before a detailed description of the algorithms, it will be useful to describe
the method used for distributing objects among worker processes. Each process
prepares one data chunk at a time. The definition of the chunk changes depending
on the method. For batch-level parallelism, K is equal to the batch size. For
object-level parallelism and the shared memory buffer algorithm, K may be an
arbitrary positive integer number.

Consider the situation when there are N objects in a dataset, and K is a
chunk size. In this case, the number of data chunks is

S =
⌈N

K

⌉
. (1)

Then the maximum chunk index is equal to R = S − 1.
Assume the case of three worker processes. Under these assumptions, chunk

indices are distributed among the processes in the following way:

0 : 0, 3, . . . , R − (R mod 3),
1: 1, 4, . . . , R − ((R − 1) mod 3),
2: 2, 5, . . . , R − ((R − 2) mod 3).

3.1 Batch-Level Parallelism

Fig. 2. Batch-level parallelism preprocessing scheme in the case of ordered data prepa-
ration

In this method, worker processes use channels to communicate with the master
process. In the case of the ordered batch preparation method, each process has

Parallel Library for Neural Network Training 23

its own channel, which makes it possible to obtain batches in a strictly defined
order and avoid the memory cost of caching on the side of the main process.
In unordered mode, all processes have one shared channel, so the main process
reads the fastest prepared batch, which can lead to a gain in time (Fig. 2).

It is important to note that this approach does not take into account the
internal structure of the batch, which makes it universal: different batches, in
general, can have different sizes, for example, when training recurrent neural
networks [4]. Also, if some union operation must be performed on individual
objects to form the batch, it will be done asynchronously with the learning
algorithm, in the worker process; this may lead to a significant gain in time if
the union operation is heavy.

The disadvantages of this approach include the fact that during the training
of a neural network at the beginning of each epoch, the preparation time of the
first batch coincides with that of the sequential implementation. In practice, this
delay is negligible since the number of batches is usually much larger than one.

Advantages of the method:
1. No assumptions about the internal structure of the batch.
2. Grouping objects into a batch can be done asynchronously in the worker

process.
3. Relative ease of implementation and lack of complex synchronization

models.
Disadvantages of the method:

1. The preparation time of the first batch is the same as in the serial imple-
mentation.

2. Pipes may not be the fastest means of inter-process communication; it
takes additional time to serialize, transfer, and deserialize a batch.

3.2 Object-Level Parallelism

Fig. 3. Preprocessing scheme with object-level parallelism in the case of ordered data
preparation

This method, in contrast to the previous one, works at the level of objects instead
of batches (Fig. 3).

24 D. Buryak et al.

Since the preparation of one batch, in general, is carried out by several pro-
cesses, the procedure for grouping objects into a batch has to be performed in
the main process synchronously with the training of the neural network. Also,
note that if the process prepares fewer objects than the batch size, the master
process will have to read data from the channel several times to form a data
batch.

Let us now compare the efficiency of batch preparation in the cases of batch-
level and object-level parallelism when the object preparation time is not con-
stant. For simplicity, consider an example when there are two processes, each
prepares a batch for batch-level and an object for object-level parallelism, and
the batch size is n. Also, assume that the object preparation time is a normally
distributed random variable with parameters (μ, σ). Then, if all objects are pre-
pared independently, the time required to prepare one batch in batch-level paral-
lelism is X = min(X1,X2), X1 ∼ N(nμ, nσ2), X2 ∼ N(nμ, nσ2), where N(a, b)
is a normally distributed random variable with parameters (a, b); in object-level
parallelism, this time is Y = n · min(Y1, Y2), Y1 ∼ N(μ, σ), Y2 ∼ N(μ, σ) since
in this case we always take the first object that is ready. We neglect the time
required to transfer data from worker processes to the main process.

Let us calculate the expected value of these random variables [5]:

E(X) = nμ · Φ
(nμ − nμ√

nσ2

)
+ nμ · Φ

(nμ − nμ√
nσ2

)
− √

nσ · φ
(nμ − nμ√

nσ2

)

= nμ −
√

nσ√
2π

, (2)

E(Y) = n

(
μ · Φ

(μ − μ√
σ

)
+ μ · Φ

(μ − μ√
σ

)
− σ · φ

(μ − μ√
σ

))

= nμ − n
σ√
2π

, (3)

where Φ(x) and φ(x) are, respectively, the cumulative distribution function and
the probability density function of the normal distribution.

Thus,

E(X) − E(Y) =
(
nμ −

√
nσ√
2π

)
−

(
nμ − n

σ√
2π

)

= n
σ√
2π

−
√

nσ√
2π

= (n − √
n)

σ√
2π

. (4)

Thus, under these assumptions, the batch is prepared faster in the case of
parallelism over objects when n > 1.

The advantages and disadvantages of this method are the following:

Advantages of the method:
1. Flexibility of the algorithm depending on the choice of the value K.

Disadvantages of the method:
1. Grouping objects into a batch is performed synchronously in the main

process, which increases the time cost of the algorithm.

Parallel Library for Neural Network Training 25

2. The main process can perform several reads of objects from the channel
to form a batch.

3.3 Shared Memory Buffer Use

Fig. 4. Scheme of preprocessing using a buffer in the shared memory, in the case of
ordered data preparation

The difference between this approach and the previous one is the use of shared
memory instead of channels. Shared memory is usually the fastest of interprocess
communication tools, but it imposes some restrictions upon input data (Fig. 4).

As in the previous method, the master process waits for each worker process
to preprocess its part of the batch. In this method, instead of putting the objects
into the pipe, they are placed in the shared memory immediately after processing,
without serialization, so as to improve performance. Accordingly, after reading
data from memory, deserialization is not required. This leads to a restriction
upon the object size after preprocessing: the objects must have the same shape
since the shared memory buffer, which is a multidimensional array, has a certain
size when created, and in general, it is impossible to predict what the size should
be to accommodate batch objects. If all objects after preprocessing have the same
shape object shape, the number of objects in the batch is K, and L batches
are placed in the buffer, then the shared memory buffer will have the shape
(L,K, object shape). Note that a significant part of deep learning problems,
in particular, computer vision, satisfies the object homogeneity constraints after
preprocessing.

This method significantly reduces the time required to transfer an object
from the worker process to the main process. Thus, this method is an extension
of the idea of using object-level parallelism instead of batch-level parallelism
and corrects the disadvantages of the previous method, while introducing some
restrictions on input data.

26 D. Buryak et al.

Advantages of the method:
1. It significantly reduces the cost of transferring a batch between worker

processes and the main process by using shared memory instead of pipes.
Disadvantages of the method:

1. Occurrence of restrictions on the preprocessed objects.

4 Implementations

All three methods discussed above were implemented in Python3. For the third
idea, a C++ implementation was also developed (it has a Python3 user’s inter-
face, provided by the pybind11 [6] framework). The proposed library is called
Parloader.

The implementation of each method is represented as a single module pro-
viding several functions. The set of functions includes:

– init dataprep: the initialization function. The user provides the dataset
object (contains data and preprocessing function), the batch size (used during
the training process), the number of processes (the number of workers that
will preprocess data), a flag of blocking/nonblocking mode, as well as other
technical parameters.

– start dataprep: a procedure that starts preprocessing;
– stop dataprep: a procedure that stops preprocessing;
– rqst batch: a function that returns batches with preprocessed objects.

Other parameters for init dataprep include the size of the buffer (for the
shared-memory version; it is used for storing processed objects), the union func-
tion (a function that groups objects into a batch), and the initialization function
(it will be called in every worker process before preprocessing).

The core of the library is the use of parallel processes (rather than threads).
The reason for this solution is that threads are not useful when Python-code
parallelism is required because of the presence of the global interpreter lock in
Python. The C++ implementation (of the same library interface) also presents
this problem because the preprocessing function remains “Python-side”, so the
thread mechanism is also worthless in this case.

The Python 3 implementation employs the multiprocessing module for
this, while the C++ implementation uses the fork mechanism.

5 Experiment Results

We conducted experiments for various tasks, such as image processing, video
processing, and time series processing. We built three plots for each task: one that
reflects the dependence of execution time (including preprocessing and training)
on the number of processes when learning with blocking mode, a similar plot
for nonblocking mode, and a plot of the fraction of unique objects processed
by the neural network during the epoch. The results were averaged over five

Parallel Library for Neural Network Training 27

epochs. The batch size in all experiments was 64, and the K parameter for both
object-level parallelism and shared memory algorithms was set to 1.

The experiments were carried out on a node of the Lomonosov-2 supercom-
puter [7] equipped with an Intel Xeon Gold 6126 (2.60 GHz, 12 cores) CPU and
an Nvidia Tesla P100 GPU.

5.1 Image Processing

In this experiment, we used Alexnet [8] as a neural network and the “bee-vs-
wasp” [9] task as a dataset (a set of pictures of bees, bumblebees, and other
insects). The machine learning task was to classify the objects into three classes.
In this experiment, the same set of transformations was applied to each object
during preprocessing.

The results (execution time for blocking and nonblocking modes) are shown
in Fig. 5. We can see that the method that uses shared memory outperforms
other methods from the point of view of execution time. It can be explained by
the fact that the time spent reading data from the shared memory is significantly
less than the time spent reading from a channel or queue, as in other methods.

The PyTorch implementation and the batch-level parallelism implementa-
tion perform approximately on the same level. This happens because PyTorch
also uses batch parallelism. However, the proposed implementation offers more
lightweight channels for interprocess communication, unlike the queue used by
PyTorch.

Object-level parallelism performs worse than the above-mentioned methods.
This happens, most likely, because the overheads of transferring data between
processes in this method are the highest in comparison with others. Also, the
function of grouping objects into a batch is called synchronously when a batch
is requested, unlike the previous methods.

The worst performance is shown by the C++ implementation. It uses the
pickle module for converting Python objects to byte arrays and back. The
merging function also works synchronously in the main process. There are sig-
nificant overheads, thus the speed of this implementation is lower than that of
Python libraries. As for the nonblocking mode, the execution time increases with
an increase in the number of processes and then reaches an asymptote. The rea-
son for this is that the time spent preparing the batch decreases as the number of
processes increases. This in turn leads to an increase in the running time of the
batch since the function for obtaining a batch in nonblocking mode immediately
returns the previously prepared data if the new batch is not ready yet. In the
experiment, at a certain point, the processing time of the batch by the neural
network is equal to or greater than the batch preprocessing time, therefore the
execution time in the nonblocking mode is equal to the execution time in the
blocking mode.

28 D. Buryak et al.

(a) (b)

(c)

Fig. 5. Image processing, execution time: (a) blocking mode, (b) nonblocking mode,
(c) nonblocking mode, fraction of unique objects

It should be noted that the greater the fraction of unique objects the neural
network gets during the epoch, the longer the data is prepared in the nonblocking
mode.

5.2 Time Series Processing

In this experiment, the task of time series prediction was solved using the double
Stacked GRU neural network. The dataset was automatically generated using
trigonometric functions with random noise added. In tasks of time sequence
prediction, the shared memory approach is not, generally speaking, applicable
since the input object for the neural network is a sequence with a length that can
vary from object to object, and this does not satisfy the homogeneity restrictions
for preprocessed data.

The results (execution time for the blocking and nonblocking modes) are
shown in Fig. 6.

Parallel Library for Neural Network Training 29

(a) (b)

(c)

Fig. 6. Time series processing, execution time: (a) blocking mode, (b) nonblocking
mode, (c) nonblocking mode, fraction of unique objects

In these experiments, as we can see, the object-parallel version is also inferior
to the batch-parallel version and PyTorch implementations. In this case, the
function of grouping objects into a batch is relatively heavier than in the previous
task, which results in more lag compared to the previous experiment.

As for the nonblocking mode, the conclusions remain the same as in the
previous paragraph.

5.3 Video Processing

The experiment consisted of the task of recognizing a number in a picture. The
dataset was artificially generated by placing a number in a random place in the
picture. The architecture used was that of a convolutional neural network [10].
During the generation and preprocessing of the object, a random number of
augmentations was used, which significantly distinguishes this experiment from
the first one and leads to a significant spread in the preparation time of one
object.

30 D. Buryak et al.

The results (execution time for blocking and nonblocking modes) are shown
in Fig. 7.

(a) (b)

(c)

Fig. 7. Video processing, execution time: (a) blocking mode, (b) nonblocking mode,
(c) nonblocking mode, fraction of unique objects

As we can see, the methods that can simultaneously prepare a small number
of objects, such as object-level parallelism and shared memory, show slightly bet-
ter results than PyTorch and batch-level parallelism. This supports the assump-
tion that the methods that operate on objects rather than batches can be faster
when the object preparation time shows a large spread.

Parallel Library for Neural Network Training 31

6 Conclusions

The following general conclusions can be drawn based on the analysis of the
experiments:

1. When all objects after preprocessing are homogeneous (i.e., they have the
same shape), it is most likely that the shared memory method shows the
highest performance.

2. If the function of grouping objects into a batch is not heavyweight and the
object preparation time is not constant, then, most likely, it is best to use
object-level parallelism.

3. Otherwise, batch-level parallelism is the most suitable.

In this paper, we presented an approach to applying multiprocessing for pre-
liminary data preparation on multicore systems. The approach was implemented
as a library called Parloader, which provides the user with parameters for setting
the efficiency according to the particular task. Also, we performed an experimen-
tal study of the library in the case of the PyTorch framework. The experiments
showed that the Parloader library outperforms PyTorch DataLoader in almost
all cases. An important advantage of the Parloader library is that it can be used
as an independent module not only in the PyTorch framework but also in other
neural network applications and frameworks.

We plan further research on Parloader efficiency with other frameworks, such
as its adaptation for the hard mining task, i.e., that of searching for the hardest
samples for training.

Acknowledgments. The study was partly funded by the Russian Foundation for
Basic Research (research project № 20-07-01053). The research was carried out on
shared HPC equipment at Lomonosov Moscow State University research facilities [7].

References

1. Murray, D.G., Simsa, J., Klimovic, A., Indyk, I.: tf.data: a machine learning data
processing framework (2021). arXiv:2101.12127

2. NVIDIA DALI Documentation. https://docs.nvidia.com/deeplearning/dali/.
Accessed 29 Sept 2022

3. Mohan, J., Phanishayee, A., Raniwala, A., Chidambaram, V.: Analyzing and mit-
igating data stalls in DNN training. Proc. VLDB Endow. 14(5), 771–784 (2021).
https://doi.org/10.14778/3446095.3446100

4. Sherstinsky, A.: Fundamentals of Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) Network (2018). Elsevier “Physica D: Nonlinear Phe-
nomena” Journal 404 (2020). Special Issue on Machine Learning and Dynamical
Systems. arXiv:1808.03314. https://doi.org/10.1016/j.physd.2019.132306

5. Nadarajah, S., Kotz, S.: Exact distribution of the max/min of two Gaussian ran-
dom variables. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(2), 210–212
(2008). https://doi.org/10.1109/TVLSI.2007.912191

6. pybind11—Seamless operability between C++11 and Python. https://github.com/
pybind/pybind11. Accessed 16 May 2022

http://arxiv.org/abs/2101.12127
https://docs.nvidia.com/deeplearning/dali/
https://doi.org/10.14778/3446095.3446100
http://arxiv.org/abs/1808.03314
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1109/TVLSI.2007.912191
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11

32 D. Buryak et al.

7. Voevodin, V.V., et al.: Supercomputer Lomonosov-2: large scale, deep monitoring
and fine analytics for the user community. J. Supercomput. Front. Innov. 6(2),
4–11 (2019). https://doi.org/10.14529/jsfi190201

8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25 (2012)

9. https://www.kaggle.com/datasets/jerzydziewierz/bee-vs-wasp
10. O’Shea, K., Nash, R.: An introduction to convolutional neural networks (2015).

arXiv:1511.08458

https://doi.org/10.14529/jsfi190201
https://www.kaggle.com/datasets/jerzydziewierz/bee-vs-wasp
http://arxiv.org/abs/1511.08458

An Efficient LRnLA Algorithm and Data
Structure for Manycore and Multicore
Computers with Hierarchical Cache

Vadim Levchenko and Anastasia Perepelkina(B)

Keldysh Institute of Applied Mathematics, Moscow, Russian Federation
lev@keldysh.ru, mogmi@narod.ru

Abstract. According to the Roofline model, low arithmetic inten-
sity is the main performance bottleneck for multidimensional simula-
tion with stencil data access. This bottleneck can be eliminated using
LRnLA (locally recursive nonlocally asynchronous) algorithms, which
take advantage of all levels of cache. We introduce the new algorithm
FArShFold, a development of previously published Torre-type LRnLA
algorithms by using data arrays aligned with a space-time wavefront.
The novelty is in the distribution of data between threads and the decom-
position in the time axis for parallelism. In this paper, we present the
implementation of the algorithm for the solution of fluid dynamics prob-
lems with the LBM method and its scaling on AMD zen2/3 processor
architectures. The obtained performance for single precision D3Q19 LBM
is more than 1.4 GLUps on the AMD Ryzen R9 5950X processor.

Keywords: GPU · LRnLA · LBM · Stencil computing · Roofline

1 Introduction

Modern supercomputers can surpass the performance of 1018 double-precision
floating-point operations (FLOP) per second (FLOPS). This is a qualitative
breakthrough: the number of FLOP performed in parallel is now more than 109,
which is, in turn, more than the number of serial FLOP that can be performed
per second. As a matter of fact, parallelism is the primary source of performance.

Together with the growth in the number of transistors, the number of com-
puting cores in new processors also increases. Multicore processors inherit the
concepts of SMP and NUMA architectures, and even of many-node clusters.
Physical integration enables better intercore connectivity, as well as the connec-
tivity with other parts of the system. It is also important to note that shared
resources, such as power consumption, data bus, last level cache (LLC), and
memory controllers can be redistributed to benefit one or two cores in a multi-
core system thereby decreasing the latency in a critical path.

Scaling of multicore processors is achieved through the use of the intermediate
core hierarchy level (Intel core clusters or AMD core complexes) with shared
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 33–48, 2023.
https://doi.org/10.1007/978-3-031-38864-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_3&domain=pdf
http://orcid.org/0000-0001-7346-6635
http://orcid.org/0000-0003-2517-6064
https://doi.org/10.1007/978-3-031-38864-4_3

34 V. Levchenko and A. Perepelkina

shell points
0 1: (0, 0, 0)
1 6: (±1, 0, 0), (0,±1, 0), (0, 0,±1)
2 12: (±1,±1, 0), (±1, 0,±1), (0,±1,±1)
3 8: (±1,±1,±1)

Fig. 1. LBM shells

cache. Further scaling requires more hardware resources. Manycore processors,
made specifically for massively parallel tasks, are capable of a less prominent
dynamic redistribution of resources and may not support the effective coherency
of local caches. In this case, thread synchronization becomes expensive.

The consideration of modern trends in multicore processors leads us to the
following conclusion. It is crucial to utilize all available parallelism since the pro-
cessing power relies mainly on it, and the code architecture has to take advantage
of all types of core interconnectivity, clustering, and local and shared resources.
Our goal is to find the most efficient and convenient way to implement codes for
the numerical simulation of physical phenomena. To this end, we use the method
of LRnLA (locally recursive nonlocally asynchronous) algorithm construction [6].

2 Computational Aspects of LBM

Computational Fluid Dynamics (CFD) is an excellent test bed for algorithm
development. CFD codes are relevant to many scientific and engineering pur-
poses. The choice of the numerical schemes is flexible in terms of computational
cost, data, and locality. A good example is the Lattice Boltzmann Method (LBM)
and its many variations [4]. In the context of the current paper, it is an appropri-
ate illustration of a scheme with variable data size and a stencil access pattern.

There are Q scalar values fq (populations) associated with a node in a lattice.
The lattice step and the time step are equal to 1 in nondimensional units. The
local collision operation at node �xi at the discrete-time instant tk can be written
as

fq(�xi, t
k) = Ωq(f∗

1 (�xi, t
k), . . . , f∗

Q(�xi, t
k)), q = 1, . . . , Q, (1)

where Ωq is a collision operator. We use the basic BGK collision operator and a
second-order expression for the equilibrium distribution [4].

The second step of LBM is the streaming step, which consists of Q separate
transfers of fq values in the �cq direction from each node to its neighbors:

f∗
q (�xi + �cq, t

k + 1) = fq(�xi, t
k), q = 1, . . . , Q. (2)

In this paper, the vectors �cq are from the shells listed in Fig. 1, and all vari-
ants of LBM used here are given in Table 1. A 3D LBM with Q = q is often

LRnLA Algorithms for Manycore Computers 35

Table 1. Parameters of different configurations. FLOP: single-precision floating-point
operation; FMA: fused multiply–add operation. Since processors operate in FMA oper-
ations, the FMA metric is more precise when there is an imbalance between two types
of FLOP. LU: lattice site update. PU: population (fq) update.

code Q1 Q7 Q13 Q19 Q9 Q15 Q21 Q27

shells in Fig. 1 0 0,1 0,2 0,1,2 0,3 0,1,3 0,2,3 0,1,2,3

FLOP/LU 30 78 150 198 126 174 246 294

2FMA/LU, O 30 114 246 330 206 290 422 506

FLOP/PU 30 11 12 10 14 12 12 11

2FMA/PU 30 16 19 17 23 19 20 19

ISW, F32 FLOP/byte 3.8 1.4 1.4 1.3 1.8 1.5 1.5 1.4

denoted by D3Qq. Note that D3Q19 and D3Q27 (cube stencil) may be rele-
vant to fluid dynamics, and D3Q7 (cross) is frequently used in the solution of
advection-diffusion equations. Others are added here for the study of algorithmic
tendencies.

As for the code, in the basic implementations, two data copies per node
are stored to avoid read conflicts that can occur due to the interdependence of
neighbor cells. Alternatively, we can use one of the streaming patterns possessing
the in-place modification property, such as the AA-pattern [1], Esoteric Twist [3],
or compact update [12].

In this paper, we use the compact update [12,23] and only one data copy.
Thus the streaming is split into the ‘compact’ and the ‘de-compact’ steps. All
exchanges in a 2 × 2 × 2 group of lattice nodes are performed, followed by the
exchanges in a group that is shifted by one node in each direction. Each of the
two substeps requires access only to a cube of eight nodes (compact group) and
overwrites data in place.

3 LRnLA Algorithms

Let us outline the basics of the method of LRnLA algorithm construction [6].

Express the simulation task with a dependency graph in space-time. Let us con-
sider a discrete lattice with 2N nodes along each of d spatial axes and the task
of update of all these nodes NT times according to a numerical scheme with
a local stencil. In the dependency graph constructed for this task, the node at
(x, y, z, t) (d = 3) in space-time is an operation of scheme update at this point,
and the nodes are connected with links that are data dependencies.

Fold the dependency graph. This step is not required for the method developed in
this paper. Still, we decided to use it since it has proven to be an efficient method
for localization of boundary processing, effortless use of AVX vectorization, and
multinode parallelism [9,10]. When the dependency graph is folded once on the
axis a, every node with index N ≤ ia < 2N along this axis is put in the same

36 V. Levchenko and A. Perepelkina

Fig. 2. Left: A simulation task (d = 1) decomposed into flat subtasks for stepwise exe-
cution. Center: The ConeFold LRnLA algorithm and its subdivision. Arrows show data
dependencies. Right: Four ConeTorre. The rightmost one is decomposed into lower CTs.
The orange areas are an example of two asynchronous subtasks. (Color figure online)

place as the node with index N − 1 − (ia − N), that is, in the position that
is mirror-symmetric with respect to the center of the domain. Thus: (1) each
node is assigned twice as many data and operations, (2) the first node is in
the same place as the last one, (3) all vectors in the numerical scheme in the
mirrored domain are reversed, and (4) the application of the periodic boundary
condition is local [8,9]. We perform the folding operation on all axes and obtain a
dependency graph with N nodes along each direction. Folding can be omitted in
the algorithm construction. If that is the case, we consider a simulation domain
with N nodes along each axis from the start.

Decompose the dependency graph and analyze the dependencies between subtasks.
An LRnLA algorithm is defined through a shape in space-time that has depen-
dency graph nodes inside it and a rule of subdivision of this shape. This reflects
the subdivision of the task into subtasks. The whole dependency graph can be
described by a box of size Nd×NT that covers it. In the case of a traditional
stepwise (SW) traversal, an external ‘for’ loop in time exists. This is described by
a decomposition of the Nd×NT box into Nd×1 layers with sequential dependen-
cies (Fig. 2). In the same manner, the task of updating all nodes NT times can
be subdivided into NT subtasks of updating all nodes once. LRnLA algorithms
are described by the shapes that contain the nodes on several time layers.

The ConeFold (CF) LRnLA algorithm [6] (see Table 3 for all notations in
the text) is described by a prism shape (Fig. 2). The lower base of a CF with a
specified rank r is a cube with 2r nodes along each edge on some time layer. Its
upper base is a cube shifted by 2r time steps in time, and if the stencil width
is equal to 1, shifted by 2r nodes in the positive direction of each spatial axis.
It is a convenient shape both for the algorithm description and implementation.
That is why here we discuss a task with N = 2MaxRank+1 nodes and NT =
2MaxRank+1 layers in time. Tasks with other dimensions can be constructed with
such building blocks. Each CF can be decomposed into 2d+1 CFs of lower rank.
This decomposition can be done recursively down to an elementary update of a
dependency graph node. Alternatively, CFs can be decomposed into ConeTorres.

The ConeTorre (CT) LRnLA algorithm [10] has the same shape as CF,
but the NT parameter is an arbitrary positive integer and is not fixed by the
MaxRank parameter (Fig. 2, right). It contains NdNT nodes and can be either

LRnLA Algorithms for Manycore Computers 37

Fig. 3. FArSh Data for exchange in CT type algorithms (d = 2). FArSh stores the
data on the CT slopes in the cell lines aligned with the direction of the CT execution.
On each floor of a CT, a gnomon of lattice node data is read, and these data are
overwritten with the output data on the other side of the CT. Here d = 2 and FArSh is
a 2D array, namely, an array of lines of nodes, each line having NT nodes. On the left
and right, we see the states of FArSh, correspondingly before and after the execution
of the pictured CT. (Color figure online)

decomposed into lower CTs (height nf) or processed stepwise. In the latter case,
CT can be implemented by a ‘for’ loop, in which, on each iteration, a cube of
nodes is updated and the next cube is shifted by one cell in the positive direction
of each axis.

To cover the whole dependency graph with CF shapes, we place some of the
ConeFold shapes so that their upper or lower bases (or both) are outside the
domain (Fig. 4). For the parts outside the domain, there are no operations. Thus
CFs with MaxRank, as well as smaller CF/CTs on the boundary, have different
numbers of operations inside them.

An example of possible parallelism is illustrated in Fig. 2. Even more asyn-
chronous tasks can appear if d > 1.

3.1 Data Structures

Each CF/CT task has input and output data dependencies, which can be found
as the dependency graph links coming in and out across the faces of the prism.
Optimally, the data structure for storage of mesh node data has to be organized
in the order that data are read in the algorithm. We use two types of data layouts.
First, the data of the upper and lower bases of the prism are synchronized on
the same time layer, i.e., t = 0 on the lower base and t = NT on the upper base
(Fig. 3, blue). The base cube is a multidimensional array in d spatial dimensions.
Since the CT size is flexible, the best practice is to organize the data according
to the Morton Z-order curve.

Data of the second type are read on the inclined faces of the prism. The
diagonal order of access in the Z-order array is inconvenient. It is not aligned for
cache prefetching, and overhead integer operations are required to find the index
of the required node. Thus we use the FArSh data structure introduced in [11]
(Fig. 3, red). FArSh data have d − 1 spatial dimensions and one time dimension.

38 V. Levchenko and A. Perepelkina

Table 2. Parameters of the processors

AMD Ryzen Intel Core-i

R9 3900 R9 5950X R7 5800X3D i7-7800X i5-1240P

cores 12 16 8 6 4P+8E

peak F32 1.4 TFLOPS 2 TFLOPS 1 TFLOPS 0.7 TFLOPS 0.8 TFLOPS

L1 size 12 × 32 KB 16 × 32 KB 8 × 32 KB 6 × 32 KB 4 × 48 KB + 8 × 64 KB

L1 BW 3 TB/sec 3.8 TB/sec 1.9 TB/sec 2 TB/sec 2 TB/sec

L2 size 12 × 512 KB 16 × 512 KB 8 × 512 KB 6 × 1 MB 4 × 1.25 MB + 2 × 2 MB

L2 BW 1.5 TB/sec 2 TB/sec 1 TB/sec 750 GB/sec 1 TB/sec

L3 size 4 × 16 MB 2 × 32 MB 96 MB 8.25 MB 12 MB

L3 BW 1.3 TB/sec 1 TB/sec 500 GB/sec 500 GB/sec 350 GB/sec

RAM type DDR4-3200 DDR4-2400 LPDDR5-4800

RAM size 64 GB 128 GB 64 GB 128 GB 16 GB

RAM BW 50 GB/sec 50 GB/sec 50 GB/sec 75 GB/sec 75 GB/sec

FLOP/byte 28 40 20 9 11

3.2 Algorithmic Issues

Arithmetic Intensity (AI) I is the number of operations per byte of data band-
width. The Roofline model [21] uses AI to determine the peak performance of
the code:

Π ≤ min [ΠCPU, ΘI] , (3)

where the CPU performance is denoted by ΠCPU, and Θ is the bandwidth of
the data localization site. With this, the computing tasks are classified into two
groups: compute-bound if I > ΠCPU/Θ, and memory-bound if otherwise.

An SW simulation has a limit of optimization. Data are localized in RAM,
and every population has to be loaded and saved at least once per time update.
Realistically, the limit is hardly attainable since the populations in 3D simula-
tions are also accessed when they are required by the neighbor cells.

The AI of such ideal SW codes (ISW in Table 1) is at least an order of mag-
nitude less than the point of machine balance (ΠCPU/Θ) of modern processors
(Table 2). Consequently, the memory bandwidth of the memory controllers is
the key requirement for processors, and the achievements in the hardware paral-
lelism development outlined in the introduction are irrelevant. A case in point is
the fact that a 64-core AMD EPYC 7773X performs worse than an 8-core Intel
Xeon Gold 6434 in the LBM speed test [16,17,19].

With LRnLA algorithms, the SW limit can be surpassed. In [9,10], a recursive
CF subdivision was used for the LBM. CFs with a high rank r are localized in
RAM, and the RAM bandwidth acts as a Roofline limit. However, if all data
used in a CF of rank r′ are localized on a higher level of the memory hierarchy
(i.e., L3 cache), the performance of its subtasks, that is, CFs of lower rank
(r′ − 1), is limited by the L3 bandwidth [6]. Note that ICF,r decreases with rank
(∀r ICF,r−1 < ICF,r), but the bandwidth of the localization site increases with
rank. Finally, we can estimate that the performance of a task can not be higher

LRnLA Algorithms for Manycore Computers 39

than the performance of any of its subtasks, therefore for the performance we
have

Π ≤ min
r

[ΠCF,r] ≤ min [ΠCPU, ΘL3ICF,r′−1, ΘRAMICF,r′] . (4)

This limit is found to be greater than the SW limit, and the SW performance is
surpassed [9,10].

The disadvantage of this approach is the limited asynchrony inside each CF.
As a result, in the benchmarks on the 12-core AMD Zen2 [12], parallel scaling
was close to linear only up to a factor of 4. The AMD Zen2 has 4 Core Complexes
(CCX) with up to 4 active cores each. Within a CCX, the cores share the common
16MB of LLC cache space. The scaling is good as long as no more than one CF is
localized per CCX. When more than one CF is launched in one CCX, less cache
is available to each one. Although more threads are in use, the total efficiency is
lower.

Our goal is to construct a new (optimal) algorithm with the following prop-
erties: (1) the computations are performed on data localized in L1, (2) LRnLA
decomposition has enough degree of parallelism for manycore execution, and (3)
the benefit of manycore execution is not lost due to the failure to localize data
in the combined L2 and L3 cache.

3.3 Optimal Algorithm for Manycore CPUs

Let us define the criteria for the optimal algorithm that we aim to construct in
this research. The AI of a CT with a base size equal to m groups of 2d lattice
nodes and height 2nt ≤ NT can be expressed as

ICT ≡ OCT

2SCT
=

2nt(2m)dO
2
(
(2m)d + 2ntΓ

−
(2m)d

)S , (5)

where OCT is the number of operations in the ConeTorre, and SCT is the amount
of data used in it. These data are loaded, updated, and saved. The factor 2 in
the denominator accounts for the sum of load and save operations. No halo is
added to SCT because of the use of the compact update in LBM. Furthermore,
ISW = O/2S is the AI of the stepwise algorithm. On each time layer of a CT, a
total of

Γ−
(2m)d

≡ (2m)d − (2m − 1)d = d(2m)d−1 + . . . + (−1)d(2md − 1)

= d(2m)d−1(1 + O(1/2m))
(6)

nodes (a cube gnomon) are loaded and saved. Thus, the first term in the denom-
inator is the size of the CT base, and the second term is the size of FArSh.

We consider three cases. If dnt � m, then CT is a low and wide layer; its
AI can be approximated as 2ntISW. In the second case, m = nt ≡ n ≡ 2r for
some integers n and r, and the CT is a ConeFold. In the CF, if the processed
data are localized in a cache with fixed size M, and n � 1, then the AI reaches
its maximum value 2n

d+1ISW. In the third case, we have nt � m, so the CT

40 V. Levchenko and A. Perepelkina

Fig. 4. Illustration of the construction of FArShFold for d = 1. A simulation domain
with 2d·MaxRank groups is subdivided into 2d ConeFolds. The pink areas contain no
operations. Each CF is subdivided into layers. (Color figure online)

is narrow and long. The AI can be approximated as I ≈ ISW(2m)d/Γ−
(2m)d

. If

m � 1, then it is proportional to m. If m = 1, then I = 2d

2d−1
ISW > ISW.

Let us denote by nopt the size n of the CF for which the processed data(
(2nopt)3+2noptΓ

−
(2nopt)3

)S fit the combined L2 and L3 cache, ML2+L3 ≈ 70 MB.
Consider a concrete example. For the single-precision LBM with Q = 19 and
Q = 27 and taking into account the factor 8 from the dependency graph folding
(Sect. 3), we have that S = Q · 8 · 4 bytes and nopt is in the range from 11 to 16.
With this size, the ConeFold AI is 2n

d+1 ≈ 5 to 8 times as high as the SW AI,
and the performance peak is potentially higher by a factor of 5 to 8.

When several asynchronous tasks per CCX are executed, a lesser part of the
L3 cache is available per task, and this estimate may not be reached. There-
fore, we express the criteria of the optimal algorithm in the following way: the
performance increase compared to the SW algorithm has to be no less than the
theoretical estimate specified above.

4 FArShFold

Let us attempt to construct the optimal algorithm. Fold the domain (see Sect. 3)
of 2d·MaxRank groups and decompose the dependency graph into CFs (Fig. 4). The
data of such a CF base can only fit the CPU RAM. Decompose this CF into CTs
with base size 2MaxRank and height n′ (an integer parameter of the algorithm).
The resulting tasks are represented in the dependency graph space by flat layers
(dn′ � 2 · 2MaxRank) and are performed one after the other.

The layer is compute-bound. Indeed,

Πlayer(nopt) ≤ min [ΠCPU, ΘRAMIlayer] ≈ min [ΠCPU, ΘRAM2noptISW] = ΠCPU.

Let us decompose the layer into CTs with height n′ and only one lattice node
group in the base (m = 1). When CT parallelism is used for GPU [13], the size
of the CT base n � NT is chosen so that its data fit into the fastest memory
level. In that case, this level is the register file and it is large enough to contain
data for several node groups. On CPU, the fastest level is L1, which can contain
no more than one group, that is why here we choose m = 1.

LRnLA Algorithms for Manycore Computers 41

Fig. 5. Left: Illustration of the construction of FArShFold for d = 1. A layer is sub-
divided into CTs with a base size of 2d lattice nodes. For parallelism, the layer is
subdivided into slices; each slice is processed by a parallel thread. A thread processes
CTs with height ns, one by one in the reverse Z-order curve (for d = 1, in a line from
right to left). If n′ = 2nopt, the grey CF can fit L3. Right: Data flow for the smallest
CT. Here 2d lattice nodes in the base (yellow) come from the other core through L3;
ns lattice nodes in the horizontal dependency (red, FArSh) are in the local cache of
the same core. (Color figure online)

There are 2rd CTs in a layer. The order of execution is along the reverse
Morton Z-curve since it provides the best memory reuse in the layer base.

The data for operation in a CT come from its base (vertical dependency)
and from the neighboring CT (horizontal dependency). The data from the base
fit the L1 cache and are localized there throughout the CT execution.

Our goal is to distribute the computation in the layer between cores and
make each core localize the data it processes in its own cache (L2). We propose
the following solution (Fig. 5). We decompose each CT into several slices, where
each slice s is in the range IBs ≤ it < IEs. The bases are still one group in size,
but the amount of FArSh data per CT is less. Then we can localize FArSh in
the local cache (L2) of each core.

Thus the complete flow of the recursive LRnLA decomposition is as fol-
lows (Fig. 4, 5). The ConeFold of rank MaxRank > 5 is decomposed into CTs
with base MaxRank and height n′ (layers). The layers are decomposed into NC

slices, where NC is the number of cores. Each slice is processed by one processor
core. Each slice is decomposed into CTs with one group in the base.

4.1 FArShFold Properties

As a result, multicore parallelism is implemented with the decomposition of the
dependency graph in time. One core is to process updates for IBs ≤ it < IEs;
for the next core, IB(s+1) = IEs.

Note that the decomposition of the tasks into time slices is natural in the
CT algorithm owing to the use of the FArSh data structure. The lines of FArSh
nodes are cut into several smaller lines. Such a convenient implementation would
not be possible if we used the main storage (Fig. 3, blue) for the exchange of data
between CTs.

Each core processes CTs with one group in the base and a height equal to
ns ≡ IEs − IBs < nopt, one by one in the Z-order. These CTs are continued in
their execution by the next core. In theory, the data of the group in the CT base

42 V. Levchenko and A. Perepelkina

are sent from one core to the next one through the L3 cache. Inside one core,
this group is localized in the L1 cache. The data on the CT slopes stay in the
L2 cache of the core. If the expectations of such localization are fulfilled, a 5- to
8-fold speedup in comparison with the SW peak (Sect. 3.3) is expected.

4.2 Localization Limits

The layer in Fig. 4 is compute-bound and fits RAM. It is decomposed into narrow
CTs, and their AI is small. However, with the Z-order execution, we can expect
the successive CTs to form a full task in the shape of a CF, and a CF is a task
with the optimal AI for the chosen layer height n′:

ΠCF,n′ ≤ min
[
Πlayer, ΘRAM

n′

d + 1
ISW

]
. (7)

Here, if n′ = 2nopt, the CF data fit L3 (Sect. 3.3).
If we treat a CT as a subtask of a CF, and that CF fits L3, then its perfor-

mance is limited by ΘL3 rather than by ΘRAM:

ΠFArShFold ≤ min
[
ΠCF,nopt , ΘL3

nopt

d + NC/2
ISW

]
,

where NC in the denominator comes from the fact that there are NC exchanges
between cores through the L3 cache.

We also require FArSh to fit the L2 cache and the base (one group) to fit the
L1 cache. Thus,

ΠCT,1 ≤ min
[
ΠFArShFold,min

(
ΘL3

nL2

d
,ΘL2

nL1

d
,ΘL1

2d

2d − 1

)
ISW

]
,

where nL1 and nL2 are the integers defined by the following condition: FArSh
of a CT with base size nL1 (nL2) and height ns fits the L1 (L2) cache, i.e.,
2nsΓnL2 ≤ ML2/S.

4.3 Latency Limits

For a parallel algorithm, we have to take into account the possible latency. We
have NC cores. Let NCT denote the maximal number of CTs that are executed
at the same time. This parameter has to be adjusted to minimize the idle time
of the threads. Since the parallelism is in the time axis, each narrow CT with
height n′ is processed by no more than one core at a time. Thus, to ensure there
are enough asynchronous tasks for all cores, the condition NCT ≥ NC must hold.

The total time to process a CT is Tpipe = n′tcalc + NCtwait, where tcalc
is the time for the update of one group, that is, OG = 22dO operations, and
data exchanges with FArSh; twait is the time for thread synchronization, which
includes waiting for semaphores to open and the exchange of the group data
SG = 22dS through the shared cache. According to Little’s law, we have

ΠCT,1 ≤ NCTn′OG

Tpipe
=

NCTn′OG

NCtwait + n′tcalc
. (8)

LRnLA Algorithms for Manycore Computers 43

Fig. 6. Performance benchmarks for one full ConeFold update. The dots correspond
to the maximal value on each graph.

5 Performance Tests

The algorithm was coded in C++20, gcc 11.3, and HWloc 2.5; the parallelism
was implemented with standard library threads. The tests were performed on
an AMD Ryzen R9 5950X processor if not stated otherwise. AVX vectorization
was implemented through domain folding [9,10].

To perform the whole simulation, a 3D domain with 4 ·2MaxRank LBM nodes
along each axis is folded and subdivided into CFs. We set MaxRank = 7 and
Q = 19 if not stated otherwise. All of the CFs of rank MaxRank are boundary
CFs with many missing operations. Since the theory is constructed for a full
CF task, we also perform several benchmarks for a full CF. In that case, the
boundary condition is invalid, and such benchmarks are used only for parameter
adjustments. Nevertheless, such full CFs can be valid if the initial task is first
subdivided into CFs of rank equal to (MaxRank − 1), and then FArShFold is
applied to a CF which is entirely inside the domain.

To account for the memory-bound performance, we use the GPUps perfor-
mance unit, i.e., billions of population updates per second, which is equal to the
GLUps (billion of lattice node updates per second) metric multiplied by Q.

5.1 Parameter Adjustment

In theory, the construction goals in the implementation are achieved if n′ =
2nopt. However, to account for the reality of the fixed local cache size of the
cores, their bandwidth, and the possibility of suboptimal localization in the Z-
order traversal, we decided that n′ and NCT should remain flexible parameters
in the code.

We can use (8) and the performance dependence on NCT and ns (Fig. 6, left;
n′ = 64) to estimate twait ∼ 30 μs and tcalc ∼ 1.5 μs [15]. Thus, twait � tcalc and
synchronization overheads are high if ns is low (n′/NC < twait/tcalc).

This fact poses a problem. We have estimated the optimal height of the layer
to be n′ = 2nopt = 32, but if it is so, then ns is low when the available parallelism
of a 16-core processor is used.

44 V. Levchenko and A. Perepelkina

Tests were performed for different values of ns and n′ (Fig. 6, center). Indeed,
the predicted optimal value of n′ does not lead to the best performance, and the
deviation from the theoretical values increases as ns decreases.

The twait/tcalc ratio varies for different Q. The dependence of the best per-
formance versus Q and n′ is shown in Fig. 6 (right). The predicted optimal value
of n′ = 2nopt is attained only when Q = 27 (cube stencil). In that case, tcalc has
the highest value since both OG and SG are higher than for other values of Q.
For Q = 7 (cross stencil), the optimal performance is found for n′ = 128 and
ns = 8, and for ns = 2nopt/NC = 2, it is more than twice lower. In this case,
thread synchronization overheads prevail: twait > tcalc2nopt/NC .

5.2 Benchmark Results

Finally, we used the optimal values of NCT and n′ and measured the performance
of our implementation (Fig. 7). Here, except for one case (one full CF), the
simulation is for the whole domain: eight CFs tile the domain, some subtasks
are empty, and the periodic boundary works correctly with the domain folding.

The performance result for the full CF is higher by a factor of about 5 than
the SW limit when Q = 7 and by a factor of 4 when Q = 27. Thus, taking some
possible overheads into account, the algorithm construction goals are satisfied.

The performance results for the full domain on the same graph are lower since
the boundaries give rise to a worse load balance among parallel threads. When
MaxRank is lower, the issue of synchronization overheads becomes prominent,
and the performance decreases.

For MaxRank < 6, the condition dn′ < NT , which means that we can treat
a layer as a flat CT (Sect. 3.2), is no longer satisfied. In that case, we can not
estimate its AI as n′ISW, the premises of the FArShFold construction are not
met, and the performance is further decreased. However, even in the worst case
(MaxRank = 4), the performance remains higher than the limit for the SW
codes.

For Q = 19, we studied the parallel scaling in the strong sense by increasing
the number of cores with a fixed size of the domain (Fig. 7). The benchmark was
run on different processors, listed in Table 2. In all the tests, the performance
increases with NC . The SW performance limit is surpassed with only two cores
on any of the studied architectures. Up to NC = 4, the scaling is close to linear,
and the efficiency in relation to the performance peak is 20–40%. With more
cores in use, the performance increases by at least a factor of 1.5. The probable
reason for the slower increase here is the issue with synchronization overheads
(Sect. 5.1).

Both for Intel and AMD processors, the change in the processor architecture
gives a leap in performance, even when the core count is lower. In zen3, the
increased shared cache gives a better performance, but this increase can not
compensate for the twice lower number of cores and, thus, less local cache.

LRnLA Algorithms for Manycore Computers 45

Fig. 7. Performance benchmarks

Table 3. Meaning of the notations used in the text

LBM Lattice Boltzmann Method

d number of spatial dimensions

group lattice node group, a cube of 2d lattice nodes

N 2N is the number of mesh nodes of the simulation domain in each direction

NT number of time steps in the simulation task

I, AI Arithmetic Intensity

O operation count per lattice node update

S data size per lattice node, S = Q · 4 B

LRnLA Locally Recursive non Locally Asynchronous (algorithms)

SW, CT, CF Stepwise, ConeTorre, ConeFold

MaxRank an integer parameter of the ConeFold algorithm, N = NT = 2 · 2MaxRank

m the CT base is a cube with md groups, i.e., (2m)d lattice nodes

n′ FArShFold parameter (see Figs. 4 and5)

nopt the data of a CF of size 2nopt fit the L3 cache

6 Related Work

LBM is a memory-bound scheme where high performance is relevant for many
applications; for this reason, there are many studies devoted to improving its
memory performance. Let us focus on several works targeting multicore CPUs.
The majority of the implementations are stepwise and treat the stepwise per-
formance as an ideal limit [22]. To get close to the peak, loop blocking [22] and
spatial tiling [17] are used to take advantage of the multilevel cache. Here are
some of the published results: 0.21 GLUps for single precision D3Q19 on Intel
Xeon E5-2690v3 (12 cores, 68 GB/s memory bandwidth) [18]; 0.33 GLUps for
double precision D3Q19 on AMD EPYC 7451 (24 cores, 130 GB/s) [22]; 0.27
GLUps for single precision D3Q19 on four Intel Xeon E5-4620 v4 processors (40
cores, 273 GB/s) [5]. The performance of the processors is different, but the
memory bandwidths considered in these works are comparable to or higher than

46 V. Levchenko and A. Perepelkina

those we used in our research. This characteristic is more relevant since LBM
is a memory-bound task. Both the performance limit estimated by the authors
and the performance obtained in those works are lower than the results obtained
in the current paper.

As we have shown in Sect. 3.2, the peak can be increased by combining several
time layers. There are many possibilities for decomposing the dependency graph,
and other works often use the approach of the one-dimensional wavefront [7,
20]. Our ConeTorre decomposition can also be described as a wavefront-type
temporal blocking (in contrast to the temporal halo [2]). But the ConeTorre
base is a cube, and the base can be localized in a smaller cache, while the data
of a subtask in the wavefront tiling span the whole domain.

Finally, in comparison to other ConeTorre implementations [10,14], the new
algorithm introduced here shows better parallel scaling and, therefore, better
efficiency on manycore CPUs.

7 Conclusions

In this work, we proposed FArShFold, a new algorithm of the LRnLA family. The
algorithm allows the efficient use of manycore parallelism while taking advantage
of the shared and local cache of the cores in a processor.

The algorithm is parallel in time, that is, time is divided into slices IBs ≤
it < IEs and each slice is assigned only one core. This way, even the smallest
cache levels (L1, L2) have their unique purpose in the algorithm.

This construction became possible with the use of the previous inventions
associated with the LRnLA method: the recursive space-time subdivision and,
most importantly, the use of the FArSh data structure for data exchange on the
space-time slope.

Finally, note that the obtained performance result for single-precision D3Q19
LBM is more than 1.4 GLUps, and this value is at least 5–100 times as high
as the recently published SW benchmarks [5], which include tests on many-
node clusters with four Intel Xeon E5-4620 v4 processors. This fact proves the
superiority not only of the FArShFold algorithm which is proposed here but also
the optimality of the compact streaming pattern for LBM [23] and the nonlocal
vectorization through domain folding [9,10].

Acknowledgments. The research was supported by the Russian Science Foundation
(grant № 18-71-10004).

References

1. Bailey, P., Myre, J., Walsh, S.D., Lilja, D.J., Saar, M.O.: Accelerating lattice Boltz-
mann fluid flow simulations using graphics processors. In: International Conference
on Parallel Processing, ICPP 2009, pp. 550–557. IEEE (2009). https://doi.org/10.
1109/ICPP.2009.38

https://doi.org/10.1109/ICPP.2009.38
https://doi.org/10.1109/ICPP.2009.38

LRnLA Algorithms for Manycore Computers 47

2. Endo, T.: Applying recursive temporal blocking for stencil computations to deeper
memory hierarchy. In: 2018 IEEE 7th Non-volatile Memory Systems and Applica-
tions Symposium (NVMSA), pp. 19–24. IEEE (2018)

3. Geier, M., Schönherr, M.: Esoteric twist: an efficient in-place streaming algorithms
for the lattice Boltzmann method on massively parallel hardware. Computation
5(2), 19 (2017). https://doi.org/10.3390/computation5020019

4. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.:
The lattice Boltzmann method. Springer 10(978-3), 4–15 (2017)

5. Lehmann, M., Krause, M.J., Amati, G., Sega, M., Harting, J., Gekle, S.: Accu-
racy and performance of the lattice Boltzmann method with 64-bit, 32-bit, and
customized 16-bit number formats. Phys. Rev. E 106(1), 015,308 (2022)

6. Levchenko, V., Perepelkina, A.: Locally recursive non-locally asynchronous algo-
rithms for stencil computation. Lobachevskii J. Math. 39(4), 552–561 (2018).
https://doi.org/10.1134/S1995080218040108

7. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-D blocking opti-
mization for stencil computations on modern CPUs and GPUs. In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2010, pp. 1–13. IEEE (2010)

8. Osheim, N., Strout, M.M., Rostron, D., Rajopadhye, S.: Smashing: folding space to
tile through time. In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 80–93.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89740-8 6

9. Perepelkina, A., Levchenko, V.: LRnLA algorithm ConeFold with non-local vector-
ization for LBM implementation. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays
2018. CCIS, vol. 965, pp. 101–113. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-05807-4 9

10. Perepelkina, A., Levchenko, V.: Synchronous and asynchronous parallelism in the
LRnLA algorithms. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2020. CCIS, vol.
1263, pp. 146–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
55326-5 11

11. Perepelkina, A., Levchenko, V.D.: Functionally arranged data for algorithms with
space-time wavefront. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2021. CCIS,
vol. 1437, pp. 134–148. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81691-9 10

12. Perepelkina, A., Levchenko, V., Zakirov, A.: New compact streaming in LBM with
ConeFold LRnLA algorithms. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2020.
CCIS, vol. 1331, pp. 50–62. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-64616-5 5

13. Perepelkina, A., Levchenko, V., Zakirov, A.: Extending the problem data size for
GPU simulation beyond the GPU memory storage with LRnLA algorithms. In:
Journal of Physics: Conference Series, vol. 1740, p. 012,054 (2021). https://doi.
org/10.1088/1742-6596/1740/1/012054

14. Perepelkina, A., et al.: Heterogeneous LBM simulation code with LRnLA algo-
rithms. Commun. Comput. Phys. 33(1), 214–244 (2023). https://doi.org/10.4208/
cicp.OA-2022-0055

15. Pershin, I., Levchenko, V., Perepelkina, A.: Qualitative and quantitative study
of modern GPU synchronization approaches. In: Voevodin, V., Sobolev, S. (eds.)
RuSCDays 2021. CCIS, vol. 1510, pp. 376–390. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92864-3 29

16. Pohl, T.: 619.lbm s SPEC CPU®2017 benchmark description. https://www.spec.
org/cpu2017/Docs/benchmarks/619.lbm s.html

https://doi.org/10.3390/computation5020019
https://doi.org/10.1134/S1995080218040108
https://doi.org/10.1007/978-3-540-89740-8_6
https://doi.org/10.1007/978-3-030-05807-4_9
https://doi.org/10.1007/978-3-030-05807-4_9
https://doi.org/10.1007/978-3-030-55326-5_11
https://doi.org/10.1007/978-3-030-55326-5_11
https://doi.org/10.1007/978-3-030-81691-9_10
https://doi.org/10.1007/978-3-030-81691-9_10
https://doi.org/10.1007/978-3-030-64616-5_5
https://doi.org/10.1007/978-3-030-64616-5_5
https://doi.org/10.1088/1742-6596/1740/1/012054
https://doi.org/10.1088/1742-6596/1740/1/012054
https://doi.org/10.4208/cicp.OA-2022-0055
https://doi.org/10.4208/cicp.OA-2022-0055
https://doi.org/10.1007/978-3-030-92864-3_29
https://doi.org/10.1007/978-3-030-92864-3_29
https://www.spec.org/cpu2017/Docs/benchmarks/619.lbm_s.html
https://www.spec.org/cpu2017/Docs/benchmarks/619.lbm_s.html

48 V. Levchenko and A. Perepelkina

17. Pohl, T., Kowarschik, M., Wilke, J., Iglberger, K., Rüde, U.: Optimization and
profiling of the cache performance of parallel lattice Boltzmann codes. Parallel
Process. Lett. 13(04), 549–560 (2003)

18. Riesinger, C., Bakhtiari, A., Schreiber, M., Neumann, P., Bungartz, H.J.: A holistic
scalable implementation approach of the lattice Boltzmann method for CPU/GPU
heterogeneous clusters. Computation 5(4), 48 (2017)

19. SPEC: CPU®2017 benchmark results. http://spec.org/cpu2017/results/res2022
q1/cpu2017-20220228-31030.html. https://spec.org/cpu2017/results/res2023q1/c
pu2017-20221205-33005.html

20. Wellein, G., Hager, G., Zeiser, T., Wittmann, M., Fehske, H.: Efficient temporal
blocking for stencil computations by multicore-aware wavefront parallelization. In:
2009 33rd Annual IEEE International Computer Software and Applications Con-
ference, vol. 1, pp. 579–586. IEEE (2009)

21. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

22. Wittmann, M., Haag, V., Zeiser, T., Köstler, H., Wellein, G.: Lattice Boltzmann
benchmark kernels as a testbed for performance analysis. Comput. Fluids 172,
582–592 (2018)

23. Zakirov, A., Perepelkina, A., Levchenko, V., Khilkov, S.: Streaming techniques:
revealing the natural concurrency of the lattice Boltzmann method. J. Supercom-
put. 77(10), 11911–11929 (2021). https://doi.org/10.1007/s11227-021-03762-z

http://spec.org/cpu2017/results/res2022q1/cpu2017-20220228-31030.html
http://spec.org/cpu2017/results/res2022q1/cpu2017-20220228-31030.html
https://spec.org/cpu2017/results/res2023q1/cpu2017-20221205-33005.html
https://spec.org/cpu2017/results/res2023q1/cpu2017-20221205-33005.html
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1007/s11227-021-03762-z

Parallel Numerical Algorithms

Implementation of a Fuzzy Inference
Method with Nonsingleton Fuzzification

Based on CUDA and GPGPU
Technologies

Sergey Karatach(B) and Vasiliy Sinuk

Belgorod State Technological University named after V. G. Shukhov,
Belgorod, Russian Federation

karatach1998@yandex.ru

Abstract. This paper describes a fuzzy inference method using non-
singleton fuzzification based on a fuzzy truth value. The described
method offers an efficient convolution scheme based on the generalization
principle, which reduces the computational complexity to the method to
polynomial. For the described method, a parallel implementation using
CUDA technology has been performed. The article describes the features
of this implementation, as well as several possible improvements for it.
The first improvement is to use the mechanisms of OpenGL technology
when calculating fuzzy truth values. As a second improvement, we sug-
gest an efficient algorithm for the convolution of fuzzy truth values is
proposed for the case when a certain class of functions is used as some
t-norms. The article presents the results of computational experiments
for various modifications of the parallel implementation, including some
of the proposed improvements. Based on the results obtained, we anal-
ysis is made on the feasibility of using one or another improvement at
different degrees of sampling and with various numbers of inputs.

Keywords: Fuzzy inference · Non-singleton fuzzification · Parallel
technologies

1 Introduction

Initially, the fuzzy systems described in [4] were a composition of a fuzzifier,
a knowledge base, an inference module and a defuzzifier. Further development
of the theory of fuzzy systems consisted in the modification of each of these
components.

Thus, the fuzzification process, i.e., the expression of attribute values of input
objects by means of fuzzy sets, in most ways of the practical application of fuzzy
systems is formalized using singleton fuzzification. This type of fuzzification
provides a speed of fuzzy inference acceptable for practical use. However, in
some subject areas, with such a formalization of the attributes of input objects,
the qualitative component of information about these objects is discarded.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 51–62, 2023.
https://doi.org/10.1007/978-3-031-38864-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-38864-4_4

52 S. Karatach and V. Sinuk

An alternative approach is fuzzification of the non-singleton type (NS) [3,5,
8]. NS-fuzzification is used in fuzzy rule-based systems when the measurements
that activate them are imperfect or uncertain (due to measurement noise, defects
or deterioration of sensor’s quality, etc.), or when their input data are natural
language concepts. It models such measurements or concepts with fuzzy sets
or more general linguistic variables. These objects of the theory of fuzzy sets
and fuzzy systems to a greater extent reflect the original nature of numerical
data or natural language concepts containing uncertainty or imperfection of
measurement.

The main problem that arises when implementing inference in fuzzy MISO-
structure systems using NS-fuzzification is an exponential increase in computa-
tional complexity. This article presents a fuzzy inference method using a fuzzy
truth value (FTV), which reduces the computational complexity to polynomial.
The proposed method makes it possible to implement the algorithm as a sequence
of parallel calculations and reductions. The use of parallel computing technolo-
gies becomes especially justified, when implementing this algorithm in a gener-
alized form, the discretization of membership functions is performed.

In the second section of the article, the problem of inference solved by a fuzzy
is formulated. The third section describes the fuzzy inference method using fuzzy
truth value and NS-fuzzification. The fourth section describes the features of the
efficient implementation of this approach using CUDA and GPGPU technolo-
gies. Then, in the fifth section, a computational experiment was performed for
the described implementation, according to the results of which conclusions were
drawn about the justification of the proposed techniques for efficient implemen-
tation.

2 The Problem Statement

A linguistic model is a base of fuzzy rules Rk, k = 1, N , of the form

Rk : if x1 is A1k, . . . , if xn is Ank, then y is Bk, (1)

where N is the number of fuzzy rules; Aik ⊆ Xi, i = 1, n, and Bk ⊆ Y are
fuzzy sets that are characterized by membership functions μAik

(xi) and μBk
(y),

respectively; x1, x2, . . . , xn are input variables of the linguistic model, and

[x1, x2, . . . , xn]T = x ∈ X1 × X2 × . . . × Xn.

The symbols Xi, i = 1, n, and Y denote the spaces of input and output
variables respectively. If you denote X = X1 × X2 × . . . × Xn and Ak = A1k ×
A2k × . . . × Ank, and

μAk
(x) = T1

i=1,n

μAik(xi),

where T1 is an arbitrary t-norm, then rule (1) is represented as a fuzzy implica-
tion

Rk : Ak → Bk, k = 1, N.

Parallel Implementation of a Fuzzy Inference Method with NS Fuzzification 53

The rule Rk can be formalized as a fuzzy relation defined on the set X ×Y , i.e.,
Rk ⊆ X × Y is a fuzzy set with membership function

μRk
(x, y) = μAk →Bk

(x, y).

A logical-type model defines a function μAk →Bk
(x, y) based on known mem-

bership functions μAk
(x) and μBk

(y) using one of the implication functions
proposed in [7,10]:

μAk →Bk
(x, y) = I(μAk

(x), μBk
(y)),

where I is an implication function.
The task is to determine the fuzzy output B′

k ⊆ Y for the system presented
in the form (1) if the fuzzy sets are supplied at the inputs

A′ = A′
1 × A′

2 × . . . × A′
n ⊆ X or x1 is A′

1 and x2 is A′
2 and . . . and xn is A′

n,

with the corresponding membership function μA ′(x) defined as

μA ′(X) = T3
i=1,n

μA′
i
(Xi). (2)

A nonsingleton fuzzifier maps the measured xi = X ′
i, i = 1, n to a fuzzy

number, for which μA′
i
(x′

i) = 1 and μA′
i
(xi) are decreases from 1 to 0 as it moves

away from the x′
i value.

Conceptually [6] NS fuzzification implies that a given input value x′
i is the

value that will be the most possible of all nearby values; however, since the input
is uncertain, neighboring values may also be possible, but to a lesser extent.

According to the generalized fuzzy rule modus ponens [10], a fuzzy set B′
k is

defined by the composition of a fuzzy set A′ and a relation Rk , i.e.,

B′
k = A′ ◦ (Ak → Bk)

or, at the level of membership functions,

μB′
k
(y|x′) = sup

x∈X

{
μA ′(x′)

T2
� I

(
μAk

(x), μBk
(y)

)}
. (3)

In (3) conditional notation is applied, since input into a fuzzy system occurs
at a certain value of x, namely, x′. The notation μB′

k
(y|x′) shows that μB′

k

changes with each value x′. The computational complexity of expression (3) is
O(|X1| · |X2| · . . . · |Xn| · |Y |).

3 A Method of Inference Using a Fuzzy Truth Value

Applying the truth modification rule [1]

μA ′(x) = τAk |A ′
(
μAk

(x)
)
,

54 S. Karatach and V. Sinuk

where τAk |A ′ is the fuzzy truth value of the fuzzy set Ak with respect to A′,
which is a compatibility function CP (Ak ,A′) of membership function of Ak

with respect to A′, and A′ is considered as reliable [2]:

τAk |A ′(v) = μCP (Ak ,A
′)(v) = sup

µA k
(x)=v

x∈X

{μA ′(x)} . (4)

Let’s move from variable x to variable v by denoting μAk
(X) = v. We get

μA ′(x) = τAk |A ′
(
μAk

(x)
)

= τAk |A ′(v), (5)

then (3) will take the form:

μB′
k
(y|x′) = sup

v∈[0,1]

{
τAk |A ′(v)

T2
� I

(
v, μBk

(y)
)}

. (6)

When the implication is verbalized in (6), it will appear as:

If FTV is true, then y is B′
k. (7)

Thus, (7) represents another structure of rules in contrast to the canonical
structures of Zadeh [15] and Takagi-Sugeno [14]. The application of this rule
does not depend on the number of inputs in fuzzy systems.

Expression (6) is characterized by a complexity of the order O(|v| · |Y |). As
follows from [12,13],

µCP (A k ,A ′)(v) = T̃1
i=1,n

µCP (Aik,A′
i
)(vi)

=
(
. . .

(
(µCP (A1k,A′

1)(v1)T̃1µCP (A2k,A′
2)(v2))T̃1µCP (A3k,A′

3)(v3)
)
T̃1 . . .

)
T̃1µCP (Ank,A′

n)(vn),

(8)

where T̃1 is a t-norm of n arguments extended by the generalization principle
and

μCP (Aik,A′
i)

(vi) = sup
µAik

(xi)=vi

xi∈Xi

{
μA′

i
(xi)

}
.

For example, an extended t-norm of 2 arguments has the form

μCP (Ak ,A
′)(v) = T̃1

i=1,2

μCP (Aik,A′
i)

(vi)

= sup
v1T1v2=v

(v1,v2)∈[0,1]2

{
μCP (A1k,A′

1)
(v1)T̃3μCP (A2k,A′

2)
(v2)

}
. (9)

The latter relation is characterized by a complexity of the order O(|v|2). The
output value of the fuzzy system described by (1), when defuzzified by the center
of gravity method taking into account (6), is determined by (see [10])

y(x′) =

∑
r=1,N

yr T4
k=1,N

sup
v∈[0,1]

{
τAk |A ′(v)

T2
� I

(
v, μBk

(yr)
)}

∑
r=1,N

T4
k=1,N

sup
v∈[0,1]

{
τAk |A ′(v)

T2
� I

(
v, μBk

(yr)
)} . (10)

Parallel Implementation of a Fuzzy Inference Method with NS Fuzzification 55

Since the implication in formula (10) does not depend on input data (2), then
first, i.e. before using the compositional rule (6), τk,r(v) = I

(
v, μBk

(yr)
)

is cal-
culated for k = 1, N , r = 1, N . With this in mind, (10) takes the form

y(x′) =

∑
r=1,N

yr T4
k=1,N

sup
v∈[0,1]

{
τAk |A ′(v)

T2
� τk,r(v)

}

∑
r=1,N

T4
k=1,N

sup
v∈[0,1]

{
τAk |A ′(v)

T2
� τk,r(v)

} . (11)

4 Features of the Inference Method Implementation
Using a Fuzzy Truth Value

The figure below shows the flowchart of the fuzzy inference procedure.
Individual blocks in Fig. 1 correspond to various algorithmic tasks, therefore,

when implementing each of these blocks, different implementation approaches
can be used to organize efficient calculations. Further, the features of the appli-
cation of these approaches in the implementation of the inference algorithm are
considered.

4.1 Using OpenGL for the Fuzzy Truth Value Computing

Since in the software implementation of the proposed inference method in a gen-
eralized form, it is necessary to discretize the values of the membership function
(m.f.) of fuzzy sets, when finding each fuzzy truth value at each grid point in
the range [0, 1], it is necessary to view the discretized values of the membership
functions μAki

(xi) and μA′
i
(xi). Thus, the complexity of calculating the FTV for

a given input for a given fuzzy set from the rule base is O(Dftv × Dfset), where
Dftv is the size of the sampling grid of the m.f. of the fuzzy truth value, and
Dfset is the size of the sampling grid of the m.f. of the fuzzy set of the input or
output variable. The calculation at different points of the sampling grid of the
FTV can be distributed between the threads of the CUDA core block. With this
approach, each thread will compute the fuzzy truth value for a given truth level
by looking at all points of the sampling grid of the fuzzy set, and the computa-
tional complexity is reduced to O(Dfset). Another approach to implementing the
calculation of the FTV at each point of the sampling grid is to use the hardware
implementation of the internal mechanisms of OpenGL shaders instead of pro-
gramming a streaming multiprocessor inside the CUDA core. Each shader is a
custom or predefined program whose input and output data format is defined by
the OpenGL standard specification. In this case, the process of calculating the
FTV for all inputs and all rules consists in finding the intensity of the glow of
single-channel pixels of an image of size Dftv × (N × n), where N is the number
of rules in the rule base, n is the number of inputs. This image is saved to an
internal buffer, the data from which is then copied to global memory for use

56 S. Karatach and V. Sinuk

Fig. 1. Flowchart of the fuzzy inference procedure

inside the CUDA core at the next step of the inference algorithm. The calcu-
lation of the FTV by formula (4) is illustrated in Fig. 2. It is organized based
on the specification of the pipeline for rendering three-dimensional graphics in
OpenGL, according to which the calculation of the value of this formula is split
into the vertex, geometry, rasterization, and fragment shaders. The vertex shader
plots the graph of the membership function of the fuzzy set specified in the rule
base; the ordinate in the graph is perpendicular to the pixel plane, and the range
of abscissa values [0, 1] is distributed over a column of Dftv pixels. Each vertex
has a value of the m.f. of the fuzzy set of the input variable attached to it as an
attribute at the same point of the sampling grid. In the geometry shader, the
vertices of the graph are connected by straight lines, forming a closed geometric
shape in this graph. Then, during rasterization, rays from the pixel centers cross
the straight lines of the graph, forming new vertices for the fragment shader,
whose attributes are calculated using linear interpolation of the attributes of

Parallel Implementation of a Fuzzy Inference Method with NS Fuzzification 57

Fig. 2. Using OpenGL to calculate the FTV

the vertices of the crossed lines. Finally, in the fragment shader, the attached
interpolated value of the m.f. of the fuzzy set of the input variable is taken as
the value of the pixel channel intensity. If the ray originating from the pixel has
crossed several straight lines of the graph, then the maximum intensity of the
pixel channel is selected by specifying this intensity as the depth of the fragment
using the built-in variable gl Depth.

The described method involving OpenGL for the computation of the FTV is
illustrated in Fig. 3. The shapes corresponding to the attribute values are given
in gray. For the vertex shader, the figure shows the values of the m.f. of the
fuzzy set in the rule base and in the input at all points of the sampling grid. In
the geometry shader, these vertices are combined into a polyline graph of the
corresponding membership function. During rasterization, the attribute values
are interpolated at the points of the sampling grid of the FTV. The fragment
shader is used to find the largest value of all candidates at a given point of the
sampling grid of the FTV.

Double or triple buffering can be used when implementing the fuzzy output
for data packets.

4.2 The Implementation of Efficient Convolution Inside the CUDA
Kernel

After computing the FTV for all rules and all inputs, to compute the final
inference result, we must first perform a reduction to obtain the T1-norm of the
calculated FTV for all inputs of each rule, according to formula (9), and then
compute the value of formula (10) by performing a reduction for all rules and for
all centers of the m.f. of the output variable using the results of the reduction.
The reduction of the FTV across all inputs can be efficiently calculated, first by
computing the T3-norm of pairs, and then continue computing the pairwise T3-
norms until the result is obtained, resulting in a tree of intermediate T3-norms
of the FTVs. In this case, the computation of the reduction has complexity

58 S. Karatach and V. Sinuk

Fig. 3. Data flow along the OpenGL shader pipeline

O(log n × D2
ftv). It is convenient to use dynamic CUDA kernels to implement

this approach to reduction [11].
When implementing the convolution inside the CUDA core, it is important

to take into account the specific details of calculations on streaming multiproces-
sors: one should avoid the inactivity of threads within one packet of 32 threads,
as well as the occurrence of bank conflicts in data access [16,17].

4.3 Features of the Implementation of the FTV Convolution When
T1 = min

In the case when the min function is selected as T1, and relying on the property
of non-growing for both T1 and T3, it is possible to implement the calculation of
(9) with complexity O(Dftv × log n).

Parallel Implementation of a Fuzzy Inference Method with NS Fuzzification 59

Algorithm 1. FTVs reduction when T1 = min and T3(a, b) ≥ T3(c, d) if a > c
or b > d
Require: ftvi, i = 1, n

max ftv[i] = 0;
for v = 1 . . . 0 do

s ← {ftvi[v] | ftvi[v] >= max ftv[i]} ;
max ftv[i] ← max(max ftv[i], ftvi[v]);
v max ← maxi {ftvi[v]} , v max index ← arg maxi {ftvi[v]} ;
if s = ∅ & i = v max index then

r[i] ← v max;
else

r[i] ← max ftv[i];
end if
ftv[v] ← T3

i
{r[i]};

end for
return ftv

Fig. 4. An illustration of the operation of the FTV convolution procedure for T1 = min
and T3 = min

Algorithm 1 presents the algorithm for the reduction of the FTVs under the
specified constraints. We justify the algorithm in the case of the reduction of a
pair of FTVs. To do this, consider calculating the value of the reduction of the
FTV at point v of the sampling grid. Since the value at that point is given by
sup v1T1v2=v

v1,v2∈[0,1]
T3(τA1k/A′

1
(v1), τA2k/A′

2
(v2)), it is necessary to find such a pair of

values τA1k/A′
1
(v1) and τA2k/A′

2
(v2) that maximize the value of the reduction of

T3. If either v1 = v or v2 = v, then the optimal set of values of τAik/A′
i
(vi) is

found. Otherwise, it is necessary to choose the largest of τAik/A′
i
(vi) for which

vi = v. Such reasoning can be extrapolated to the reduction of a larger number
of FTVs. An example of the operation of the algorithm for T1 = min, T3 = min,
n = 6, and a sampling grid of FTV of size 5 is given in Fig. 4.

60 S. Karatach and V. Sinuk

5 A Comparative Analysis of Various Implementation
Methods

Fig. 5. Graphs of the operation time of various modifications at different values of the
degree of sampling of the FTV (left) and with a different numbers of inputs (right)

This section provides a comparative analysis of the results of several computa-
tional experiments conducted for various modifications of the parallel implemen-
tation of the fuzzy classifier based on the proposed method. Fuzzy classification
was performed on the KDD Cup 1999 dataset [9], containing 494 021 records;
each of which captures different attributes of TCP packets. The set of attributes
includes 41 quantitative and categorical input attributes and also refers the pack-
age either to normal or to one of 4 classes of attacks: DOS, R2L (Remote to user),
U2R (User to root), or Probing (probing attack).

During the experiments, calculations were performed on a system equipped
with an Intel(R) Core(TM) i9-9900K central processor with a frequency of
3.60 GHz, Kingston KHX2666C16D4/32GX 32 GB RAM with frequency of
2666 MHz, an Nvidia GeForce RTX 2080Ti GPU and an ASUS ROG STRIX
Z390-E GAMING motherboard.

Various modifications of the inference algorithm were compared. In the 1st
and 3rd modifications, all calculations are performed using CUDA technology; in
the 2nd and 4th modifications, OpenGL (EGL) technology was used to find the
FTV, as well as CUDA technology was also used for the rest of the calculations.
In the 1st and 2nd modifications, there are no restrictions on the choice of T1

and T3, in the 3rd and 4th modifications, the min function is used as T1 and T3.
In all modifications, the Lukashevich implication was used.

In the first series of computational experiments, the operating time of the
algorithm is estimated at different sizes of the sampling grid of the FTV with the
number of inputs equal to 7. In the second series of experiments, the operating
time of the algorithm is compared with a different number of inputs and the
sampling grid size equal to 500. Here we select a given number of the most
significant quantitative features from the whole set of input ones. The list of

Parallel Implementation of a Fuzzy Inference Method with NS Fuzzification 61

selected features includes those with an acceptable degree of noise, allowing for
the separation of a subset of classes.

According to the experimental results depicted in Fig. 5, it can be seen that
the use of GPGPU becomes justified when the size of the computational grid
is more than 500 and the number of inputs is more than 6, and the use of the
optimal convolution algorithm of the FTV gives an advantage in computing time
for almost the entire range of experimental parameter.

6 Conclusions

The calculation scheme proposed in this paper for the fuzzy inference method
based on fuzzy truth value made it possible to achieve high performance for
the fuzzy inference procedure using NS-fuzzification through the use of parallel
computing technologies. The article describes the possibility of using OpenGL
technology in the implementation of FTV calculation, as well as the key features
of the implementation of effective convolution using CUDA technology. In this
case when certain restrictions are imposed on the t-norms used in the reduction
of the FTVs, an efficient algorithm for the reduction of the calculated FTVs for
all inputs is proposed.

The computational experiments were carried out to estimate the time of
computing of various modifications of the implementation of the fuzzy inference
method described in this article using NS-fuzzification based on a fuzzy truth
value. Based on the measurements obtained, conclusions were made about the
expediency of using GPGPU to calculate the FTV and the efficiency of the
reduction procedure achieved due to proposed optimization, with different sizes
of the sampling grid and numbers of inputs in the fuzzy system.

References

1. Borisov, A.N., Krunberg, O.A., Fedorov, I.P.: Decision Making Based on Fuzzy
Models: Application Examples. Zinatne Press (1990)

2. Dobua, D., Prad, A.: Theory of possiblities. Applications to knowledge represen-
tation in computer science, Radio i svyaz (1990)

3. Fu, C., Sarabakha, A., Kayacan, E., Wagner, C., John, R., Garibaldi, J.M.: Input
uncertainty sensitivity enhanced nonsingleton fuzzy logic controllers for long-term
navigation of quadrotor UAVs. IEEE/ASME Trans. Mechatron. 23(2), 725–734
(2018). https://doi.org/10.1109/TMECH.2018.2810947

4. Mamdani, E.H.: Applications of fuzzy algorithms for control of a simple dynamic
plant. In: Proceedings of the IEEE (1974)

5. Mendel, J.M.: Non-singleton fuzzification made simpler. Inf. Sci. 559, 286–
308 (2021). https://doi.org/10.1016/j.ins.2020.12.061. https://www.sciencedirect.
com/science/article/pii/S0020025520312275

6. Mouzouris, G., Mendel, J.: Nonsingleton fuzzy logic systems: theory and appli-
cation. IEEE Trans. Fuzzy Syst. 5(1), 56–71 (1997). https://doi.org/10.1109/91.
554447

https://doi.org/10.1109/TMECH.2018.2810947
https://doi.org/10.1016/j.ins.2020.12.061
https://www.sciencedirect.com/science/article/pii/S0020025520312275
https://www.sciencedirect.com/science/article/pii/S0020025520312275
https://doi.org/10.1109/91.554447
https://doi.org/10.1109/91.554447

62 S. Karatach and V. Sinuk

7. Piegat, A.: Fuzzy Modeling and Control. Studies in Fuzziness and Soft Computing.
Physica-Verlag HD (2001). https://books.google.ru/books?id=329oSfh-vxsC

8. Pourabdollah, A., John, R., Garibaldi, J.: A new dynamic approach for non-
singleton fuzzification in noisy time-series prediction, pp. 1–6 (2017). https://doi.
org/10.1109/FUZZ-IEEE.2017.8015575

9. UML Repository: KDD cup 1999 data. https://archive.ics.uci.edu/ml/datasets/
kdd+cup+1999+data. Accessed 1 Dec 2022

10. Rutkowski, L.: Computational intelligence - methods and techniques (2008)
11. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose

GPU Programming, 1st edn. Addison-Wesley Professional (2010)
12. Sinuk, V., Polyakov, V., Kutsenko, D.: New fuzzy truth value based inference

methods for non-singleton miso rule-based systems. In: Proceedings of the First
International Scientific Conference “Intelligent Information Technologies for Indus-
try” (IITI 2016) (2016)

13. Sinuk, V.G., Mikhelev, V.V.: Metody vivoda dlya sistem logicheskogo typa na
osnove nechetkoy stepeni istinnosty. Izvestiya RAN. Teoriya i sistemy upravleniya
(3), 1–8 (2018)

14. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to mod-
eling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985).
https://doi.org/10.1109/TSMC.1985.6313399

15. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and deci-
sion processes. IEEE Trans. Syst. Man Cybern. SMC-3(1), 28–44 (1973). https://
doi.org/10.1109/TSMC.1973.5408575

16. Zone, N.D.: Cuda best practices guide (2020). https://docs.nvidia.com/cuda/cuda-
c-best-practices-guide/index.html. Accessed 1 Dec 2022

17. Zone, N.D.: Cuda programming guide (2020). https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html. Accessed 1 Dec 2022

https://books.google.ru/books?id=329oSfh-vxsC
https://doi.org/10.1109/FUZZ-IEEE.2017.8015575
https://doi.org/10.1109/FUZZ-IEEE.2017.8015575
https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/TSMC.1973.5408575
https://doi.org/10.1109/TSMC.1973.5408575
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Solving the Three-Dimensional
Faddeev–Merkuriev Equations via Spline

Collocation and Tensor Product
Preconditioning

V. A. Gradusov(B), V. A. Roudnev, E. A. Yarevsky, and S. L. Yakovlev

Department of Computational Physics, Saint Petersburg State University,
Saint Petersburg 199034, Russian Federation

{v.gradusov,v.rudnev,e.yarevsky,s.yakovlev}@spbu.ru

Abstract. We present an efficient computational approach to solving
the Faddeev-Merkuriev equations for quantum three-body systems. The
efficiency of our approach stems from the following three key factors. The
appropriate treatment of the three-body dynamics due to the use of the
Faddeev-Merkuriev equations, which results in the simplification of the
solution. The advanced partial-wave analysis based on the Wigner func-
tions decomposition of the solutions that leads to a model-free reduction
of the six dimensional problem to a three-dimensional one. The elab-
orated numerical scheme that makes extensive use of the structure of
the equations. The numerical approach is based on the spline collocation
method and uses the tensor product form of discretized operators. For
solving the linear equations we worked out the preconditioning scheme
which is based on the Matrix Decomposition Algorithm. We show that
this numerical scheme outperforms the general-purpose direct sparse lin-
ear system solvers in both time and memory requirements. The numeri-
cal approach demonstrated also clear advantages over the generic scheme
that we implemented in earlier research. The approach has been applied
to high-precision calculations of bound states and scattering states of
several three-body systems.

Keywords: Faddeev–Merkuriev equations · Spline collocation ·
Tensor product preconditioner

1 Introduction

Quantum three-body systems remain a source of challenges for both theoretical
and experimental physicists. Calculations of some triatomic systems contribute
to metrology, and quantum scattering of charged particles is used in antihydrogen
formation experiments. Many of the applications require rather precise results
about the systems studied.

We intend to create a computational framework applicable to various physical
systems and states. Such a framework should be based on a mathematically sound
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 63–77, 2023.
https://doi.org/10.1007/978-3-031-38864-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-38864-4_5

64 V. A. Gradusov et al.

problem formulation. One of the most established approaches to studying quan-
tum three-body systems is based on the Faddeev–Merkuriev (FM) equations [8,16,
26] which can be applied to systems with short- and long-range (Coulomb) inter-
actions.

A direct solution of the six-dimensional FM equations is hardly possible. We
use the symmetries of the solutions to reduce the dimension of the configuration
space. In the total-orbital-momentum representation [13], the FM equations are
reduced to a finite system of three-dimensional partial differential equations. The
numerical solution of such systems is still challenging.

Here we present a computational approach to solving the three-dimensional
FM equations. The approach is based on the spline collocation method and
makes intensive use of the tensor product form. The preconditioning scheme
is based on the Matrix Decomposition Algorithm (tensor-trick algorithm). We
show that the numerical scheme outperforms the general-purpose direct sparse
linear system solvers in both time and memory requirements. We also discuss
the parallel implementation of the scheme, its efficiency, and its limitations.

The paper is organized as follows. In Sect. 2 we describe the FM equation
formalism. Section 3 is devoted to the description of our numerical scheme. In
Sect. 4, we give some examples of high-precision calculations of three-body sys-
tems. We consider the atomic helium bound states and the multichannel scatter-
ing of the antiproton off the ground and excited states of the positronium with
emphasis on the antihydrogen formation processes. Conclusion summarizes the
study and points directions for further work.

2 The Theoretical Approach

2.1 The Faddeev–Merkuriev Equations

The quantum system consists of three charged particles with masses mα and
charges Zα, α = 1, 2, 3. In what follows, the set of indices {α, β, γ} runs over the
set {1, 2, 3} which enumerates particles. By the pair α, we denote a particle pair
βγ that is complementary to the particle α. Particle positions are described by
sets of reduced Jacobi coordinates (xα,yα) [8] (we use boldface for vectors). They
are defined for a partition α(βγ) as scaled relative position vectors between the
particles of the pair α and between their center of mass and the particle α. The
reduced masses μα and μα(βγ) are given in terms of particle masses mα [8]. The
reduced Jacobi vectors for various α are related by an orthogonal transformation
xβ = cβαxα + sβαyα, yβ = −sβαxα + cβαyα [8]. Further on, β Jacobi vectors
are expressed through α.

The FM equations for three charged particles [8,16] can be written for the
components ψα of the wave function as

{Tα + Vα(xα) +
∑

β �=α

V
(l)
β (xβ , yβ) − E}ψα(xα,yα)

= −V (s)
α (xα, yα)

∑

β �=α

ψβ(xβ ,yβ), α �= β, α, β = 1, 2, 3. (1)

Solving the 3D Faddeev–Merkuriev Equations 65

The kinetic energy operators Tα are defined as Tα ≡ −Δxα
−Δyα

. The potentials
Vα are the pairwise Coulomb interactions Vα(xα) =

√
2μαZβZγ/xα (β, γ �= α).

They are split into the interior (short-range) V
(s)
α and tail (long-range) V

(l)
α parts:

Vα(xα) = V (s)
α (xα, yα) + V (l)

α (xα, yα). (2)

Equations (1) can be summed up, thus resulting in the Schrödinger equation for
the wave function Ψ =

∑
α ψα.

The splitting (2) is done by means of the Merkuriev cutoff function χα,
V

(s)
α (xα, yα) = χα(xα, yα)Vα(xα). This function confines the short-range part

of the potential to a vicinity of the three-body collision point and the binary
configuration (xα � yα when yα → ∞) [8]. We use the cutoff function from [10]:

χα(xα, yα) ≡ χα(xα) = 2
(
1 + exp[(xα/x0α)2.01]

)−1
. (3)

In principle, the parameter x0α can be chosen arbitrarily. It should be noted,
however, that its choice changes the properties of the components ψα [10].

For scattering problems, the key property of FM Eqs. (1) is their asymptotic
decoupling. This property means that, for energies below the breakup threshold,
each component ψα at large distances behaves as a binary configuration of the
pairing α [27]. For a total energy E of the system below the three-body ionization
threshold, the asymptote is

ψα(xα,yα) = χA0(xα,yα)δαα0 + Ξα(xα,yα), (4)

where the outgoing wave has the form

Ξα(xα,yα)

=
∑

n�m

φA(xα)
xα

Y�m(x̂α)
√

pn0

pn
ÃA,A0(ŷα,pn0)

ei(pnyα−ηn log(2pnyα))

yα
. (5)

Here Y�m is a spherical harmonic function. The multi-index A = {Am} =
{αn�m} specifies the scattering channel, i.e., the two-body bound state in the
pair α with wave function φA(xα)Y�m(x̂α)/xα and energy εn. The momen-
tum pn of the outgoing particle is determined by the energy conservation
condition E = p2n + εn. The Sommerfeld parameter is defined as ηn ≡
Zα(Zβ + Zγ)

√
2mα(βγ)/(2pn). The initial channel is defined by the incoming

wave χA0(xα,yα), whose exact expression is given in [12].
The binary scattering amplitude

AAA0(ŷα,pn0) = AC(ŷα,pn0) + ÃA,A0(ŷα,pn0) (6)

describes the transition from the initial channel A0 to the channel A. Here AC

is the two-body Coulomb scattering amplitude [17]. The amplitude AAA0 is the
final result of calculations. Then the scattering cross section σAA0 , which can
be compared directly against experimental data, is expressed in terms of this
amplitude [17].

FM Eq. (1) and boundary conditions (4), (5) form the boundary-value rep-
resentation of the scattering problem, which can be solved numerically.

66 V. A. Gradusov et al.

2.2 The Total-Orbital-Momentum Representation

Each Eq. (1) is a six-dimensional partial differential equation. We introduce
the six-dimensional kinematic coordinates (Xα, Ωα). The coordinates Xα =
{xα, yα, zα ≡ (xα ,yα)/(xαyα)} determine the positions of the particles in the
plane containing them. The three Euler angles Ωα = {φα, ϑα, ϕα} specify the
position of the plane in space. The FM components are expressed in the coordi-
nates (Xα, Ωα) as

ψα(Xα, Ωα) =
+∞∑

L=0

∑

τ=±1

L∑

M=−L

L∑

M ′=M0

(1 − z2α)M ′/2ψLτ
αMM ′(Xα)

xαyα
FLτ

MM ′(Ωα), (7)

where M0 = (1 − τ)/2, and the functions FLτ
MM ′(Ωα) are expressed in terms of

the Wigner D-functions DL
MM ′ [25]. The function FLτ

MM ′ is the common eigen-
function of the squared total orbital momentum, its projection, and the spatial
inversion operators [6,13]. The factor (1−z2α)M ′/2 makes the partial components
ψLτ

αMM ′ and its derivatives nonsingular at zα = ±1 [11,23].
By plugging (7) into FM Eqs. (1) and projecting the result onto the func-

tions FLτ
MM ′ , we obtain a finite set of three-dimensional equations for the partial

components ψLτ
αMM ′(Xα):

[
TLτ

αMM ′ + Vα(xα) + V̂α(yα) − E
]
ψLτ

αMM ′(Xα)

+ TLτ−
αM,M ′−1ψ

Lτ
αM,M ′−1(Xα) + TLτ+

αM,M ′+1ψ
Lτ
αM,M ′+1(Xα) = −V

(s)
α (xα, yα)

(1 − z2α)
M′
2

× xαyα

xβyβ

L∑

M ′′=M0

2(−1)M ′′−M ′

√
2 + 2δM ′′0

FLτ
M ′′M ′(0, wβα, 0)(1 − z2β)

M′′
2 ψLτ

βMM ′′(Xβ)

−
⎛

⎝
∑

β �=α

V
(l)
β (xβ , yβ) − V̂α(yα)

⎞

⎠ ψJτ
αM,M ′(Xα). (8)

The kinetic part is of the form

TLτ
αMM ′ = − ∂2

∂y2
α

+
1
x2

α

(
L(L + 1) − 2M ′2) − ∂2

∂x2
α

−
(

1
y2

α

+
1
x2

α

)
dM ′

zα
, (9)

TLτ+
αM,M ′+1 =

1
x2

α

λL,M ′√
1 + δM ′0d

M ′+
zα

,

TLτ−
αM,M ′−1 = − 1

x2
α

λL,−M ′√
1 + δM ′1d

M ′−
zα

, (10)

where λLM ′
=

√
L(L + 1) − M ′(M ′ + 1). Here we have introduced the operators

dM ′
zα

=
(
1 − z2α

) ∂2

∂z2α
− 2(M ′ + 1)zα

∂

∂zα
− M ′(M ′ + 1),

dM ′+
zα

= − (
1 − z2α

) ∂

∂zα
+ 2(M ′ + 1)zα, dM ′−

zα
= − ∂

∂zα
. (11)

Solving the 3D Faddeev–Merkuriev Equations 67

The explicit expression of the kinematic angle wβα can be found in [13].
The potential terms in the 3D equations are rearranged using the represen-

tation of the tail parts of potentials:

∑

β �=α

V
(l)
β (xβ , yβ) = V̂α(yα) +

⎛

⎝
∑

β �=α

V
(l)
β (xβ , yβ) − V̂α(yα)

⎞

⎠ . (12)

The potential V̂α is an approximation of
∑

β �=α V
(l)
β that minimizes the new

right-hand-side term (
∑

β �=α V
(l)
β − V̂α)ψJτ

αM,M ′ .
The choice of the potential V̂α must ensure the square integrability of this

term. The reason for the rearrangement is that the variables are now “almost
separate” in the operator on the left. This separability is used to construct an
effective preconditioner for the computational scheme.

Equations (8) are the three-dimensional FM equations in the total-orbital-
momentum representation. The equations on partial components ψLτ

αMM ′ with
different indices L, M , and τ give rise to independent sets of equations. This is
a direct consequence of the fact that the total orbital momentum, its projection,
and the spatial parity are conserved for the three-body systems considered here.
Given L, M , and τ , system (8) consists of 3nM three-dimensional PDEs, where
nM = (L−M0+1). Owing to the symmetry (antisymmetry) of the wave function
in the presence of identical particles, the number of coupled equations is reduced
to 2nM or nM in the case of two or three identical particles, respectively [11].

The system (8) must be supplemented with asymptotic boundary conditions.
For the bound state problem, the partial components ψLτ

αMM ′ are required to be
zero at a sufficiently large distance. For the scattering problem, the asymptotic
boundary conditions on ψLτ

αMM ′(Xα) are formulated as the sum

ψLτ
αMM ′(Xα) = χLτ

A0MM ′(Xα)δαα0 + ΞLτ
αMM ′(Xα) (13)

of the partial components of the incoming and outgoing waves (4), (5). They
are obtained by projecting these waves onto the functions FLτ

MM ′ . Their explicit
expressions can be found in [12].

The partial amplitude ÃLλ
AA0

, extracted from ΞLτ
αMM ′ , is related to the coef-

ficients of the spherical harmonics in the expansion of the amplitude ÃAA0(ŷα).
The scattering cross section σAA0 is the sum over L of the partial cross sections
σL

AA0
, which are expressed in terms of the partial amplitudes ÃLλ

AA0
.

By subtracting the incoming wave from the FM components, we obtain
Eqs. (8) with an inhomogeneous term. Their solution satisfies a zero Dirich-
let boundary condition at the origin and is asymptotically equal to the outgoing
wave.

3 The Computational Scheme

3.1 The Basic Scheme

Assume that the spaces of basis functions consist of the functions Si
α(x), Sj

α(y),
and Sk

α(z). These functions are defined on the given intervals [0, Rxα
], [0, Ryα

],

68 V. A. Gradusov et al.

and [−1, 1], respectively, and are supposed to be local; moreover, Si
α(x) and

Sj
α(y) satisfy the boundary conditions specified below. The three-dimensional

tensor product basis is used then to expand the solutions ψJτ
αMM ′ of Eqs. (8) in

the cubes [0, Rxα
] × [0, Ryα

] × [−1, 1]:

ψJτ
αMM ′(xα, yα, zα) =

nxα ,nyα ,nzα∑

i,j,k=1

cM ′
ijkSi

α(xα)Sj
α(yα)Sk

α(zα). (14)

Assume also that (xξ
α, yη

α, zζ
α), ξ = 1, . . . , nxα

, η = 1, . . . , nyα
, ζ = 1, . . . , nzα

,
are regular grids of points. The choice of identical basis spaces for expanding
the partial components ψJτ

αMM ′ and sets of collocation points for Eqs. (8) with
different indices M ′ is not used explicitly in the construction of the scheme.
However, it simplifies the notations and can be used efficiently in the storage
scheme, as explained below.

The basis functions Si
α(x) and Sj

α(y) satisfy zero Dirichlet-type boundary
conditions on the lines xα = 0 and yα = 0, and so does Si

α(x) on the line
xα = Rxα

. The boundary condition satisfied by Sj
α(y) at the right endpoint

depends on the type of problem solved. For bound state calculations, the zero
Dirichlet-type boundary conditions are still relevant. In scattering calculations,
for implementing the asymptotic boundary conditions (13), we use a hybrid basis
consisting of the local functions that describe the solution in the nonasymptotic
region and a few additional nonlocal basis functions. Each additional basis func-
tion has the form of the irregular Coulomb function u+

� (ηn, pnyα) [17] in the
asymptotic region. In the remaining part of the space, it is a polynomial cho-
sen to satisfy the zero Dirichlet-type boundary condition at the origin and to
ensure the required continuity of the basis function in the solution interval. The
so chosen basis functions ensure the fulfillment of outgoing boundary conditions.

Applying the collocation method, i.e., requiring Eqs. (8) to be satisfied at
the points of the grid, we obtain either inhomogeneous matrix equations of the
form (H − E∗S)c = f for the scattering problem or the generalized eigenvalue
problem Hc = ESc for the problem of bound states. The generalized eigenvalue
problem can be rewritten as

S(H − E∗S)−1c̃ =
1

E − E∗ c̃, (15)

where c̃ = (H − E∗S)c, to find the eigenvalues in a vicinity of a given E = E∗.
Here the matrix H is the discretized version of the operator in the 3D FM
Eqs. (8) with E = 0 and has linear dimension nM

∑
α nxα

nyα
nzα

. It is sparse and
has only O(n2

M

∑
α nxα

nyα
nzα

) nonzero elements. The matrix S has elements
Si

α(xξ
α)Sj

α(yη
α)Sk

α(zζ
α).

In the spirit of [14,22], and [19], the arising systems of linear equations with
matrix (H − E∗S) are preconditioned by inverting approximately the operator
on the left-hand side of Eqs. (8) with E = E∗.

Solving the 3D Faddeev–Merkuriev Equations 69

3.2 The Preconditioner

The efficient inversion of the matrix of the operator on the left-hand side of
Eqs. (8) is based on a technique known as Matrix Decomposition Algorithm
(MDA) [5] or Tensor Trick (TT) [22]. The following model example illustrates
it. Let A1,2 and B1,2 be matrices of dimensions n × n and m × m, respectively.
Suppose now that we need to invert an (nm) × (nm) matrix of the form

A1 ⊗ B1 + A2 ⊗ B2, (16)

where ⊗ denotes the Kronecker tensor product of matrices [9]. Let us introduce
the operation D

(WA,WA, ΛA) = D(A1, A2) (17)

of finding (if they exist) the nonsingular complex matrices WA, WA (and the
diagonal matrix ΛA) that simultaneously diagonalize the matrices A1 and A2 in
the sense of the equalities WAA1WA = ΛA and WAA2WA = I. It is easy to
show that the operation D can be accomplished by solving the left and right
generalized eigenvalue problems WAA1 = ΛAWAA2 and A1WA = A2WAΛA.
Let us assume that (WB ,WB , ΛB) = D(B1, B2). Then, according to the well-
known basic properties of the Kronecker product [9] (namely, (A1 ⊗ B1)(A2 ⊗
B2) = (A1A2) ⊗ (B1B2) and (A ⊗ B)−1 = A−1 ⊗ B−1), we can prove that

(A1 ⊗ B1 + A2 ⊗ B2)−1 = (WA ⊗ WB)(ΛA ⊗ ΛB + I ⊗ I)−1(WA ⊗ WB). (18)

The matrix ΛA ⊗ ΛB + I ⊗ I is diagonal and can be inverted quickly. With
the use of (18), the factorization of the matrix requires O(n3 + m3) instead of
O(n3m3) operations if we treat it as a matrix of the general form. The matrix-
vector product with a factorized matrix of the form (18) requires O(nm(n+m))
multiplications instead of the ordinary O(n2m2). The algorithm given in the
example (16)–(18) can be generalized in an obvious way to the case of sum of
Kronecker products of more than two matrices.

The result of the discretization of a partial differential operator in a tensor
product basis can be a matrix with a tensor structure of type (16), which is
suitable for applying the MDA, only if the operator has a specific structure.
This is not the case for the operator on the left-hand side of Eqs. (8) because
of the terms containing the operators dM ′

zα
, dM ′+

zα
, and dM ′−

zα
, which, at first

sight, can not be diagonalized simultaneously. We can construct, however, a
basis of functions in which the diagonalization can be accomplished. These are
the eigenfunctions of the operator dM ′

zα
defined in (11):

gM ′
� (zα) =

√
2� + 1

2
(� − M ′)!
(� + M ′)!

PM ′
� (zα)

(1 − z2α)M ′/2 , (19)

where PM ′
� are the associated Legendre polynomials [2]. From their properties,

it follows that gM ′
� ≡ 0 when � < M ′; otherwise gM ′

� is a polynomial of degree
� − M ′. They satisfy the relations

dM ′
zα

gM ′
� (zα) = −�(� + 1)gM ′

� (zα), (20)

70 V. A. Gradusov et al.

dM ′±
zα

gM ′±1
� (zα) = ∓λ�,±M ′

gM ′
� (zα), (21)

with the operators dM ′±
zα

from (11) and orthonormality conditions with weight
(1 − z2α)M ′

. By using these properties, it is straightforward to show that the
matrix element of the operator on the left-hand side of Eqs. (8) in the basis
of polynomial functions gM ′

� is diagonal in �. In other words, if we plug the
expansion ψJτ

αMM ′(Xα) =
∑

� ψJτ
αMM ′�(xα, yα)gM ′

� (zα) into Eqs. (8) and project
the resulting equations on the polynomial functions gM ′

� , we obtain a set of
equations with a left-hand side of the form

[
− ∂2

∂y2
α

+
1
x2

α

(J(J + 1) − 2M ′2) − ∂2

∂x2
α

+
�(� + 1)

y2
α

+
�(� + 1)

x2
α

+ Vα(xα) + V̂α(yα) − E

]
ψJτ

αMM ′�(xα, yα)

+
λ̂J,−M ′

λ�,−M ′

x2
α

ψJτ
αMM ′−1�(xα, yα) − λ̂J,M ′

λ�,M ′

x2
α

ψJτ
αMM ′+1�(xα, yα), (22)

where λ̂J,±M ′
= λJ,±M ′√

1 + δM ′0(1). Now it is not difficult to show that, for
every �, the operator (22) can be inverted by a formula similar to (18) but with
a tridiagonal matrix on the right-hand side to be inverted in this case.

Nevertheless, the use of the basis of functions gM ′
� in the solution expan-

sion (14) is undesirable since these functions are not local. This leads to a sub-
stantial increase in the size of the matrices involved. Let us show that the diago-
nalization of the operators dM ′

zα
, dM ′±

zα
can be in fact accomplished in other—even

local—bases of functions Sk
α(zα). Denote by DM ′

zα
and DM ′±

zα
the discretized ver-

sions of the operators dM ′
zα

and dM ′±
zα

:

(DM ′
zα

)ζk =
(
dM ′

zα
Sk

α

)
(zζ

α), (DM ′±
zα

)ζk =
(
dM ′±

zα
Sk

α

)
(zζ

α). (23)

Find the diagonal representations

(W
M ′

zα
,WM ′

zα
, Λ̃M ′

zα
) = D(DM ′

zα
, Szα

), M ′ = M0, . . . , J, (24)

of the matrices DM ′
zα

. If we assume that the basis of functions Sk
α(z) is chosen in

such a manner that the first nzα
eigenfunctions gM ′

� can be approximated with
good accuracy and the grid of collocation points zζ

α is chosen close to roots of
gM ′

M ′+nzα
, then the following approximate equalities hold:

Λ̃M ′
zα

≈ ΛM ′
zα

≡ diag
{ − M ′(M ′ + 1),−(M ′ + 1)(M ′ + 2),

. . . ,−(M ′ + nzα
− 1)(M ′ + nzα

)
}
,

W
M ′

zα
DM ′±

zα
WM ′±1

zα
≈ ΛM ′±

zα
,

(25)

Solving the 3D Faddeev–Merkuriev Equations 71

where

ΛM ′+
zα

=

⎛

⎜⎜⎜⎜⎜⎝

0
−λM ′+1,M ′

0
−λM ′+2,M ′

0
. . .

−λM ′+nzα −1,M ′
0

⎞

⎟⎟⎟⎟⎟⎠
(26)

and

ΛM ′−
zα

=

⎛

⎜⎜⎜⎜⎜⎝

0 λM ′,−M ′

0 λM ′+1,−M ′

. . .
0 λM ′+nzα −2,−M ′

0

⎞

⎟⎟⎟⎟⎟⎠
. (27)

The proof of approximate equalities (25) is given in the Appendix in [11]. As is
shown there, the columns of the matrix WM ′

zα
are the expansion coefficients of

the functions gM ′
� with respect to the basis of functions Sk

α. The equalities (25)
are approximate, but we regard them as exact in the construction of the precon-
ditioner.

The construction of the preconditioner L−1 can be found in [11]. Note, how-
ever, that in the presented here formalism the roles of the variables xα and yα are
interchanged relative to those in [11]. This change makes the numerical scheme
more suitable for scattering calculations, which imply large values of nyα

.
If we denote by L the discretized version of the operator on the left-hand

side of Eqs. (8) with E = E∗, then L−1 ≈ L−1. Note that the only sources
of imprecision for the last equality are the approximate equalities (25). The
preconditioner has the form

L−1 = diag{L−1
1 ,L−1

2 ,L−1
3 }, (28)

with
L−1

α = Wzα
Wyα

Wxα
P

(
L̃0

α

)−1

PWxα
Wyα

Wzα
. (29)

Formulae (28) and (29) are the analogues of formula (18). The matrices
Wxα(yα,zα) and Wxα(yα,zα) are block diagonal with blocks that have the structure
of the Kronecker tensor product of the “one-dimensional” matrices associated
with the variables xα, yα, zα. The matrix L̃0

α is block diagonal with blocks that
are tridiagonal matrices of size nxα

nyα
nzα

. Lastly, P is the permutation matrix.

3.3 Algorithm Complexity and Parallelization

The construction of the tensor factorization is the most time-consuming and
memory-intensive operation when calculating and storing the preconditioner.
It is necessary to perform the diagonalization operation D and simultaneously
store a total of

∑
α(nM + nzα

− 1)nyα
pairs of matrices of general form and

size nxα
. Thus the estimated memory requirements are 2

∑
α(nzα

+ nM)nyα
n2

xα

72 V. A. Gradusov et al.

numbers, and the computational cost scales as O(
∑

α(nzα
+ nM)nyα

n3
xα

).
Finally, each matrix-vector product with the preconditioner L−1 requires
O(nM

∑
α nxα

nzα
nyα

(nxα
+ nzα

+ nyα
)) operations.

Another time-consuming and memory-intensive part of the scheme is asso-
ciated with the whole matrix H. Let us express it as H = L̃ + R̃, where the
matrices L̃ and R̃ contain, correspondingly, the diagonal and off-diagonal parts
with respect to the blocks of the whole matrix H that are enumerated by the
indices α of the FM components and Eqs. (8). The matrix L̃ is less memory-
intensive and can be efficiently stored as a sum of tensor products similar to (16).
The exact description of the storage scheme can be found in [11].

Let us turn now to the matrix R̃. We can show that the storage size
and computational cost of the matrix-vector product implied by keeping this
sparse matrix in the memory in the common CSR format [20] scales as
2n2

Mr3
∑

α nxα
nyα

nzα
, where r is the overlap rate, which is defined as the max-

imum number of basis functions that are nonzero at any point of the interval of
definition over all basis sets.

Consider now the use of the same basis set for expanding the components
ψJτ

αMM ′ with different indices M ′ and identical sets of collocation points for
Eqs. (8) with different indices M ′. Consider also the matrix R̃ as a block matrix
with blocks R̃αβ enumerated by the indices of the FM components. Some of
these blocks may be trivial depending on the permutational symmetry of the
considered system. The nonzero blocks R̃αβ can be expressed and stored in the
form R̃αβ = FαβS̃αβ , with S̃αβ = IM ⊗ Sαβ . Here the elements of the “three-
dimensional” matrix Sαβ are

(Sαβ)ζξη,kij = Sk
β(zβ(xξ

α, yη
α, zζ

α))Si
β(xβ(xξ

α, yη
α, zζ

α))Sj
β(yβ(xξ

α, yη
α, zζ

α)). (30)

This matrix is stored in memory in the CSR sparse matrix format. Each
matrix Fαβ stored in memory is a block matrix with blocks FM ′M ′′

αβ , M ′,M ′′ =
M0, . . . , J . Each block is a “three-dimensional” diagonal matrix representing a
function-multiplication operator acting on the partial component ψLτ

βMM ′′ on
the right-hand side of Eqs. (8). Storing the blocks of the matrix R̃ in the form
R̃αβ = FαβS̃αβ requires saving O

((
n2

M + r3
) ∑

α nxα
nyα

nzα

)
numbers and per-

forming the same number of multiplication operations for matrix-vector prod-
ucts. This is drastic progress compared to storing R̃ in the CSR format when
nM > 1.

Fortunately, both the simultaneous diagonalization operations involved in the
construction of the preconditioner and the matrix-vector product with the matrix
R̃, which consists of sparse matrices Fαβ and Sαβ stored in the CSR format, can
be decomposed into a set of independent calculations. The storage of the matrices
that diagonalize the preconditioner, Fαβ and Sαβ , using distributed memory is
also straightforward. Thus the most time-consuming and memory-intensive parts
of the considered algorithm are highly parallelizable.

Solving the 3D Faddeev–Merkuriev Equations 73

4 The Results

We use the quintic Hermite splines S3
5 as a basis. The overlap rate (defined

in the previous section) r = 6 as there are six nonzero functions in each grid
interval. The spline nodes in the solution interval are chosen by mapping an
equidistant grid [18] with some empirically selected function. The details can be
found in [11]. We use the collocation at Gaussian points [4,7]. The code is written
in C++. The parallelization of the program is achieved by using functions from
the Intel MKL [1] mathematical library, which is a part of the Intel Parallel
Studio XE 2019 Update 4 software package. The largest modulus eigenvalues in
eigenvalue problem (15) are obtained by the ARPACK [15] implementation of
the Implicitly Restarted Arnoldi Method (IRAM) [21,24]. The preconditioned
GMRES algorithm [20] is used to solve the system of linear algebraic equations
(SLAE) with matrix H − E∗S. The computations use complex arithmetic and
are done on a six-core machine with an Intel Xeon X5675 processor and 32 GB
of RAM. In the tables and figures, we use the notations

(α : nxα
, nyα

, nzα
; β : nxβ

, nyβ
, nzβ

), (α : Rxα
, Ryα

; β : Rxβ
, Ryβ

) (31)

for the basis space parameters, which are the number of basis functions and the
lengths of the intervals they are defined on.

We used the helium atom system for test calculations of bound state energies
and the positron-antiproton-electron e+p̄e− system for scattering calculations.
All calculations were done in atomic units.

The calculations of the bound states of atomic helium have a long history.
Many methods specifically developed for this system give very accurate energy
values. In our calculations, we treated this system in general as an ordinary three-
body system. The results for the energy of the atomic helium were regarded as
a benchmark. For this reason, the mass of the helium nucleus was considered
infinite in the calculations to mimic the benchmark results [3]. There was a good
agreement with the benchmark values; even more, our universal code did con-
verge to these values. A relative error of the order of 10−8 was reached with a
basis much smaller than the maximal possible size available on the used hard-
ware.

Table 1 compares the approach suggested in the present paper with the
straightforward approach based on the application of the direct algorithm imple-
mented in the Intel MKL Pardiso solver [1] for solving the SLAE with the matrix
(H − E∗S) from (15) at each IRAM iteration. We can see that the Pardiso app-
roach uses much more memory and CPU time, and they grow much faster with
the number of basis functions than in the approach using the tensor product
preconditioner.

Table 2 shows the performance of the algorithm for the high case J = 10.
In this case, a set of twenty coupled 3D PDEs (8) was solved. We see from this
table that a relative error of approximately 10−5 is reached with relatively small
computer resources.

The e+p̄e− scattering problem is complicated by both elastic and rearrange-
ment processes. It is much less studied and is an active field of current research

74 V. A. Gradusov et al.

Table 1. Comparison of the tensor product preconditioner approach and the Pardiso-
based approach. In each computational experiment, we calculate two lower energy
levels 21P and 31P (i.e., J = 1 and τ = 1 states, symmetric with respect to
the exchange of electrons) of the helium atom. The benchmark energy values are
−2.12384308649810135925 and −2.05514636209194353689 a.u. [3]

Basis sizes Tensor product preconditioner Pardiso E, a.u.

Total

memory/

H − E∗S/

Preconditioner

size, GB

Calculation

of matrices/

IRAM

wall time,

minutes

Total

memory/

H − E∗S

size, GB

Calculation

of matrices/

IRAM

wall time,

minutes

(1: 22, 22, 9;

3: 19, 19, 12)

0.14/0.09/0.01 0.01/0.3 2.29/0.28 0.05/0.6 −2.12524

−2.05654

(1: 31, 31, 9;

3: 22, 22, 15)

0.25/0.16/0.02 0.02/0.7 5.31/0.55 0.04/1.9 −2.12365

−2.05495

(1: 40, 40, 12;

3: 25, 25, 18)

0.45/0.30/0.04 0.05/1.2 12.5/1.07 0.1/6.9 −2.12378

−2.05508

(1: 49, 49, 12;

3: 28, 28, 21)

0.68/0.45/0.06 0.08/1.9 21.3/1.62 0.1/14 −2.12385

−2.05513

(1: 58, 58, 12;

3: 28, 28, 21)

0.85/0.56/0.10 0.1/2.3 29.4/2.04 0.2/22 −2.12384

−2.05514

Table 2. The performance of the algorithm for the high-J case. We request in each
computational experiment the ground and first excited state energies of the helium
atom with J = 10 and τ = 1, symmetric with respect to the exchange of electrons.
The solution domains are (1: 280.0, 280.0; 3: 2.0, 2.0) a.u.

Basis sizes Matrix
linear size

Total
memory/
H − E∗S/
Preconditioner
size, GB

Calculation
of matrices/
IRAM
wall time,
minutes

E, a.u

(1: 58, 58, 6;
3: 4, 4, 6)

223 080 0.62/0.17/0.11 0.1/6.3 −2.00398
−2.00332

(1: 88, 88, 9;
3: 7, 7, 9)

771 507 2.2/0.59/0.43 0.7/33 −2.00412
−2.00346

(1: 118, 118, 9;
3: 7, 7, 9)

1 383 327 4.1/1.06/1.01 1.9/60 −2.00413
−2.00347

(1: 118, 118, 12;
3: 7, 7, 12)

1 844 436 7.3/1.41/1.18 2.4/280 −2.00413
−2.00347

with significant applications in ongoing experiments (see [12] and references
therein). In the calculations presented here, we keep the accuracy of cross sec-
tions within 1%.

Solving the 3D Faddeev–Merkuriev Equations 75

Table 3. The performance of the algorithm for calculations of the scattering of antipro-
ton p̄ on positronium e+e− with total energy E = −0.13828. The solution domains are
(1: 25.0, 110.0; 2: 30.0, 100.0) a.u.

Basis sizes Matrix
linear size

Total
memory/
H − E∗S/
Preconditioner
size, GB

Calculation
of matrices/
Equation
solution
wall time,
seconds

(1: 10,50,4;
2: 8,38,3)

287 616 0.92/0.44/0.10 7/22

(1: 15,75,4;
2: 12,55,3)

659 784 2.2/1.03/0.31 23/61

(1: 15,75,6;
2: 12,55,5)

1 022 928 4.4/1.58/0.45 34/299

(1: 20,100,6;
2: 15,70,5)

1 781 088 8.0/2.78/0.99 79/588

(1: 20,100,8;
2: 15,70,6)

2 303 232 8.4/3.58/1.25 100/373

Table 3 and Fig. 1 show the performance of the algorithm for scattering cal-
culations in the system e+p̄e− in the Ore energy gap.

 360

 400

 440

 480

 520

 560

 1 2 3 4 5 6

E
qu

at
io

n
so

lu
tio

n
tim

e,
 s

ec
on

ds

Number of cores

Fig. 1. The performance of the program for calculations of scattering of antiproton p̄
on positronium e+e− with total energy E = −0.13828, with respect to the number of
cores. The basis sizes are (1:20,100,8; 2:15,70,6). The solution domains are (1: 25.0,
110.0; 2: 30.0, 100.0) a.u.

76 V. A. Gradusov et al.

5 Conclusions

We developed and implemented a highly efficient numerical scheme to solve the
quantum three-body problem. The efficiency of our approach stems from the
following factors: (1) the use of the Faddeev–Merkuriev equations, which allows
for the simplification of the solution numerical approximation; (2) an advanced
partial analysis that leads to a model-free reduction of the six-dimensional prob-
lem to a three-dimensional one; and (3) an elaborated numerical scheme that
makes extensive use of the structure of the equations.

The numerical approach demonstrated clear advantages over the generic
scheme that we implemented in earlier research. For example, as we can see
from Table 1, the new approach uses only 1/20 of the memory required by the
generic one, and this advantage becomes even more noticeable as the number of
grid points increases.

However, our implementation of the scheme on parallel architectures has
some shortcomings. Although the used operations are highly parallelizable, the
performance saturates around six cores, as seen in Fig. 1. This limitation arises
from the lack of a parallel implementation of the Arnoldi algorithm. In order to
take full advantage of our numerical scheme, a parallelizable Krylov method is
strongly needed.

Acknowledgments. The work of V. A. Gradusov and S. L. Yakovlev was supported
by the Russian Science Foundation (grant № 23-22-00109). The research was carried
out on the computational resources of the “Computer Center of SPbU” (http://cc.
spbu.ru).

References

1. Intel Math Kernel Library Developer Reference (2019). https://software.intel.com/
en-us/mkl-developer-reference-c

2. NIST Digital Library of Mathematical Functions (2019). http://dlmf.nist.gov/
3. Aznabayev, D.T., Bekbaev, A.K., Ishmukhamedov, I.S., Korobov, V.I.: Energy

levels of a helium atom. Phys. Part. Nucl. Lett. 12(5), 689–694 (2015). https://
doi.org/10.1134/S1547477115050040

4. Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial
differential equations. J. Comput. Appl. Math. 128(1), 55–82 (2001). https://doi.
org/10.1016/S0377-0427(00)00509-4. Numerical Analysis 2000, vol. VII: Partial
Differential Equations

5. Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithms
for elliptic boundary value problems: a survey. Numer. Algor. 56, 253–295 (2011).
https://doi.org/10.1007/s11075-010-9384-y

6. Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics. Addison-
Wesley, Reading (1981)

7. de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal.
10(4), 582–606 (1973). https://doi.org/10.1137/0710052

8. Faddeev, L.D., Merkuriev, S.P.: Quantum Scattering Theory for Several Particle
Systems. Kluwer, Dordrecht (1993)

http://cc.spbu.ru
http://cc.spbu.ru
https://software.intel.com/en-us/mkl-developer-reference-c
https://software.intel.com/en-us/mkl-developer-reference-c
http://dlmf.nist.gov/
https://doi.org/10.1134/S1547477115050040
https://doi.org/10.1134/S1547477115050040
https://doi.org/10.1016/S0377-0427(00)00509-4
https://doi.org/10.1016/S0377-0427(00)00509-4
https://doi.org/10.1007/s11075-010-9384-y
https://doi.org/10.1137/0710052

Solving the 3D Faddeev–Merkuriev Equations 77

9. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkings Univer-
sity Press, Baltimore (2013)

10. Gradusov, V.A., Roudnev, V.A., Yarevsky, E.A., Yakovlev, S.L.: High resolution
calculations of low energy scattering in e−e+p and e+e−He++ systems via Faddeev-
Merkuriev equations. J. Phys. B: At. Mol. Opt. Phys. 52(5), 055,202 (2019).
https://doi.org/10.1088/1361-6455/ab0143

11. Gradusov, V.A., Roudnev, V.A., Yarevsky, E.A., Yakovlev, S.L.: Solving the
Faddeev-Merkuriev equations in total orbital momentum representation via spline
collocation and tensor product preconditioning. Commun. Comput. Phys. 30(1),
255–287 (2021). https://doi.org/10.4208/cicp.OA-2020-0097

12. Gradusov, V.A., Roudnev, V.A., Yarevsky, E.A., Yakovlev, S.L.: Theoretical
study of reactions in the e−e+p̄ three body system and antihydrogen forma-
tion cross sections. JETP Lett. 114(1), 11–17 (2021). https://doi.org/10.1134/
S0021364021130026

13. Kostrykin, V.V., Kvitsinsky, A.A., Merkuriev, S.P.: Faddeev approach to the three-
body problem in total-angular-momentum representation. Few Body Syst. 6, 97–
113 (1989). https://doi.org/10.1007/BF01080553

14. Lazauskas, R.: Etude de la diffusion de particules lourdes sur des systèmes
atomiques et nucléaires. Ph.D. thesis (2003). https://hal.archives-ouvertes.fr/tel-
00004178

15. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users Guide: Solution of
Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM,
Philadelphia (1998)

16. Merkuriev, S.P.: On the three-body Coulomb scattering problem. Ann. Phys.
130(2), 395–426 (1980). https://doi.org/10.1016/0003-4916(80)90344-9

17. Messiah, A.: Quantum Mechanics. North-Holland, Amsterdam (1961)
18. Roudnev, V., Cavagnero, M.: Automatic grid construction for few-body quantum

mechanical calculations. Comput. Phys. Commun. 182(10), 2099 (2011). https://
doi.org/10.1016/j.cpc.2011.05.003

19. Roudnev, V., Yakovlev, S.: Improved tensor-trick algorithm: application to helium
trimer. Comput. Phys. Commun. 126(1), 162–164 (2000). https://doi.org/10.1016/
S0010-4655(00)00002-3

20. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
21. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia

(2011)
22. Schellingerhout, N.W., Kok, L.P., Bosveld, G.D.: Configuration-space Faddeev cal-

culations: supercomputer accuracy on a personal computer. Phys. Rev. A 40, 5568–
5576 (1989). https://doi.org/10.1103/PhysRevA.40.5568

23. Scrinzi, A.: Helium in a cylindrically symmetric field. J. Phys. B: At. Mol. Opt.
Phys. 29(24), 6055–6068 (1996). https://doi.org/10.1088/0953-4075/29/24/012

24. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992). https://doi.org/10.1137/
0613025

25. Varshalovich, D.A., Moskalev, A.N., Khersonsky, V.K.: Quantum Theory of Angu-
lar Momentum. World Scientific, Singapore (1989)

26. Yakovlev, S.L.: Quantum N -body problem: matrix structures and equations.
Theor. Math. Phys. 181(1), 1317–1338 (2014). https://doi.org/10.1007/s11232-
014-0215-5

27. Yakovlev, S.L., Papp, Z.: The three-body Coulomb scattering problem in a dis-
crete Hilbert-space basis representation. Theor. Math. Phys. 163, 666–676 (2010).
https://doi.org/10.1007/s11232-010-0049-8

https://doi.org/10.1088/1361-6455/ab0143
https://doi.org/10.4208/cicp.OA-2020-0097
https://doi.org/10.1134/S0021364021130026
https://doi.org/10.1134/S0021364021130026
https://doi.org/10.1007/BF01080553
https://hal.archives-ouvertes.fr/tel-00004178
https://hal.archives-ouvertes.fr/tel-00004178
https://doi.org/10.1016/0003-4916(80)90344-9
https://doi.org/10.1016/j.cpc.2011.05.003
https://doi.org/10.1016/j.cpc.2011.05.003
https://doi.org/10.1016/S0010-4655(00)00002-3
https://doi.org/10.1016/S0010-4655(00)00002-3
https://doi.org/10.1103/PhysRevA.40.5568
https://doi.org/10.1088/0953-4075/29/24/012
https://doi.org/10.1137/0613025
https://doi.org/10.1137/0613025
https://doi.org/10.1007/s11232-014-0215-5
https://doi.org/10.1007/s11232-014-0215-5
https://doi.org/10.1007/s11232-010-0049-8

Monitoring and Forecasting Crop Yields

Tatiana Makarovskikh(B) , Anatoly Panyukov , and Mostafa Abotaleb

South Ural State University, Chelyabinsk, Russian Federation
{Makarovskikh.T.A,paniukovav}@susu.ru

Abstract. We consider in this paper the problem of monitoring agricul-
tural lands. The initial data for this are raster aerial photographs from
a satellite or drone. Each tile of an image corresponds to a field area.
The object under study corresponds to a certain set of tiles saved in
seven bands (each band is saved in a separate raster file, and each tile
has a value from 0 to 255). Satellite information is updated every 3–5
days. To monitor and forecast crop yields in the field, a time series for
each tile is considered. The initial data consist of a list of vectors with
lengths of about 100 elements (so many images can be obtained in one
season). The number of vectors is arbitrary and depends on the size of
the studied areas; moreover, it can vary. In this study, we consider (1)
the application of an algorithm for finding a quasilinear autoregression
equation with interdependent observable variables based on the gener-
alized method of least deviations for a single tile or a set of tiles, and
(2) the solution of the task flow for the entire population of tiles. This
requires the parallel organization of the cache memory and the design of
a database with the obtained characteristics for each considered object.
We consider the scheme of this process parallelization and conduct exper-
iments showing a 5- to 6-fold speedup on personal computers.

Keywords: Data analysis · Big data · Aerial monitoring · Parallel
database · Forecasting algorithm · General least deviation method ·
Forecasting crops · Precision farming

1 Introduction

At present, our country is dealing with many imperative tasks related to the
improvement of its security, competitiveness, and independence of production
and products. Agriculture is one of such strategically important industries. Start-
ing in the 2010s, digital technologies for precision farming (PF) have been gradu-
ally introduced into agriculture. The PF is multidisciplinary field of knowledge,
so it is characterized by the complexity of scientific, engineering, agronomic,
and management tasks. The existing methods and tools of PF have allowed
some countries to quickly introduce an innovative development path to agri-
culture. The management of agricultural production with the help of computer
technology, geoinformation technologies, and modern means of communication

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 78–92, 2023.
https://doi.org/10.1007/978-3-031-38864-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_6&domain=pdf
http://orcid.org/0000-0002-3656-9632
http://orcid.org/0000-0002-6586-1464
http://orcid.org/0000-0002-3442-6865
https://doi.org/10.1007/978-3-031-38864-4_6

Monitoring and Forecasting Crop Yields 79

began to develop rapidly [21]. The implementation of PF is actively developing
in Australia, Japan, Canada, Europe (in particular, Germany, Sweden, France,
Spain, Denmark, and the UK), Argentina, Brazil, China, India, Malaysia, and
Chile [11].

Most publications on PF in the world are devoted to the analysis of crop
quality, the recognition of infected areas, etc. These articles usually present the
results of experiments, however, it is not possible to make any comparison with
developed approaches since the analysis deals with crops that are not cultivated
in Russia, such as mango, orange, and kiwi, although tomatoes, potatoes, and
corn, which are cultivated in our country, have also been considered. For exam-
ple, the authors of [2] use the least mean square error (LMSE) on their data sets
for recognition (healthy and decaying crops) and get an unprecedented analysis
accuracy of 100%. However, after adding 10%, 20%, and 30% Gaussian noise,
the resulting average recognition rates dropped significantly to 85%, 70%, and
25%, respectively. In [20], training samples were created for some areas in China
by using historical maps of corn crops. The authors applied the feature optimiza-
tion method to their data sets and obtained optimal characteristics at different
stages of crop development. They also provided the structure schemes of the
developed algorithms, therefore it seems possible to use their experience in the
development of other algorithms and try to reproduce their algorithm for com-
parative analysis. Based on the results of computational experiments, we can
assume that the described approach is quite flexible, and similar methods can
be tested when analyzing the objects of our study (buckwheat and wheat crops).
Nevertheless, this research is devoted only to recognition and classification and
does not consider the dynamics of crop development.

A great deal of research on the dynamics of crop development both in Russia
and in the rest of the world is conducted using machine-learning methods since
they can catch the nonlinear relationships between predictors and yield on the
regional level [16]. However, the main disadvantage of these methods is that
they cannot produce adequate equations for the description of the examined
process, and therefore the obtained results can only be applied to the examined
area, so their use for another area requires neural network retraining. These
papers present outstanding results for specified areas but do not suggest any
general approach that can be used for other areas. There are several studies
(see, for instance, [18]) that investigate the change of yield explanatory power of
satellite-derived indicators but do not propose any models and do not present
any original general approach that can be applied to any region, aside from the
considered one, even after retraining.

Thus the tasks of image recognition and analysis of aerial photographs and
datasets are not only a popular research topic but also an area that requires
the development of new algorithms, high-quality computational experiments,
and the creation of flexible algorithms that can be adapted to various shoot-
ing conditions, diverse crops, and different objects in the images. For example,
to explore the possibility of retraining and using the developed model for the
analysis of different types of objects. Moreover, in the context of this task, we

80 T. Makarovskikh et al.

deal with big data, but neither the problem of parallelization of computations
nor its possibilities are considered in most papers. Thus all the papers on crop-
yield forecasting and analysis can be divided into the following types: statistical
studies using and representing different combinations of classical approaches (for
instance, [16,18]), machine learning models mostly used for recognition of some
information (for example, [2,19,20]), and mathematical models, in particular
those dealing with elementary ordinary differential equations [6]. We see that
there is a lack of research containing the complex approach with the develop-
ment and analysis of the applied software suitable for solving the crop yield
forecasting task.

For that reason, we do not speak in our paper about the recognition process
itself and focus instead on the analysis of the collected data and consider one
of the ways to save data about different agricultural objects in a database used
for providing the quasilinear recurrence equations that describe and forecast
the crop development. In the first section of the paper, we discuss the data
representation suitable for running our modeling algorithm. The second section
is devoted to the presentation of our general least deviation method, which
produces high-quality quasilinear difference equations adequately describing the
process under consideration. In the third section, we consider the identification of
the general least deviation model (GLDM) for large task flows, which can be used
for obtaining the model coefficients for large numbers of objects simultaneously.
The last section of the paper is devoted to computational experiments aimed at
exploring the speedup of calculations for datasets of different sizes. This approach
makes it possible to analyze large numbers of objects simultaneously and get the
model coefficients using numerical information obtained from aerial photographs.

2 Data Organization

A concept of data organization somewhat similar to the one used in our app-
roach is considered in [3–5]. The authors of these papers propose a method of
element-by-element image analysis for the formation of the linear contour of
objects depicted in aerial photographs. The method makes it possible to rec-
ognize objects by their formal features, allows the analysis of more details and
properties of the objects during the process of recognition, and also improves the
quality and accuracy of the recognition. Unfortunately, aside from the algorithm
itself, the authors do not provide any additional but very important information.
There are no data on the efficiency of the algorithm, nor do the authors supply
information on the time of work with graphic files of large dimensions, the results
of computational experiments, or the accuracy of the detection of objects. Like
many other authors, they restrict themselves to recognition and do not conduct
further analysis of the state of the recognized objects depending on the time.

Monitoring and Forecasting Crop Yields 81

2.1 The Data Structure for Aerial Photography Representation

The data used in the analysis is obtained from the process shown in Fig. 1. In
this paper, we discuss the last three blocks of the scheme, which involve time
series analysis.

Fig. 1. The scheme of execution of the analysis system

We can use an image made by a satellite or a drone. It may be saved using a
set of bands or it may be a single image. In any case, it is a single raster image
or a set of raster images. In our approach to data organization, we consider the
general case. Assume we have a satellite image. In our example, we use Sentinel
free images from [1]. This web service offers images from all over the world, taken
from January 2017 until the present day. This means that by saving images for
the same object we can explore its state over the course of five years. Once we
know the boundary of one object, we can save the vector of tiles belonging to
the interior of the outer contour (lake or field) and the exterior of the inner
contour (islands), starting from the upper left corner. Figure 2(a) shows how
the tiles are numbered. The grey tiles do not belong to the recognized image.
This data organization may be implemented for different types of objects such as
lakes and islands, crop fields and forests, etc. As soon as the information from a
multispectral camera mounted on a satellite or unmanned aerial vehicle (UAV)
is saved in several bands (seven bands in total), we should save the vectors of
tiles belonging to the considered object as follows (see Fig. 2(b)). Let Pi be the
value of the color for a single tile i and assume it can vary from 0 to 255. We
can normalize these data according to the formula pi = Pi/255, so we obtain a
number pi ∈ [0; 1]. After obtaining these vectors, we can construct the vectors
of color values each tile, the separate vector for each band (Fig. 2(c)). Thus we
obtain a large number of very short vectors since the number of bands k ≈7. If
we use a 4K or 12K one-band camera for UAV, then k = 1.

82 T. Makarovskikh et al.

Fig. 2. (a) Numbering of tiles of the recognized object. (b) The vector of tiles belonging
to the object for each band. (c) The vector of band values for each tile. (d) The matrix
of values for each tile depending on the time

Proceeding this way, we obtain the values of each band for each tile. So, we
have the spectral information for each area corresponding to each tile. If we need
to consider the process over time, we can construct a three-dimensional matrix
as follows (see Fig. 2(d)): for each tile of the recognized image, we save the time
values t1, t2, . . ., tM .

Since the satellite images are provided every 3–5 days, the total number M of
images is approximately 100–150 per year, provided that the images are taken
independently of the season (for example, for the recognition of waterlogged
lands), and 30–40 if we speak of seasonal research (for example, the vegetation
of crops, deciduous-forest research, etc.) The number of tiles N depends on
the real size of the recognized object and may vary from 1 to 106. Thus, to
describe the dynamic process for each tile of the recognized object, we need the
coefficients for N models. Since N = 1, 106, the calculation of model coefficients
is a time-consuming process. To save time, we can run this process in parallel.
In the section of this paper devoted to the experiments, we explore this case.

2.2 The Database of Objects Under Consideration

To save the data about the recognized geographical objects (lakes, crops, forests),
we designed a database consisting of two tables (see Fig. 3).

The table OBJECT contains information about a single object, for example, a
field, forest, lake, or road. It has a vector of Pixels belonging to the object and
some additional information INFO, saved in a separate table or database. This
information is very important for consumers but has no value for the execution of
the model identification algorithm or forecasting functions. This INFO contains

Monitoring and Forecasting Crop Yields 83

Fig. 3. The structure of the database for saving the information about the objects
under consideration

such data as the owner of the object, some legal and economic data, values
identifying the quality of the object, and so on. If we need any information from
this set for further research, we transfer it to the tables under consideration or
construct additional tables.

The table PIXEL contains numerical information about a single tile of an
object. The table OBJECT is connected to this table through the field Object ID,
which identifies the object to which the tile belongs. One tile belongs to one
object, an object may have many tiles. Each tile has a vector B of values for
each band; we save Model coefficients, the value of the Loss function, the
errors of modeling MBE and MAE, and the GPS coordinates (X,Y) of the tile.

Let us discuss the method used for obtaining the model coefficients, the loss
function, and the errors of modeling.

3 Generalized Least Deviation Method (GLDM)

Let us consider the time series describing a dynamic process. We aim to con-
struct the determinate quasilinear model adequately representing the considered
process. This model can be used in the analysis of the same events in the future
and for defining some dependencies of the investigated process. In terms of crop
yield forecasting, we can explore a time series consisting of 10–100 points during
one vegetation period to obtain the model of crop development in a specified
area. Using this model, we can analyze and forecast crop yields for future peri-
ods to optimize their quality and quantity. In this section, we consider a model
for a single time series.

There are many known classical approaches to the analysis of time series:
ARIMA, Holt’s method, BATS, etc. A large number of researchers prefer vari-
ous machine-learning approaches. It should be noted that linear autoregressive
models have a small forecasting horizon, and the construction of adequate non-
linear models and/or neural networks may not be possible for technical reasons

84 T. Makarovskikh et al.

(such as very short time series, for instance). Quasilinear models allow for
increasing the forecasting horizon and produce a determinate model. In general,
the quasilinear n-factor autoregression equation of the order m can be written
as

n∑

j=1

ajgj({yt−k}m
k=1) = yt, {aj}n

j=1 ∈ R
n, (1)

where {yt ∈ R}T
t=−1−m is a given time series of length T + m ≥ (

1 + 3m + m2
)

(input data); a1, a2, a3 . . . , am ∈ R are determined factors, and gj(·), j =
1, 2, . . . n are given factor functions.

The details of the considered approach are given in [13]. It consists in
determining the parameters of the recurrence Eq. 1. The algorithm works as
follows. The GLDM algorithm [15] takes a time series {yt ∈ R}T

t=−1−m of
length T + m ≥ (

1 + 3m + m2
)

as input data and determines the factors
a1, a2, a3 . . . , am ∈ R by solving the optimization problem

T∑

t=1

arctan

∣∣∣∣∣∣

n(m)∑

j=1

ajgj({yt−k}m
k=1) − yt

∣∣∣∣∣∣
→ min

{aj}n(m)
j−1 ⊂R

(2)

The Cauchy distribution

F (ξ) =
1
π

arctan(ξ) +
1
2

has the maximum entropy among the distributions of random variables without
mathematical expectation and variance. It is for this reason that the function
arctan(·) is used as the loss function.

Let us consider an m-th order model with a quadratic nonlinearity. Then the
basic set gj(·) may contain the following functions:

g(k)({yt−k}m
k=1) = yt−k,

g(kl)({yt−k}m
k=1) = yt−k · yt−l,

k = 1, 2, . . . ,m; l = k, k + 1, . . . , m. (3)

In this case, it is obvious that n(m) = 2m+C2
m = m(m+3)/2, and the number

of g(·) functions can be arbitrary.
The predictor produces a family of difference equations of order m with

indices t = 1, 2, . . . , T − 1, T ,

y[t]τ =
∑n(m)

j=1 a∗
jgj

(
{y[t]τ−k}m

k=1

)
,

τ = t, t + 1, t + 2, t + 3, . . . , T − 1, T, T + 1, . . . ,
(4)

for lattice functions y[t] with values y[t]τ , which are interpreted as the forecasts
for yτ constructed at time moment t. To find the values of the function y[t], we
use the solution of the Cauchy problem for Eq. (4) with initial conditions

y[t]t−1 = yt−1, y[t]t−2 = yt−2, . . . , y[t]t−m = yt−m

t = 1, 2, . . . , T − 1, T.
(5)

Monitoring and Forecasting Crop Yields 85

So we have the set Y τ =
{

y[t]τ
}T

t=1
of possible prediction values of yτ . Later

we use this set to estimate the probabilistic characteristics of the yτ value.
Problem (2) of GLDM estimation is a concave optimization problem. GLDM

estimates are robust to the presence of correlation of values in {yt ∈ R}T
t=−1−m,

and (with appropriate settings) are the best for probability distributions of errors
with heavier (than the normal distribution) tails [12]. All the above shows that
the algorithm of WLDM estimation can be used to solve the identification prob-
lem. The results established in [14] allow us to reduce the problem of GLDM
estimation to an iterative procedure with WLDM estimates [13].

Theorem 1. The sequence {(A(k), z(k)
)}∞

k=1 constructed by the GLDM-
estimator algorithm converges to the global minimum (a∗, z∗) of problem (2).

The description of the GLDM-estimator algorithm shows that its compu-
tational complexity is proportional to that of the algorithm for solving primal
and/or dual WLDM problems. Numerous computational experiments show that
the average number of iterations of the GLDM-estimator algorithm is equal to
the number of coefficients in the identified equation. If this hypothesis turns
out to be true, then the computational complexity of the solution to practical
problems cannot exceed

O
(
(n(m))3 T + n(m) · T 2

)
.

It is necessary to take into account that the search for and the finding of the
high-order autoregression equation come with their own specific conditions. One
of these conditions, in particular, is the high sensitivity of the algorithm to
rounding errors. To eliminate the possibility of error in the calculations, it is
necessary to accurately perform the basic arithmetic operations in the field of
rational numbers and supplement them with parallelization.

The suggested predictor produces the family of difference equations (4) of
the order m with indices t = 1, 2, . . . , T − 1, T for the lattice functions y[t] with
values y[t]τ , which are interpreted as the forecasts for yτ constructed at time
moment t. To find the values of the function y[t], we rely on the solution of
the Cauchy problem for Eq. (4) with initial conditions (5). So we have the set

Y τ =
{

y[t]τ
}T

t=1
of possible prediction values of yτ . Later we use this set to

estimate the probabilistic characteristics of the yτ value.
To assess the quality of the obtained coefficients, we use two errors: MAE and

MBE. In the realm of statistics, the mean absolute error (MAE) is a measure of
the errors between paired observations expressing the same time series:

MAE =

∑minFH
t=3

∣∣∣y[t] − y[t]
∣∣∣

minFH
,

86 T. Makarovskikh et al.

where minFH is a reasonable forecasting horizon. The mean bias error (MBE)
is the exact difference between the predicted value and the actual value without
any math function as the absolute value or square root applied to it:

MBE =

∑minFH
t=3

(
y[t] − y[t]

)

minFH
.

Thus, in terms of the analysis of aerial photographs, the suggested algorithm
produces a mathematical model describing the process development for each tile.
This is useful if we compare a set of models with each other and then detect those
corresponding to areas with well-developed crops. Moreover, using model data
from previous periods, we can compare them with data for the current period
and forecast the development of the crops in the current vegetation period.

4 Parallel Prospects of the GLDM

Various parallel approaches to the parallelization of different least squares meth-
ods using multicore architectures are discussed in [9]. The authors of this paper
present an efficient procedure for solving least squares sub-problems by the
active-set algorithm. The authors of [17] discuss how to employ special fea-
tures of ARIMA and multilayer perceptron (MLPs) models to model linear and
nonlinear patterns in the data simultaneously and to yield the best performance
with reasonable computational costs. Most papers considering parallelization,
for example, [8], discuss the problem with long time series. The same task is
considered in [10], where we explored the parallelization process for a single
GLDM algorithm working with a single time series (for example, the time series
for epidemic spreading, weather data, and others). We show that this task is
poorly parallelized when using the OpenMP approach.

In the present paper, we consider one or more time series for each tile, there-
fore the initial data is a list of vectors of lengths less than 100 elements (so
many images can be obtained in a year). The number of vectors is arbitrary and
depends on the size of the studied areas; moreover, it can vary from 1 to about
106. In this case, the technology of parallelization is different. We parallelize the
calculations for different tiles, so there is no need to run the GLDM algorithm
itself in parallel for short time series. Thus we parallelize the calculations using
the algorithm for different vectors. Both technologies, OpenMP and MPI, can
be used for this.

The scheme of the organization of parallel calculations is shown in Fig. 4.
In general, the number of vectors n is greater than the number of threads (or
parallel processes) t. Then the next process to be evaluated is passed to the first
free process. We have one level of parallelization with t processes. For calcula-
tions, we use the asynchronous version of the calculation scheme. A significant
disadvantage of the synchronous version of the flowchart is the possible down-
time of all process nodes, except for the root one. Downtime can occur if some
of the processes finish solving their subtasks and send data to the parent before

Monitoring and Forecasting Crop Yields 87

Fig. 4. The scheme of running identification of model parameters in parallel

the rest since the parent will create new subtasks for these processes only after
receiving solutions from all processes.

Algorithm for the Root Process
Step 1. Select an array of vectors of the initial time series RY.
Step 2. Send one RY[i] vector to each of the free subordinate processes.
Step 3. Wait for a decision from each of the subtasks generated by the sub-

ordinate processes and receive data from each of them (an ANS array consisting
of the model coefficients ai, the loss function L values, and the errors MAE and
MBE). Accept the subtask solution ANS from any process that sent data.

Step 4. Check if all subtasks are solved. If solved, finish running the algo-
rithm. Otherwise, go to step 2.

Algorithm for the Subordinate Process
Step 0. Take from the parent process a point with the time series vector Y .
Step 1. Solve the task using the GLDM-estimator algorithm:
1.1. Generate the basic set of g(∗) functions.
1.2. Form the projection matrix SST.
1.3. Perform the Jordan–Gauss transformation.
1.4. Run the procedure of estimation using the Generalized Least Deviation

Method. Save the model coefficients ai and the value of the loss function L to
the ANS structure.

1.5. Calculate the average prediction errors MAE and MBA and save the values
to the ANS structure.

Step 2. Pass the calculation result (i.e., the ANS structure) to the parent
process.

88 T. Makarovskikh et al.

5 Computational Experiments

The considered approach for parallelization using OpenMP is memory-
consuming due to the use of local variables to store the vectors and square
matrices of the size of the time series in each dimension. These variables are
created in the memory for each thread in parallel, so the limit of memory used
by the application is exceeded very quickly. The execution of the algorithm on
a local computer (11th Gen Intel(R) Core(TM) i5-1135G7, 2.40 GHz, 2.42 GHz,
16 GB of RAM) providing 2 GB of memory for the solutions with the Visual
C++ compiler allowed us to estimate the speedup for time series of 100, 300,
500, and 1000 elements. The numbers of time series suitable for calculation were
1000, 300, 200, and 80, respectively. These constraints appear due to the limits
of the used heap memory. To run the GLDM algorithm, it is required to allocate
memory for supplementary vectors and square matrices for each thread sepa-
rately. The size of these matrices is equal to the squared size of the examined
vector. We examine the speedup for the considered sets of time series on a per-
sonal computer. The results of the calculation are shown in Fig. 5. We count the
time required only for running the GLDM algorithm for a set of data vectors,
without considering input and output functions. The speedup value in this case
is obtained by the following formula:

S =
T1

Tn
,

Fig. 5. The graph of speedup for time series: (a) length 100; (b) length 300; (c) length
500; (d) length 1000

Monitoring and Forecasting Crop Yields 89

where S is the speedup, T1 is the calculation time when using only one thread,
and Tn is the calculation time for n threads, n = 2, 8. It is easy to see that the
growth of the length of the time series makes the speedup value almost constant
for any number of time series vectors in the initial data. On the other hand,
the best results for short time series (of length 100 in the considered case) are
obtained for 500–800 time series vectors; then, after increasing the number of
vectors, the speedup significantly drops (because the memory is used at its limits
in this case). These fluctuations can be explained by the size of the single task.
It is very short and takes a very short time for solving, but the solution leads
to heavy time overheads; this fact is also taken into account when calculating
the performance. This assumption is confirmed by Figs. 5(b) and 5(c) with the
longer time series. We see that the fluctuations of speedup become smaller with
the growth of the time series length.

Considering the specific meaning of the problem statement, we see that time
series of length less than 100 can appear in processes related to the development
of crops because the vegetation period in the Russian Federation starts in March
or April and ends in September or October (in some regions), so its length spans
approximately 100 days. To obtain the model of crop development, we need to
get the data on a daily basis. As for time series of length 300, they correspond to
events observed during one year. Such data are used, for example, in the study
of waterlogged lands, if the information about this can be observed without any
dependency on the time of the year and weather, using images with calculated
NDVI1 for it.

Thus the experiment shows that the OpenMP approach is suitable for small
sets of time series, whereas the MPI approach should be considered for more effi-
cient use of the application memory. The task of efficiently using the cache mem-
ory is an open question and a topic for further research. Since the application run-
ning on a personal computer copes with 50–150 time series (remember that each
time series corresponds to one tile) during one run, some additional approaches
for memory use should be developed to analyze all the considered tiles. Perhaps
there are some techniques for merging and classifying tiles with similar model
parameters in one cluster. These will be the topics of future research devoted to
the optimization of resources.

The results obtained in the experiment show that it is possible to develop
a parallel personal application for laptops and/or mobile phones using the
resources of these devices at maximum and to get the result faster by a factor of
5–6 since the time difference when using a personal computer for the calculation
of large datasets will be essential. Taking into account that we obtain new data
for the considered dynamical process in 24–72 h, this time is the limit for calcu-
lations, and this limit is achieved for 107 time series when using one thread, and

1 The normalized difference vegetation index (NDVI) is a numerical indicator of the
quality and quantity of vegetation in a field area. It is calculated from satellite images
and depends on how plants reflect and absorb light waves of different wavelengths.
This index can also be calculated for images from a 4K or 12K camera or a special
NDVI camera.

90 T. Makarovskikh et al.

for (5·107) objects when using 7–8 threads on a personal computer. This amount
of data is enough for analysis on a personal computer. As for corporations con-
sidering far more objects, it is reasonable to use the resources of supercomputers
(see, for example, [7]).

6 Conclusions

The computational experiments have shown that the GLDM-estimator algo-
rithm we have considered in this research can be either parallelized or used for
calculations with sets of large numbers of time series. In the last case, we paral-
lelized the processes one by one. This approach may be used in real-life cases to
construct models for the forecast of crops for sets of agricultural lands or areas
with different properties and vegetation dynamics. As we see from the experi-
ments, even in the case of modern personal computers, the numbers of objects
under consideration may vary from 1000 for time series of length 100 to 80 for
time series of length 1000. This means that our approach can be used by rather
large companies dealing with 100–1000 agricultural objects in the course of one
season. If the length of time series for one vegetation period is short, then we
can rapidly calculate the model coefficients even using a PC or mobile phone
without remote servers.

We obtained a 5- to 6-fold speedup using a personal computer. This is an
indication that the algorithm can be implemented for desktop solutions using
approximately 103 time series. Nevertheless, this solution requires very careful
handling of heap memory because it is used at its upper limits. Thus we can
anticipate the following directions for further research: (1) explore the possibili-
ties and efficiency of the use of MPI (see algorithms in Sect. 4) and conduct com-
putational experiments on the use of this technology and, possibly, the hybrid
technology MPI+OpenMP; (2) develop a data clusterization algorithm to reduce
the number of time series.

It should be noted that the images from which the initial data is obtained
can be periodically characterized by high levels of cloudiness. Filtering cloudy
images results in insufficient data for most Russian regions and does not solve the
problem of missing data in some images. Therefore, it is possible that algorithms
for recovering missing data in cloudy images will be required at further stages
of research. Some related approaches are considered in [22].

References

1. Sentinel hub EO browser (2023). https://apps.sentinel-hub.com/eo-browser
2. Alshahrani, A., Manal, A., Al-Abadi, A., Al-Malki, A.: Ashour Automated System

for Crops Recognition and Classification. In book. https://doi.org/10.4018/978-1-
5225-1022-2.ch003

3. Burmistrov, A., Salnikov, I.: Information model of the distinguishing features of
images on aerial photographs of rural areas. In: XXI Century: Results of the Past
and Problems of the Present Plus, vol. 3, no. (19), pp. 41–45 (2014). (in Russian)

https://apps.sentinel-hub.com/eo-browser
https://doi.org/10.4018/978-1-5225-1022-2.ch003
https://doi.org/10.4018/978-1-5225-1022-2.ch003

Monitoring and Forecasting Crop Yields 91

4. Burmistrov, A., Salnikov, I.: Method of element-by-element analysis of color images
for the formation of distinctive features in the form of linear contours. In: XXI
Century: Results of the Past and Problems of the Present Plus, vol. 1, no. 3(25),
pp. 29–34 (2015). (in Russian)

5. Burmistrov, A., Salnikov, I.: The method of forming linear contours on aerial pho-
tographs of rural areas. Mod. Probl. Sci. Educ. 5, 152–157 (2013). (in Russian)

6. Bukhovets, A.G., Semin, E.A., Kostenko, E.I., Yablonovskaya, S.I.: Modelling of
the dynamics of the NDVI vegetation index of winter wheat under the conditions
of the CFD. Bull. Voronezh State Agrarian Univ. 2, 186–199 (2018). https://doi.
org/10.17238/issn2071-2243.2018.2.186. (in Russian)

7. Dolganina, N., Ivanova, E., Bilenko, R., Rekachinsky, A.: HPC resources of south
ural state university. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2022. Commu-
nications in Computer and Information Science, vol. 1618, pp. 43–55. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-11623-0 4

8. Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., Mart́ınez-Álvarez,
F.: Multi-step forecasting for big data time series based on ensemble learning.
Knowl.-Based Syst. 163, 830–841 (2019). https://doi.org/10.1016/j.knosys.2018.
10.009

9. Luo, Y., Duraiswami, R.: Efficient parallel nonnegative least squares on multicore
architectures. SIAM J. Sci. Comput. 33(5), 2848–2863 (2011). https://doi.org/10.
1137/100799083

10. Makarovskikh, T., Abotaleb, M.: Investigation of parallelism possibilities for fore-
casting using quasilinear recurrence equation, pp. 49–62 (2022)

11. Mondal, P., Basu, M.: Adoption of precision agriculture technologies in India and
in some developing countries: scope, present status and strategies. Progr. Nat. Sci.
19(6), 659–666 (2009). https://doi.org/10.1016/j.pnsc.2008.07.020

12. Panyukov, A., Tyrsin, A.: Stable parametric identification of vibratory diag-
nostics objects. J. Vibroeng. 10(2), 142–146 (2008). http://elibrary.ru/item.asp?
id=14876532

13. Panyukov, A.V., Makarovskikh, T.A., Abotaleb, M.S.: Forecasting with using
quasilinear recurrence equation. In: Olenev, N., Evtushenko, Y., Khachay, M.,
Malkova, V. (eds.) OPTIMA 2022. CCIS, vol. 1739, pp. 183–195. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-22990-9 13

14. Panyukov, A.V., Mezaal, Y.A.: Stable estimation of autoregressive model parame-
ters with exogenous variables on the basis of the generalized least absolute devia-
tion method. In: IFAC-PapersOnLine, vol. 51, pp. 1666–1669 (2018). https://doi.
org/10.1016/j.ifacol.2018.08.217. Open access

15. Panyukov, A.V., Mezaal, Y.A.: Improving of the identification algorithm for a
quasilinear recurrence equation. In: Olenev, N., Evtushenko, Y., Khachay, M.,
Malkova, V. (eds.) OPTIMA 2020. CCIS, vol. 1340, pp. 15–26. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-65739-0 2

16. Paudel, D., et al.: Machine learning for regional crop yield forecasting in Europe.
Field Crops Res. 276, 108377 (2022). https://doi.org/10.1016/j.fcr.2021.108377

17. Rahimi, Z., Khashei, M.: A least squares-based parallel hybridization of statistical
and intelligent models for time series forecasting. Comput. Ind. Eng. 118, 44–53
(2018). https://doi.org/10.1016/j.cie.2018.02.023

18. Ronchetti, G., et al.: Remote sensing crop group-specific indicators to support
regional yield forecasting in Europe, agriculture (2023). https://doi.org/10.1016/
j.compag.2023.107633

https://doi.org/10.17238/issn2071-2243.2018.2.186
https://doi.org/10.17238/issn2071-2243.2018.2.186
https://doi.org/10.1007/978-3-031-11623-0_4
https://doi.org/10.1016/j.knosys.2018.10.009
https://doi.org/10.1016/j.knosys.2018.10.009
https://doi.org/10.1137/100799083
https://doi.org/10.1137/100799083
https://doi.org/10.1016/j.pnsc.2008.07.020
http://elibrary.ru/item.asp?id=14876532
http://elibrary.ru/item.asp?id=14876532
https://doi.org/10.1007/978-3-031-22990-9_13
https://doi.org/10.1016/j.ifacol.2018.08.217
https://doi.org/10.1016/j.ifacol.2018.08.217
https://doi.org/10.1007/978-3-030-65739-0_2
https://doi.org/10.1016/j.fcr.2021.108377
https://doi.org/10.1016/j.cie.2018.02.023
https://doi.org/10.1016/j.compag.2023.107633
https://doi.org/10.1016/j.compag.2023.107633

92 T. Makarovskikh et al.

19. Tokarev, K.E., Lebed, N.I., Kuzmin, V.A., Chernyavsky, A.N.: Theory and tech-
nologies of irrigation control for crops based on information technologies decision
support and mathematical modelling. News of the Nizhnevolzhsky Agro-University
Complex: Science and Higher Professional Education. Technical Science. Agricul-
tural Engineering 4(60), 433–448, (2020). (in Russian)

20. Wei, M., et al.: Investigating the potential of sentinel-2 MSI in early crop identi-
fication in northeast china. Remote Sens. 14(8), 1928 (2022). https://doi.org/10.
3390/rs14081928

21. Yakushev, V., Yakushev, V.: Mathematical models and methods of realizing infor-
mation technology procedures in precision agriculture. Russ. Agric. Sci. 34(4),
280–283 (2008). https://doi.org/10.3103/s1068367408040216

22. Zymbler, M., Polonsky, V., Yurtin, A.: On one method of imputation missing values
of a streaming time series in real time. Bull. South Ural State Univ. Ser.: Comput.
Math. Softw. Eng. 10(4), 5–25 (2021). https://doi.org/10.14529/cmse210401

https://doi.org/10.3390/rs14081928
https://doi.org/10.3390/rs14081928
https://doi.org/10.3103/s1068367408040216
https://doi.org/10.14529/cmse210401

On Parallel Multigrid Methods
for Solving Systems of Linear Algebraic

Equations

Maxim Batalov1,2(B), Yana Gurieva1, Valery Ilyin1, and Artyom Petukhov1

1 Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

makcum1990@list.ru, {yana,petukhov}@lapasrv.sscc.ru, ilin@sscc.ru
2 Novosibirsk State University, Novosibirsk, Russia

Abstract. In this paper, we consider algebraic multigrid methods
(AMG) for solving symmetric positive-definite systems of linear algebraic
equations (SLAE) with sparse high-order matrices arising from finite dif-
ference approximations of two- and three-dimensional boundary value
problems on regular grids. Also, we investigate iterative algorithms in
Krylov subspaces with preconditioning based on incomplete factorization
with recursive ordering of variables defined on a sequence of embedded
grids. We use the conjugate direction method, in which the solution of
the auxiliary SLAE with its preconditioning matrix includes the conven-
tional stages of restriction, coarse-grid correction, and prolongation. We
show how additional preconditioning based on the principles of symmet-
ric successive over-relaxation (SSOR) allows carrying out presmoothing
and postsmoothing operations. Also, we discuss the parallelization effec-
tiveness of the proposed algorithms with different numbers of embedded
grids. Furthermore, we present the results of preliminary experimental
investigations demonstrating the efficiency of the implemented methods
and analyze the possibilities of generalizing the developed approaches to
solving a wider class of problems.

Keywords: Large sparse SLAE · Algebraic multigrid method · Krylov
subspace · Incomplete factorization algorithm · Recursive ordering ·
Parallelization of algorithms

1 Introduction

Multigrid methods for solving systems of linear algebraic equations are a special-
ized class of algorithms oriented to the fast implementation of iterative processes
for discrete problems with large sparse matrices. Such matrices often arise from
the approximation of multidimensional boundary value problems for partial dif-
ferential equations by the finite-volume or finite-element methods on a sequence
of embedded grids. Such approaches theoretically provide asymptotically opti-
mal order efficiency and also demonstrate a record performance in solving many
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 93–109, 2023.
https://doi.org/10.1007/978-3-031-38864-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_7&domain=pdf
https://doi.org/10.1007/978-3-031-38864-4_7

94 M. Batalov et al.

practical problems using existing software packages (see [1–20] and the literature
cited there). However, the computational principles applied in these cases are
poorly adapted for scalable parallelization since they are based on the sequen-
tial solution of problems with recursively decreasing dimensionality, which causes
idle time of a large number of processors at certain stages. This factor allegedly
confirms a well-known pessimistic thesis that good algorithms are poorly paral-
lelizable. Nevertheless, experimental research in this direction is constantly going
on (see, for instance, [15,19]).

The traditional interpretation of algebraic multigrid methods as a recursive
application of two-grid methods was developed during the last decades. Many
of these methods are determined by different types of smoothing, restriction,
coarse-grid correction, and prolongation operators, with the possible use of so-
called V -loops or W -loops and with the formation of preconditioned iterative
processes in Krylov subspaces (see, e.g., [7,21,22]).

This paper is devoted to the performance analysis of some parallel multi-
grid techniques for solving two- and three-dimensional boundary value problems
formulated for second-order elliptic differential equations on regular embedded
grids (see [23]). The algorithms we propose are based on a recursive ordering
of the variables admitting a block triangular representation of the generated
SLAEs, with solutions produced by conjugate direction methods with different
types of preconditioning.

The paper is structured as follows. In Sect. 2, we describe multigrid meth-
ods for two-dimensional problems on rectangular grids. Section 3 is devoted to
three-dimensional problems. In Sect. 4, we outline the parallelization efficiency
of the proposed algorithms. Section 5 presents a discussion of the results of pre-
liminary numerical experiments on a representative series of methodical two-
and three-dimensional examples. Finally, we consider the issues associated with
generalizing the obtained results to a wider class of problems.

2 Some Variants of Multigrid Approaches for Solving
Two-Dimensional Problems

Let Ω = (x0, xNx+1) × (y0, yNy+1) be a computational rectangular domain
equipped with a rectangular grid Ωh:

Ωh : x = xi, i = 1, . . . , Nx, y = yj , j = 1, . . . , Ny.

On this grid, consider a system of N = NxNy five-point equations

(Au)i,j = a
(0)
i,j ui,j − a

(1)
i,j ui−1,j − a

(2)
i,j ui,j−1 − a

(3)
i,j ui+1,j − a

(4)
i,j ui,j+1 = fi,j , i, j ∈ Ωh,

a
(1)
1,j = a

(2)
i,1 = a

(3)
Nx,j = a

(4)
i,Ny = 0, (1)

which approximate a boundary value problem in Ω̄ ∈ Ω∪Γ with some boundary
conditions (for example, Dirichlet ones) for a second-order elliptic differential
equation (see examples in [23]). In the case of natural ordering of the nodes, the
numbers of the components of the vector u = {uk} can be linked with i and j

Multigrid Methods 95

indices by the relation k = i+(j−1)Nx. We assume that the matrix A in (4) is a
Stieltjes one, i.e., a symmetric positive-definite matrix with nonnegative elements
a
(0)
i,j , . . . , a

(4)
i,j (it also has the monotonicity property A−1 ≥ 0; the inequality is

understood as it holds in an element-by-element manner). To solve SLAE (1), we
construct a sequence of m embedded rectangular grids Ωh = Ωh

1 ⊃ Ωh
2 ⊃ . . . ⊃

Ωh
m so that each grid Ωh

l at the l-th level is obtained by adding the coordinate
lines that divide into half the steps of the sparser grid at the level (l + 1). The
boundaries of the initial grid along the coordinate lines x0, y0, xNx+1, and yNy+1

remain the boundaries for the grids of all levels, and the number of internal nodes
within each of them equals Nl = Nx

l Ny
l , Nx

l+1 = Nx/2l, and Ny
l+1 = Ny/2l.

The set of grid nodes of each l-th level and the sets of corresponding vector
components are decomposed into two subsets, one of which is the set of the next
(l + 1)-th level, resulting in recursive structures of the following kind:

Ωh
1 = Ω̄h

1 ⊃ Ωh
2 = Ω̄h

1 ⊃ Ω̄h
2 . . . ⊃ Ω̄h

m−1 ⊃ Ωh
m,

u = u1 = (ūT

1u
T

2)
T = (ūT

1ū
T

2 . . . ūT

m−1u
T

m)T,

Ωh
l = Ω̄h

l ⊃ Ωh
l+1, ul = (ūT

lu
T

l+1),

ul ∈ RNl , ūl ∈ RN̄l , Nl = N̄l + Nl+1,

N = N1 = N̄1 + N2 = N̄1 + N̄2 + . . . + N̄m−1 + Nm.

(2)

Grid nodes and vector components are numbered (ordered recursively) uni-
formly for each l-th level: first, the components Ω̄h

l and ūl, and then Ωh
l+1 and

ul+1. Taking into account that the nodes of Ωh
l for all l ≥ 2 are connected by

grid edges only to nodes from Ωh
1 , the block structure of SLAE (1) is written as

follows:

Au = A(1)u1 =

[
A

(1)
1,1 A

(1)
1,2

A
(1)
2,1 A

(1)
2,2

] [
ū1

u2

]
=

[
f̄1
f2

]
,

A
(1)
1,1 ∈ RN̄1,N̄1 , A

(1)
2,1 = (A(1)

1,2)
T ∈ RN2,N̄1 , (3)

where A
(1)
2,2 is a diagonal matrix. As the number of nesting levels increases, the

matrix A becomes arrow-shaped. For example, for m = 3 we have

Au =

⎡
⎢⎣A

(1)
1,1 A

(2)
1,2 A

(3)
1,3

A
(2)
2,1 A

(2)
2,2 0

A
(3)
3,1 0 A

(3)
3,3

⎤
⎥⎦

⎡
⎣ū1

ū2

u3

⎤
⎦ =

⎡
⎣f̄1

f̄2
f3

⎤
⎦ . (4)

Let us now consider the internal structure of the matrix A
(1)
1,1 in (3) and

(4). We partition the set of nodes of the fine grid into three subsets: Ωh
1 =

Ω
(1)
1 ∪ Ω

(1)
2 ∪ Ω

(1)
3 . In Fig. 1, these sets are denoted by the symbols ◦, ×, and •,

respectively.
The last subset constitutes the coarse grid; the nodes of type “×” belong to

the midpoints of its edges, while the nodes of type “◦” belong to the cell centers.

96 M. Batalov et al.

Fig. 1. Local numbering and node designations for the two-dimensional multigrid
method

Let us rewrite SLAE (4) using appropriate notations for subvectors and taking
into account the local relations between grid nodes of different types:

A(1)u(1) =

⎡
⎢⎣A

(1)
1,1 A

(1)
1,2 0

A
(1)
2,1 A

(1)
2,2 A

(1)
2,3

0 A
(1)
3,2 A

(1)
3,3

⎤
⎥⎦

⎡
⎢⎣ū

(1)
1

ū
(1)
2

ū
(1)
3

⎤
⎥⎦ = f (1) =

⎡
⎢⎣f̄

(1)
1

f̄
(1)
2

f̄
(1)
3

⎤
⎥⎦ , (5)

A(1) = D(1) + L(1) + U (1).

Here we use the notations D(1) = {A
(1)
k,k}, L(1) = {Ak,k−1}, and U (1) = {A

(1)
k,k+1}

for, respectively, the block diagonal part, the lower triangular, and the upper tri-
angular parts of matrix A; the subvector u

(1)
3 = u2 corresponds to the coarse grid

variables Ωh
2 . To solve SLAE (5), we apply any of the preconditioned methods

of conjugate directions in Krylov subspaces, for example, the conjugate gradient
algorithm:

r0 = f − Au0, p0 = B−1rn, n = 0, 1, . . . ,

un+1 = un + αnpn, rn+1 = rn − αnApn,

pn+1 = B−1rn+1 + βnpn, αn = σn/ρn,

βn = σn+1/σn, σn = (rn, B−1rn), ρn = (p0, Apn).

(6)

The preconditioning matrix for the block tridiagonal SLAE (5) is obtained by
the incomplete factorization method [21] (below, the upper indices are omitted
for the sake of brevity):

B = (G + L)G−1(G + U) = G + L + U + LG−1U. (7)

Multigrid Methods 97

From the general requirement B ≈ A, we construct the block diagonal matrix
G using the relation G = D −LG−1U − θS, Se = (LG−1U −LG−1U)e, where
the line above the matrix means a certain approximation, and the matrix G is
chosen according to the compensation principle or the condition of coincidence
of the row sums of the original and preconditioned matrices Be = Ae for the
compensation parameter value θ = 1 (e is the vector with all components equal
to 1, and S is a diagonal matrix).

Using representation (7) and introducing the renumbering for the precondi-
tioner B = B(1), we obtain the following formulas:

B(1) =

⎡
⎢⎣G

(1)
1 0 0

A
(1)
2,1 G

(1)
2 0

0 A
(1)
3,2 G

(1)
3

⎤
⎥⎦ (G(1))−1

⎡
⎢⎣G

(1)
1 A

(1)
1,2 0

0 G
(1)
2 A

(1)
2,3

0 0 G
(1)
3

⎤
⎥⎦ , (8)

G
(1)
1 = A

(1)
1,1, G

(1)
2 = A

(1)
2,2 − (

A
(1)
2,1(G

(1)
1)−1A

(1)
1,2

)
1

− θS(1),

S(1)e =
[
A

(l)
2,1(G

(1)
1)−1A

(1)
1,2 − (

A
(1)
2,1(G

(1)
1)−1A

(1)
1,2

)
1

]
e,

G
(1)
3 = A

(1)
3,3 − A

(1)
3,2(G

(1)
2)−1A

(1)
2,3,

where (M)1 stands for the diagonal part of matrix M ; G1 and G2 are diagonal
matrices, and G3 is a pentadiagonal matrix of the same structure as A(1) but on
the sparse grid Ωh

2 . Accordingly, we assume that G3 represents the reduced form
of the original matrix A(1) on the coarse grid and denote G3 = A(2) ∈ RN2,N2 .

The preconditioned conjugate gradient method requires computing the vector
qn = (B(1))−1rn at each iteration, which results in implementing the following
relations:

B(1)qn = rn, (G(1) + L(1))vn = rn, (G(1) + U (1))qn = G(1)vn. (9)

In the block component form, it is written as

G
(1)
1 v1 = r1, G

(1)
2 v2 = r2 − A

(1)
2,1v1, G

(1)
3 v3 = r3 − A

(1)
3,2v2,

q3 = v3, G
(1)
2 w2 = A

(1)
2,3q3, q2 = v2 − w2, q1 = v1 − (G(1)

1)−1A
(1)
1,2q2,

(10)

where the notation of subvectors corresponds to (5), and the index n is omitted
for brevity. Since G

(1)
1 and G

(1)
2 are diagonal matrices, the most resource-intensive

operation in (10) is the solution of the auxiliary SLAE with matrix G3 = A(2)

on the coarse grid Ωh
2 . Since q

(1)
3 = q(2) ∈ RN2 , according to the notations used

in (5), the resulting five-point system can be written in the form

A(2)q(2) = f (2) = r
(1)
1 − A

(1)
3,2v

(1)
2 . (11)

If we solve this vector equation by the direct method, we come to the two-grid
preconditioned method of conjugate gradients, in other words, to the implicit
algorithm of Implicit Incomplete Factorization (IMIF) in Krylov subspaces. Hav-
ing formulas (5) and (10), to determine the matrix G, we can use the relation

G =
1
ω

D (12)

98 M. Batalov et al.

instead of (8), where ω ∈ [0, 2] is the relaxation parameter corresponding to the
two-grid SSOR (Symmetric Successive Over-Relaxation) [21] method in Krylov
subspaces. In this case, G3 as well as G1 and G2 are diagonal matrices, and we
obtain a single-grid algorithm but with a special ordering of the nodes and the
corresponding vector variables.

Based on the considered approaches, we formulate the multigrid algorithms
as a recursive application of the two-grid algorithm. Namely, to solve SLAE (11)
with a pentadiagonal matrix, we use its block representation of the form (5),

A(2)q(2) =

⎡
⎢⎣A

(2)
1,1 A

(2)
1,2 0

A
(2)
2,1 A

(2)
2,2 A

(2)
2,3

0 A
(2)
3,2 A

(2)
3,3

⎤
⎥⎦

⎡
⎢⎣q

(2)
1

q
(2)
2

q
(2)
3

⎤
⎥⎦ = f (2) =

⎡
⎢⎣f

(2)
1

f
(2)
2

f
(2)
3

⎤
⎥⎦ , (13)

and construct a preconditioning matrix B(2) ∈ RN2,N2 by analogy with (8).
These formulas remain valid, we only need to replace the upper indices (1) with
(2). The matrix G

(2)
3 becomes pentadiagonal. Let us rename it: G

(2)
3 = A(3). If

m = 3, we invert it by a direct method, and if m > 3, we continue the process
of recursive construction.

The considered multigrid algorithms for five-point SLAE (1) are not the
only possible. Their structure essentially depends on the way of ordering the
unknowns and the corresponding vector components and also on the way of
performing the required vector-matrix operations.

One alternative approach is to initially exclude from system (5) the vector
u
(1)
2 , whose components correspond to the edge nodes of the grid Ωh

2 , denoted
by the symbol × in Fig. 1. As a result, we obtain the SLAE in the form[

Ā1,1 Ā
(2)
1,2

Ā2,1 Ā
(2)
2,2

] [
u1

u2

]
= f (2) =

[
f̄1
f̄2

]
, (14)

where the subvectors u1 and u2 correspond to the nodes of type “◦” and “•”,
and the matrices and right-hand-side vectors are given by the formulas

Ā1,1 = A
(1)
1,1 − A

(1)
1,2(A

(1)
2,2)

−1A
(1)
2,1, Ā1,2 = −A

(1)
1,2(A

(1)
2,2)

−1A
(1)
3,1,

Ā2,2 = A
(1)
3,3 − A

(1)
3,2(A

(1)
2,2)

−1A
(1)
2,3, Ā1,2 = −A

(1)
3,2(A

(1)
2,2)

−1A
(1)
3,1,

f̄1 = f
(1)
1 − A

(1)
1,2(A

(1)
2,2)

−1f
(1)
2 , f̄3 = f

(1)
3 − A

(1)
3,2(A

(1)
2,2)

−1f
(1)
2 .

(15)

Note that the diagonal blocks Ā1,1 and Ā2,2 are five-diagonal matrices but on
coarse grids composed of nodes of types “◦” and “•”, while the off-diagonal
blocks Ā1,2 and Ā2,1 are four-diagonal matrices.

To solve SLAE (14), we apply the multigrid method by constructing an
auxiliary reduced system for the subvector u2. This solution can be found by
iteratively applying the compensation principle in the following manner:

Ā2u
n+1
2 = (Ā(2)

2,2 − θS)un+1
2 = f̄ (2) = f̄2 − θSun

2 − Ā2,1u
n
1 , (16)

Multigrid Methods 99

where θ ∈ (0, 1] is the iterative (compensating) parameter, and S is a diagonal
matrix determined by the row sums criterion according to the formula

Se = Ā2,1e, e = 1. (17)

In the case of the two-grid method, SLAE (16), with the pentagonal matrix Ā2

of the same structure as A in (2) and the indices i ± 1 and j ± 1 replaced with
i ± 2 and j ± 2, is solved by the direct method. Then, plugging the resulting
solution into the first block row of Eq. (14), we arrive at an iterative process of
the form

Ā1,1u
n+1
1 = f̄n

1 = Ā
(2)
1,2(Ā2)−1(Ā(2,1)u

n
1 + θSun

2) + g, g = f̄1 + (Ā(2)
2,2 − θS)−1f̄2.

(18)
It can be shown that if the matrix A of the original algebraic system (1) is of the
positive type (we mean the property of nonfactorizability, diagonal dominance,
positive definiteness of the diagonal elements, and nonpositive definiteness of the
off-diagonal ones; see [22]), then the matrix Ā1,1 from (18) has strict diagonal
dominance, and therefore its condition number

cond(A) = M/m, M = max
p

{|λp|}, m = min
p

{|λp|},

is finite, i.e., it does not depend on the SLAE dimension, and the spectrum
bounds m and M can be easily estimated. From here it follows that an econom-
ical Chebyshev acceleration method can be applied to solve (18). This iterative
process for an arbitrary initial guess u0

1 is described by the formulas

r0 = g − Ā1,1u
0, p0 = r0, k = 0, 1, . . . :

uk+1 = uk + αkp
k, rk+1 = rk − αkĀ1,1p

k,

pk+1 = rk+1 + βkp
k, βk = γkαk−1/αk

(19)

(the subscript n is omitted for the sake of brevity), and the numerical parameters
are calculated using the recursions

γ0 = 0, δ0 = γ−1 =
M − m

M + m
, δn+1 = (2γ − δk)−1, γk+1 = δk+1δk.

The iterations in (19) continue until the condition

(rk, rk) ≤ ε2i (g, g), εi 	 1, (20)

holds, with the following number of iterations being sufficient:

κ(εi) ≤ ln
1 +

√
1 − ε2i

εi

/
ln

1 +
√

m/M

1 − √
m/M

+ 1. (21)

If we neglect the error of inversion of matrix A1,1 within the external iteration
process (16), (18), then we can write it as

ūn+1 = T ūn + φ, (22)

100 M. Batalov et al.

where ū = (un
1 , un

2)T, and the formulas for Tun and φ can be deduced easily from
the previous relations. It is obvious that if the sequence ūn converges in the limit
to a vector ū, then it is a solution of the “preconditioned” (nonsingular) SLAE

Āū ≡ (I − T)ū = φ. (23)

We can apply any iterative method in the Krylov subspaces for its fast solv-
ing. Since the matrix Ā1 is not symmetric, we can apply such algorithms as
GMRES (generalized minimal residual) or SCR (semiconjugate residual), which
are equivalent in their variational properties (see the review [22] and the refer-
ences given in it). However, we have to face the weak side of this approach: a
long recursion that requires storing all directional vectors. Alternatively, there
are biorthogonalization methods (such as BiCGStab) that use short recursions
but do not have minimalizing properties. A compromise variant here can be the
transformed conjugate residual method CRAT [22], that is, the CR algorithm
(formally) with a preconditioning matrix AT whose residual norm is minimized
at each iteration:

r0 = φ − Āū0, p0 = ĀTr0,

ūn+1 = ūn + αnpn, rn+1 = rn − αnĀpn,

pn+1 = ĀTrn+1 + βnpn, αn = γn/ρn, βn = γn+1/γn,

ρn = (Āpn, Āpn), γn = (ĀTrn, ĀTrn). (24)

Note that the multiplication by the matrix Ā in these formulas is actually
reduced to one “simple” iteration of the form (23). For example, the calcula-
tion of the initial residual is done as follows:

r0 = φ − (I − T)ū0 = T ū0 + φ − ū0 = û1 − ū0,

where û1 is the vector obtained from (22) for n = 0.

3 Multigrid Methods of Incomplete Factorization
for Three-Dimensional Problems

In this section, we consider a direct generalization of the presented algorithms to
the case of regular embedded parallelepiped grids. Here we assume for simplicity
that the boundary of the computational domain (a parallelepiped) contains or
runs along the nodes of the coarse grid Ωh

l . An example of such a pattern for
the grids of two neighboring levels Ωh

l−1 and Ωh
l is shown in Fig. 2.

SLAE (1) is assumed to be a seven-point Stieltjes system. Its grid pattern
nodes with local numbers 1, 2, . . . , 6 are shown in Fig. 2.

Here we describe in more detail the developed algorithms in the case of a
two-grid algorithm. The set of nodes of the original fine grid Ω̄h

1 ⊂ Ωh, which
does not overlap with the set Ωh

2 ⊂ Ωh
1 = Ωh of the coarse grid, is partitioned

in such a way that we can distinguish four node types:

Ωh = Ωh
1 = Ω̄h

1 ∪ Ωh
2 = Ω1

1 ∪ Ω2
1 ∪ Ω3

1 ∪ Ω4
1 , (25)

Multigrid Methods 101

Fig. 2. Node notations of the two-level method on cubic nested grids

where Ω4
1 = Ωh

2 . The introduced subsets successively correspond to the cen-
ters of the elementary volumes, faces, midpoints of the edges, and nodes of the
coarse grid, denoted in Fig. 2 by the symbols ⊗, ◦, ×, and •, respectively. We
do a global numbering of nodes Ωh according to ordering (17) (all nodes from
Ω1

1 go first, then the nodes from Ω2
1 , and so on). If we denote the associated

subvectors (of the dimensions N
(1)
1 , N

(1)
2 , N

(1)
3 , and N

(1)
4) in the original SLAE

by ū
(1)
1 , ū

(1)
2 , ū

(1)
3 , ū

(1)
4 and f̄

(1)
1 , f̄

(1)
2 , f̄

(1)
3 , f̄

(1)
4 , then we can rewrite it in a block

tridiagonal form:

Au =

⎡
⎢⎢⎢⎣

A
(1)
1,1 A

(1)
1,2 0 0

A
(1)
2,1 A

(1)
2,2 A

(1)
2,3 0

0 A
(1)
3,2 A

(1)
3,3 A

(1)
3,4

0 0 A
(1)
4,3 A

(1)
4,4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u
(1)
1

u
(1)
2

u
(1)
3

u
(1)
4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f
(1)
1

f
(1)
2

f
(1)
3

f
(1)
4

⎤
⎥⎥⎥⎦ , (26)

where all diagonal blocks are diagonal matrices, as follows from the local rela-
tionships of the nodes of different types in Fig. 2. For SLAE (18) with matrix
A(1) = D(1)+L(1)+U (1), we define the preconditioner in the following factorized
form (recall that (M)1 stands for the diagonal part of matrix M):

102 M. Batalov et al.

B(1) = (G(1) + L(1))(G(1))−1(G(1) + U (1))

=

⎡
⎢⎢⎢⎣
G

(1)
1,1 0 0 0

A
(1)
2,1 G

(1)
2 0 0

0 A
(1)
3,2 G

(1)
3 0

0 0 A
(1)
4,3 G

(1)
4

⎤
⎥⎥⎥⎦ (G(1))−1

⎡
⎢⎢⎢⎣

G
(1)
1 A

(1)
1,2 0 0

0 G2 A
(1)
2,3 0

0 0 G
(1)
3 A

(1)
3,4

0 0 0 G
(1)
4

⎤
⎥⎥⎥⎦ , (27)

G
(1)
1 = A

(1)
1,1, G

(1)
2 = A

(1)
2,2 − (

A
(1)
2,1(G

(1)
1)−1A

(1)
1,2

)
1

− θ2S
(1)
2 ,

S
(1)
2 e2 =

[
A

(1)
2,1(G

(1)
1)−1A

(1)
1,2 − (

A
(1)
2,1(G

(1)
1)−1A

(1)
1,2

)
1

]
e2,

G
(1)
3 = A

(1)
3,3 − (

A
(1)
3,2(G

(1)
2)−1A

(1)
2,3

)
1

− θ3S
(1)
3 ,

S
(1)
3 e3 =

[
A

(1)
3,2(G

(1)
3)−1A

(1)
2,3 − (

A
(1)
3,2(G

(1)
2)−1A

(1)
3,2

)
1

]
e3,

G
(1)
4 = A

(1)
4,4 − A

(1)
4,3(G

(1)
3)−1A

(1)
3,4.

Here S
(1)
1 , S

(1)
2 , and S

(1)
3 are diagonal matrices; G

(1)
4 is a seven-diagonal matrix

with a portrait of the same type as A(1), and it will be considered as matrix A(2)

in the SLAE for the grid Ω2h of the next grid level. The compensation parameters
θ
(1)
2 , θ

(1)
3 ∈ [0, 1] are in general different, and the trial vectors e

(1)
2 , e

(1)
3 are of the

dimensions N
(1)
2 and N

(1)
3 , respectively.

To solve SLAE (18) with the preconditioner B(1) from (19), as in the two-
dimensional case, we apply the conjugate gradient method with incomplete
factorization, according to formulas (6)–(9). To solve the auxiliary equation
B(1)qn = rn at each iteration, we obtain the following formulas in a block com-
ponent form (we omit the index n for the sake of brevity) instead of (10):

G
(1)
1 v

(1)
1 = r

(1)
1 , G

(1)
2 v

(1)
2 = r

(1)
2 − A

(1)
2,1v

(1)
1 , G

(1)
3 v

(1)
3 = r

(1)
3 − A

(1)
3,2v

(1)
2 ,

G
(1)
4 v

(1)
4 = r

(1)
4 − A

(1)
4,3v

(1)
3 , q

(1)
4 v

(1)
2 = v

(1)
4 , G

(1)
3 w

(1)
3 = A

(1)
3,4q

(1)
4 , q

(1)
3 = v

(1)
3 − w

(1)
3 ,

G
(1)
2 w

(1)
2 = tA

(1)
2,3q

(1)
3 , q

(1)
2 = v

(1)
2 − w

(1)
2 , q

(1)
1 = v

(1)
1 − (G

(1)
1)(−1)A

(1)
1,2q

(1)
2 , (28)

where the subvector q
(1)
4 is in fact the vector q2 ∈ RN2 , defined on the coarse grid

Ωh
2 . The computation of the matrices G

(1)
1 , G

(1)
2 , G

(1)
3 , G

(1)
4 and the subvectors

v
(1)
1 , v

(1)
2 , v

(1)
3 in formulas (18) and (19) can be interpreted as a stage of reduction

of the original SLAE on the fine grid to a system of equations with a seven-
diagonal matrix G

(1)
4 = A(2) on the coarse grid, namely

A(2)q(2) = f (2) = r
(1)
4 − A

(1)
4,3v

(1)
3 .

If the vector q(2) is computed (this operation represents a coarse-grid correction)
using a direct method, then we come to a two-grid algorithm. Otherwise, an m-
grid method is implemented by recursive application of the two-grid method.
Reverse calculations in formulas (20), where the subvectors q

(1)
3 , q

(1)
2 , q

(1)
1 are

obtained, represent the stage of continuation of the solution from Ωh
2 to Ω̄h

1 .
When constructing the multigrid algorithm, the set of nodes of the three-
dimensional grid Ωh

2 is also split into four types; this approach is repeated for

Multigrid Methods 103

the embedded grid Ωh
l of any level l = 2, 3, . . . ,m. For the corresponding block

diagonal matrices Al of the form (18), the preconditioners B(l) are sequentially
constructed (as the matrices) and embedded in each other according to formulas
(18) and (19), where the top index 1 is replaced by l.

The external iterative process of conjugate directions is constructed in exactly
the same manner as in the two-grid version, with the only difference being that
there are some difficulties in the implementation of the preconditioner, i.e., the
solution of the auxiliary SLAE B(l)qn = rn.

4 Parallelization of Multigrid Methods

To evaluate the quality of parallelization of the algorithms, we relied on such
classical criteria as computational acceleration and processor efficiency, namely

Sp(A) = T1(A)/Tp(A), Ep(A) = Sp(A)/p, (29)

where A denotes the problem or algorithm under investigation, p is the number
of processors, and Tp(A) is the execution time of A on p processors. Moreover, the
execution time of A on a single processor consists of the duration of arithmetic
operations and data transfer, i.e.,

T1(A) = Ta + Tc = τaNa + (τ0 + τcNc)Nt, (30)

where τa, τc, and τ0, τa 	 τc 	 τ0, are, respectively, the average time per arith-
metic operation, the average time per number transaction, and the transaction
latency; Na, Nc, and Nt are, respectively, the number of arithmetic operations,
the volume of data transferred, and the number of information arrays or data
packages forwarded. We assume conventionally (although (23) does not reflect
this) that all operations are performed on real numbers with standard double pre-
cision (64-bit machine words). Obviously, the application of averaged character-
istics of computer devices to formula (23) is a rather rough model of calculations,
very much like “the average temperature per patient of a hospital”. However,
we can arrive at several conclusions and recommendations about the technology
of high-performance and/or scalable parallelization on this basis. On the other
hand, a detailed analysis of a supercomputer with a heterogeneous architecture
using real-time simulation requires an even more powerful computer.

We will focus on a compromise representation of the multiprocessor comput-
ing system (MPS) as a cluster of computing nodes with a distributed memory,
which implements the transfer of information messages via connecting buses
(MPI interface). In this case, each node has multiple CPUs with common hier-
archical memory and supports multithread computations (OpenMP system).
Such two-level parallelism is controlled with hybrid programming tools.

The concept of scalable parallelism is defined ambiguously and is consid-
ered in two senses: strong and weak. The first means the linear acceleration of
computations for a fixed task as the number of processor devices increases; the
second is defined as the economy of computational time for the task or algorithm

104 M. Batalov et al.

under the assumption of a proportionate growth in the number of processors and
resource intensity. The problem of parallelizing a computational task comprising
multiple solutions of algebraic systems with identical matrices but sequentially or
simultaneously determined right-hand sides is one having particular methodical
interest.

To analyze the parallelization effectiveness of the proposed algorithms, we
focus on the three-dimensional case as the most interesting from a practical
point of view. Let the initial Ωh

1 (fine grid) be a parallelepipedal grid containing
N (1) = N

(1)
x N

(1)
y N

(1)
z nodes. Consider for simplicity a three-grid version of the

algorithm, where the coarsest grid has N (3) = N
(3)
x N

(3)
y N

(3)
z nodes, and the

numbers of nodes for embedded grids are determined by the formula

N (l) = (2N (l+1)
x − 1)(2N (l+1)

y − 1)(2N (l+1)
z − 1), l = 1, 2. (31)

This corresponds to the fact that a finer grid Ωh
l is constructed by adding coor-

dinate planes passing through the middle (possibly approximately) of the edges
of the refined grid Ωh

l+1. Applying more than m = 3 levels seems impractical
since Ωh

3 contains about 64 times fewer nodes than Ωh
1 and further grids would

only give a small gain in algorithm performance.
To quantify a possible speedup, we split the entire computational process

under study into the following main characteristic stages:

a. Creation of vector-matrix data structures that correspond to the application
of hierarchical (recursive) ordering of nodes in embedded grids.

b. Computation of the matrix elements in (18), once before iterations.
c. Performing the operations to start the preconditioned conjugate gradient

method (6). This includes finding r0 and carrying out the forward pass in
(19), as well as determining the vectors v1(0), v2(0), and v3(0), which is
actually a stage of SLAE reduction. It is followed by the computation of
v4(0) = q4(0) (the coarse-grid correction stage) and the determination of the
subvectors q3(0), q2(0), and q1(0) (the back pass in (19), representing the
extension of these vectors from the coarse grid to the fine grid). This stage
ends with the determination of the initial guiding vector p0.

d. Consecutive iterations to perform the vector-matrix multiplication Apn and
solve the SLAE Bqn = rn (in other words, to compute the vector qn = B−1rn,
formally related to the preconditioning matrix inversion) on each of them,
and carry out simpler vector operations of the conjugate gradient method
(the latter include two scalar vector products, which are relatively worse
parallelizable).

Obviously, to evaluate qualitatively the acceleration in parallel computations, it
is sufficient to consider the most resource-intensive stage, which is the last one

(d), since it requires a high number of iterations, namely n(ε) ≤ 1
2
√

κ ln
2
ε
, where

κ = λmax/λmin; κ is generally the effective conditional number, expressed in the
case of degenerate matrices through λmin, i.e., the minimal nonzero eigenvalue.
Operations related directly to the conjugate gradient method are parallelized

Multigrid Methods 105

through a common approach. If the SLAE exceeds the resources of one com-
putational node, the two-level technology with algebraic domain decomposition
into approximately equal nonintersecting subdomains is used for enhancing the
computation acceleration. In this case, calculations for the corresponding subdo-
main are implemented synchronously on each multicore node, and information
messages are exchanged between them with the help of an MPI library. At the
same time, the computations in each subdomain are performed in parallel with
the help of multithreaded arithmetics. Actually, this type of operation does not
relate to the specifics of multigrid algorithms and allows achieving a high (almost
linear) scalability.

Another situation arises in the implementation of the preconditioner for the
recursive structure described above. In this situation, the matrix blocks corre-
sponding to subsets Ω̄h

l (belonging to the same embedding level) have a block
tridiagonal third-order form (while the fourth block belongs to the Ωh

l+1 grid).
Therefore, the implementation of the corresponding formulas (19) in the restric-
tion and prolongation phases should be performed sequentially in three stages.
Here each stage is associated with calculations for different types of nodes (edge,
face, and volume nodes in the l-th grid). It should be noted that the calculations
for each l-th grid can be performed only in a consecutive manner. Moreover,
since each grid-refining step increases the number of nodes by a factor of about
8, the greatest contribution to the speedup is made by the parallelization of the
original grid Ωh

1 . Although most processors are idle while processing the nodes
of coarser grids, the resulting slowdown is relatively negligible since the total
number of arithmetic steps in these stages is rather small.

5 Numerical Experiments

To illustrate the effectiveness of the proposed algorithms, we present the results
of preliminary experimental studies on a series of methodical SLAEs obtained
from finite-difference standard approximations of 2D and 3D Dirichlet bound-
ary value problems for the Poisson equation in square or cubic computational
domains with square and cubic grids and different numbers of grid steps. The
matrices of the algebraic systems are five-diagonal or seven-diagonal, with the
constant entry (4,−1,−1,−1,−1) or (6,−1,−1,−1,−1,−1,−1), depending on
the problem dimension. We employed the preconditioned iterative conjugate gra-
dient method with the criterion for stopping iterations given as rn, rn) ≤ ε2(f, f),
ε 	 1. The computations were performed with different numbers of embedded
grids: m = 1, 2, 3, 4, where m = 1 corresponds to the “usual” single-grid method.
All arithmetic operations were performed with standard double precision.

Table 1 shows the computation results for the 2D Dirichlet problem in the
square domain Ω = [0, 1]2 with square grids and SLAE dimensions N =
5112, 10232, 20472. The iterative process was implemented via formulas (6)–(10)
for the preconditioned conjugate gradient method with the threshold ε = 10−7 in
the criterion for terminating the iterations. The value of the iterative (compen-
sating) parameter was chosen everywhere as θ = 1. All experiments confirmed

106 M. Batalov et al.

Table 1. Data from computational experiments for the 2D problem solved by the
preconditioned conjugate gradient method

N/m 1 2 3 4

5112 836
34
1.4 · 10−6

9
0.42 + 1.41
5.6 · 10−8

14
0.16 + 1.60
2.2 · 10−8

20
0.10 + 1.76
6.7 · 10−8

10232 1635
303
3.0 · 10−6

8
1.59 + 3.97
7.9 · 10−8

13
0.55 + 6.38
8.7 · 10−8

19
0.30 + 8.09
9.9 · 10−8

20472 3197
2750
5.2 · 10−6

8
5.54 + 18.64
3.2 · 10−8

12
1.82 + 29.96
3.0 · 10−8

18
1.21 + 37.98
3.8 · 10−8

the optimality of this value. Problems with the exact solution u(x, y) = 1 and
initial guess u(x, y) = sinπx sin πy were used as test examples. Each cell of the
table contains the following data (from top to bottom): the number of iterations
n, the time to solve the SLAE (the number on the left is the time for preparatory
operations performed only once before iterations when solving the system with
the same matrix and successively defined right-hand sides; the number on the
right is the iteration time), and the resulting maximum absolute error of the
numerical solution, defined as δ = ‖u − un‖∞.

We can see from these results that the number of iterations is almost inde-
pendent of the number of grid nodes (experiments with other data confirmed
this conclusion). Note that if the initial error u−u0 is constant, the process con-
verges at θ = 1 in one iteration, as it should be according to a simple theoretical
analysis. As for the optimal number of embedded grids, it corresponds to the
value m = 2 or 3, which is to be expected according to the estimates of the total
volume of computations. The authors carried out the computational experiments
on a node of the NKS-1P cluster, installed at the Siberian Supercomputer Center
of the Institute of Computational Mathematics and Mathematical Geophysics,
SB RAS [25]. The node is equipped with processors IntelR© XeonR© E5-2630v4
(2.2 GHz, 10 cores) and 128 GB RAM.

In Table 2, we present the results of the solution of the same series of two-
dimensional problems but the operation of extending the approximate solutions
from a coarse to a fine grid was done by Chebyshev acceleration using formulas
(19)–(22). The number of external iterations, in this case, is larger than that
in Table 1 because the iterations were done according to a simple algorithm,
without acceleration employing (24) in Krylov subspaces. The runs were carried
out on a home PC with an IntelR© CoreTM i7-4770 CPU at 3.40 GHz and 16.0 GB
RAM aboard.

Multigrid Methods 107

Table 2. Data of computational experiments for the 2D problem solved by simple
iteration

N / m 1 2 3 4

5112 897
39
1.9 · 10−6

11
0.51 + 1.93
9.1 · 10−8

16
0.35 + 2.11
3.5 · 10−8

23
0.19 + 2.27
7.2 · 10−8

10232 1893
420
9.5 · 10−6

10
1.87 + 4.35
3.4 · 10−8

16
0.97 + 7.63
5.1 · 10−8

23
0.54 + 9.34
6.7 · 10−8

20472 3721
4398
3.4 · 10−6

9
8.74 + 23.03
6.1 · 10−8

15
3.54 + 41.39
6.9 · 10−8

21
2.01 + 53.13
4.5 · 10−8

Table 3 shows the results of numerical experiments conducted to solve 3D
problems using formulas (27), (29), and the preconditioned conjugate residual
method (this algorithm without preconditioning was also applied to solve the
obtained algebraic systems on the coarsest grids; the threshold ε = 10−8 in
the stopping criterion was used in both external and internal iterations). In
the computational domain Ω = [0, 1]3 (unit cube), we solved SLAEs approxi-
mating the Poisson equation with Dirichlet boundary conditions and the exact
solution u = sinπx on cubic grids with N = 1273 and N = 2553 inner nodes.
The computations were performed with different numbers of embedded grids:
m = 1, 2, 3, 4, 5 (m = 1 corresponds to the usual single-grid method without
preconditioning). In each cell of Table 3, the upper figure is the number of iter-
ations and the lower is the total computational time in seconds. Both numbers
correspond to the value θ = 1 of the compensating parameter; moreover, u0 = 0
was the initial guess. The computations were performed on a laptop with an
IntelR© CoreTM i7-7700HQ processor at 2.80 GHz and 8.00 GB RAM.

Table 3. Data of computational experiments for 3D problems

N / m 1 2 3 4 5

1273 276
11.9

18
13.3

38
3.81

75
5.99

136
10.4

2553 529
239

18
202

37
50.4

74
59

143
110

According to these results, the number of iterations of the multigrid method is
practically independent of the number of nodes, that is, of the SLAE dimension.
The optimal number of grids for the minimal number of iterations is m = 2.
However, to achieve the fastest time, m = 3 is the preferred variant. Additional
experiments (here we omit the corresponding data) demonstrated the existence

108 M. Batalov et al.

of optimal values of the iterative parameter θ that are close to 1 (θ ≈ 0.999).
Nevertheless, in this case, the number of iterations insignificantly decreases by
about 10%.

6 Conclusions

In this paper, we considered efficient algebraic multigrid methods for solving
large sparse SLAEs with symmetric positive-definite matrices arising from the
approximation of two- and three-dimensional boundary value problems. Also,
we proposed iterative methods of conjugate directions using large-block algo-
rithms of incomplete factorization with a recursive ordering of variables. Some
stages of the computational process can be interpreted as operations of restric-
tion, coarse-grid correction, and prolongation of successive approximations from
a coarse grid to a fine grid. We showed that additional preconditioning by the
symmetric successive over-relaxation method allows us to carry out the pro-
cedures of preliminary and final smoothing at each iteration. The results of
preliminary experimental research on test examples showed that the number of
iterations in the developed approaches practically does not depend on the SLAE
dimension. The suggested iterative processes can naturally be subject to scalable
parallelization on multiprocessor computing architectures, as well as generalized
to broader classes of problems with real data and implemented on unstructured
grids. The main issues, in this case, lie in the technologies of both data structures
and automation of algorithm constructions.

References

1. Fedorenko, R.P.: The speed of convergence of one iterative process. USSR Com-
put. Math. Math. Phys. 4(3), 559–564 (1964). https://doi.org/10.1016/0041-
5553(64)90253-8

2. Bakhvalov, N.S.: On the convergence of a relaxation method with natural con-
straints on the elliptic operator. USSR Comput. Math. Math. Phys. 6(5), 101–135
(1966). https://doi.org/10.1016/0041-5553(66)90118-2

3. Bornemann, F.A., Deuflhard, P.: The cascadic multigrid methods for ellip-
tic problems. Numer. Math. 75(2), 135–152 (1996). https://doi.org/10.1007/
S002110050234

4. Ilyin, V.P.: About one variant of multigrid method. Sib. Math. J. 26(2), 102–107
(1985). https://doi.org/10.1007/BF00968767

5. Shaidurov, V.V.: Some estimates of the rate of convergence for the cascadic
conjugate-gradient method. Comput. Math. Appl. 31(4/5), 161–171 (1996).
https://doi.org/10.1016/0898-1221(95)00228-6

6. Brandt, A.: Algebraic multigrid theory: the symmetric case. Appl. Math. Comput.
19, 23–56 (1986). https://doi.org/10.1016/0096-3003(86)90095-0

7. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM (2003)
8. Olshansky, M.A.: Analysis of a multigrid method for convection-diffusion equations

with Dirichlet boundary conditions. JVMiMF 44(8), 1450–1479 (2004)

https://doi.org/10.1016/0041-5553(64)90253-8
https://doi.org/10.1016/0041-5553(64)90253-8
https://doi.org/10.1016/0041-5553(66)90118-2
https://doi.org/10.1007/S002110050234
https://doi.org/10.1007/S002110050234
https://doi.org/10.1007/BF00968767
https://doi.org/10.1016/0898-1221(95)00228-6
https://doi.org/10.1016/0096-3003(86)90095-0

Multigrid Methods 109

9. Notay, Y.: Algebraic multigrid and algebraic multilevel methods: a theoretical
comparison. Numer. Linear Algebra Appl. 12, 419–451 (2005). https://doi.org/
10.1002/nla.435

10. Bank, R., Falgout, R., Jones, T., Manteuffel, T., McCormick, S., Ruge, J.: Algebraic
multigrid domain and range decomposition (AMG-DD/AMG-RD). SIAM J. Sci.
Comput. 37(5) (2015). https://doi.org/10.1137/140974717

11. Vassilevski, Y.V., Olshanskii, M.A.: Short Course on Multi-grid and Domain
Decomposition Methods. MAKS Press Publ., Moscow (2007)

12. Vanek, P.: Smoothed prolongation multigrid with rapid coarsening and massive
smoothing. Appl. Math. 57, 1–10 (2012). https://doi.org/10.1007/s10492-012-
0001-3

13. Brezina, M., Falgout, R., Maclachlani, S., Manteuffel, T., McCormick, S., Ruge,
J.: Adaptive smoothed aggregation (aSA) multigrid. SIAM Rev. 25(6), 1896–1920
(2004). https://doi.org/10.1137/050626272

14. Notay, Y.: Analysis of two-grid methods: the nonnormal case. Report GANMN
18-01 (2018). https://doi.org/10.1090/mcom/3460

15. Notay, Y., Napov, A.: A massively parallel solver for discrete Poisson-like problems.
J. Comput. Phys. 281, 237–250 (2015). https://doi.org/10.1016/j.jcp.2014.10.043

16. Notay, Y., Napov, A.: An efficient multigrid method for graph Laplacian systems
II: robust aggregation. SIAM J. Sci. Comput. 39(5), 379–403 (2017). https://doi.
org/10.1137/16M1071420

17. Xu, J., Zikatanov, L.: Algebraic Multigrid Methods. Acta Numerica. Cambridge
University Press (2017). https://doi.org/10.1017/S0962492917000083

18. Gurieva, Y.L., Il’in, V.P., Petukhov, A.V.: On multigrid methods for solving
two-dimensional boundary-value problems. J. Math. Sci. 249(2), 118–127 (2020).
https://doi.org/10.1007/s10958-020-04926-7

19. Demidov, D.: AMGCL: an efficient, flexible, and extensible algebraic multigrid
implementation. Lobachevskii J. Math. 40(5), 535–546 (2019). https://doi.org/10.
1134/S1995080219050056

20. Ilyin, V.P.: Multigrid methods of incomplete factorization. Zapiski Nauchnykh
Ceminarov POMI 514, 61–76 (2022)

21. Ilyin, V.P.: Methods and Technologies of Finite Elements. IVMiMG SB RAS,
Novosibirsk (2007)

22. Ilyin, V.P.: Iterative preconditioned methods in Krylov spaces: trends of the 21st
century. Comput. Math. Math. Phys. 61(11), 1750–1775 (2021). https://doi.org/
10.1134/S0965542521110099

23. Ilyin, V. P.: Mathematical modeling. Part 1. Continuous and Discrete Models.
Novosibirsk. SO RAN (2017)

24. Il’in, V. P., Kozlov, D. I., Petukhov, A. V.: On the minimal residual methods
for solving diffusion-convection SLAEs. J. Phys.: Conf. Ser. 2099, 012005 (2021).
https://doi.org/10.1088/1742-6596/2099/1/012005

25. Super Siberian Computing Center ICMMG SB RAS. http://www.sscc.icmmg.nsc.
ru

https://doi.org/10.1002/nla.435
https://doi.org/10.1002/nla.435
https://doi.org/10.1137/140974717
https://doi.org/10.1007/s10492-012-0001-3
https://doi.org/10.1007/s10492-012-0001-3
https://doi.org/10.1137/050626272
https://doi.org/10.1090/mcom/3460
https://doi.org/10.1016/j.jcp.2014.10.043
https://doi.org/10.1137/16M1071420
https://doi.org/10.1137/16M1071420
https://doi.org/10.1017/S0962492917000083
https://doi.org/10.1007/s10958-020-04926-7
https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1134/S0965542521110099
https://doi.org/10.1134/S0965542521110099
https://doi.org/10.1088/1742-6596/2099/1/012005
http://www.sscc.icmmg.nsc.ru
http://www.sscc.icmmg.nsc.ru

Optimized Relativistic Code for Massive
Parallel Systems

Elena N. Akimova1,2(B) , Vladimir E. Misilov1,2 , Igor M. Kulikov3 ,
and Igor G. Chernykh3

1 Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian
Academy of Sciences, 16 S. Kovalevskaya Street, Ekaterinburg, Russian Federation

aen15@yandex.ru
2 Ural Federal University, 19 Mira Street, Ekaterinburg, Russian Federation

v.e.misilov@urfu.ru
3 Institute of Computational Mathematics and Mathematical Geophysics, Siberian

Branch of the Russian Academy of Sciences, 6 Prospekt Ak. Lavrent’yeva,
Novosibirsk, Russian Federation

kulikov@ssd.sscc.ru, chernykh@parbz.sscc.ru

Abstract. This paper introduces a code designed for the three-
dimensional relativistic hydrodynamic simulation of astrophysical flows
on massive parallel architectures. The code utilizes numerical techniques
based on Godunov’s method and the piecewise parabolic approximation
with a local stencil to solve the equations of gravitational hydrodynam-
ics. The implementation of the code leverages the hybrid use of MPI,
OpenMP, and vectorization technologies. The collision of relativistic jets
serves as a case study to evaluate the code. Experiments were conducted
to assess its efficiency, performance, and scalability.

Keywords: Hydrodynamical model · High-performance computing ·
Massive parallel system · Hybrid MPI and OpenMP technologies ·
Scalability

1 Introduction

At present, relativistic jets are poorly studied objects [1]. The sources of such
jets are accreting supermassive black holes in the centers of galaxies [2,3]. The
basic accretion mechanism was described in [4] and further developed in [5–7]. Of
particular interest is the interaction of relativistic flows [8–10], which are pretty
well observed [11–14]. The problem of the interaction of wind from a relativistic
jet with molecular clouds [15] is also worth noting.

The simulation of such processes requires the use of specialized relativis-
tic hydrodynamics. Given the immense scale of these astrophysical objects,
their simulation mandates the deployment of powerful supercomputers. Modern
supercomputers predominantly adopt hybrid architectures, comprising clusters
equipped with graphics processors and general-purpose multicore central proces-
sors. The development of codes tailored for these architectures poses a formidable
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 110–122, 2023.
https://doi.org/10.1007/978-3-031-38864-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_8&domain=pdf
http://orcid.org/0000-0002-4462-5817
http://orcid.org/0000-0002-5565-0583
http://orcid.org/0000-0002-1959-780X
http://orcid.org/0000-0001-9564-1553
https://doi.org/10.1007/978-3-031-38864-4_8

Optimized Relativistic Code for Massive Parallel Systems 111

challenge. It demands not only the utilization of appropriate technologies but
also the formulation of a specialized numerical method and mathematical mod-
els. We present in this paper an enhanced version of the code introduced in
[16,17], specifically tailored to efficiently leverage vectorization, OpenMP, and
MPI technologies.

Several codes adapted for graphics processors (GPU) or the Intel Xeon Phi
accelerators have been developed. We review the most interesting solutions.

In Sect. 2 we provide the mathematical model and numerical method for
solving the hydrodynamical equations. Section 3 describes the architecture of
the hybrid parallel code. Section 4 is devoted to the study of its performance in
terms of speedup and scalability. Section 5 describes the model problem. Section 6
concludes the paper.

2 Mathematical Model and Numerical Method

Here we present a brief summary of the mathematical model and numerical
method described in [16].

Let ρ, �v, and p represent physical variables, namely, density, velocity
vector, and pressure. Assuming c ≡ 1, the Lorentz factor is defined as
Γ = 1/

√
1 − v2. The state of the ideal gas model is determined by the special

enthalpy
h = 1 +

γ

γ − 1
p

ρ
,

where γ is the adiabatic index.
For the equations of special relativistic hydrodynamics, we introduce the

following conservative variables: the relativistic density, D = Γρ, the relativis-
tic momentum, Mj = Γ 2ρhvj (for the components j = x, y, z), and the total
relativistic energy, E = Γ 2ρh − p.

The system of equations for the conservative variables is

∂

∂t

⎛
⎝

Γρ
Γ 2ρhvj

Γ 2ρh − p

⎞
⎠ +

3∑
k=1

∂

∂xk

⎛
⎝

ρΓvk
ρhΓ 2vjvk + pδjk

(Γ 2ρh − p)vk + pvk

⎞
⎠ = 0, (1)

where δjk is the Kronecker delta.
This system can be rewritten in a vector form as follows:

∂U

∂t
+

3∑
k=1

∂Fk

∂xk
= 0. (2)

Then, for an arbitrary cell, the Godunov scheme has the form

Un+1
i+ 1

2 ,k+
1
2 ,l+

1
2

− Un
i+ 1

2 ,k+
1
2 ,l+

1
2

τ
+

F ∗
x,i+1,k+ 1

2 ,l+
1
2

− F ∗
x,i,k+ 1

2 ,l+
1
2

hx

+
F ∗
y,i+ 1

2 ,k+1,l+ 1
2

− F ∗
y,i+ 1

2 ,k,l+
1
2

hy
+

F ∗
z,i+ 1

2 ,k+
1
2 ,l+1

− F ∗
z,i+ 1

2 ,k+
1
2 ,l

hz
= 0, (3)

112 E. N. Akimova et al.

where hx,y,z are the steps of the spatial grid and F ∗ are the fluxes of the cor-
responding variables through the cell boundary. These fluxes are obtained from
solving the Riemann problem.

Note that the inverse transition from conservative variables to physical vari-
ables involves solving a nonlinear equation. To accomplish this, an iterative New-
ton’s method is employed.

The numerical solver is based on the piecewise parabolic method on a local
stencil (PPML) and is described in detail in [16,17].

3 Hybrid Parallel Implementation

In this section, we present a comprehensive description of the code developed
for hydrodynamic simulation. Our implementation adopts a hybrid approach,
incorporating both MPI and OpenMP technologies. Additionally, we leverage the
Intel SIMD Data Layout Template (SDLT) library and the auto-vectorization
directives provided by the Intel C++ Compiler Classic to enhance the code
performance and efficiency.

3.1 The Domain Decomposition

Our implementation incorporates a domain decomposition approach that facili-
tates the efficient computation of the hydrodynamical equations. By utilizing a
uniform grid in Cartesian coordinates and iterating over three nested loops, our
code allows for using arbitrary Cartesian topologies for domain decomposition.
This computational structure offers significant potential for scalability.

The domain decomposition in our code employs a multilevel multidimensional
approach. Specifically, the outer one-dimensional decomposition is achieved using
the MPI technology, as illustrated in Fig. 1. For the periodic boundary condi-
tions, the leftmost and rightmost subdomains are considered adjacent.

Within each subdomain, the inner fine decomposition is done by vectoriz-
ing the inner loop, while the decomposition of the remaining two coordinates
is achieved by using two collapsed OpenMP loops, as depicted in Fig. 2. This
combination of parallelization techniques optimizes the code’s performance and
ensures efficient computations within each subdomain.

3.2 The Computational Algorithm

The code implements the following algorithm to compute a single time step
utilizing the corresponding function names:

1. Determine the minimum time step across all spatial cells and MPI processes
using the computational_tau() function.

2. Construct local parabolic approximations of the primitive variables for each
cell, considering the boundary conditions, using the build_parabola_sdlt()
function.

Optimized Relativistic Code for Massive Parallel Systems 113

Fig. 1. Geometric domain decomposition using MPI technology

Fig. 2. Geometric domain decomposition using OpenMP and SIMD technologies

3. Transfer the coefficients of the parabolic approximations for the adjacent
subdomain boundaries between MPI processes employing a ring topology.

4. Solve the Riemann problem for each cell (eulerian_stage()).
5. Handle the boundary conditions for the obtained conservative variables.
6. Transfer the values of the conservative variables for the adjacent subdomain

boundaries between MPI processes.
7. Calculate the primitive variables for each cell.
8. Handle the boundary conditions for the primitive variables using the

boundary_mesh() function.
9. Transfer the primitive variables for the adjacent subdomain boundaries

between MPI processes.

114 E. N. Akimova et al.

3.3 Auto Vectorization and Data Structures

To enhance the efficiency of data storage for the parabolic coefficients, primitive
variables, and conservative variables, we employed the Intel SDLT library [19].
This library facilitates optimal data organization by automatically transforming
the Array of Structures (AoS) representation into the Structure of Arrays (SoA)
internal format. By aligning the data to SIMD (Single Instruction, Multiple
Data) words and cache lines, and offering n-dimensional containers, the Intel
SDLT library enables the code to attain the performance benefits of vectorized
C++ code.

To study and optimize the code for automatic vectorization, we referred to
the “Vectorization and Code Insights” analysis of the Intel Advisor tool [20]. It
suggests the following:

– Modify the code to remove dependencies and minimize the number of function
calls by inlining with the directive #pragma forceinline recursive.

– Optimize the arithmetic operations by using the compiler option
\Qprec-div-.

– Reduce the amount of branching in the procedures for computing the
parabolic coefficients.

These modifications allowed us to increase the efficiency factor of automatic
vectorization from 2.5 to 6 for the AVX-512 instruction set.

3.4 OpenMP Parallelization

The parallelization of the code was achieved by distributing the computational
workload among multiple OpenMP threads. Listing 1.1 illustrates the common
usage of the #pragma omp for directive to parallelize the Riemann solver loop.
In this case, two outer loops were collapsed and parallelized using OpenMP, while
the inner loop was vectorized. To provide flexibility in program optimization
without the need for recompilation, the scheduling was set to runtime. This
approach allowed for fine-tuning of the program’s performance.

Listing 1.1. Parallel Riemann solver loop
#pragma omp for schedu le (runtime) c o l l a p s e (2)

for (i = 1 ; i < NX − 1 ; i++)
for (k = 1 ; k < NY − 1 ; k++)

#pragma ivdep
for (l = 1 ; l < NZ − 1 ; l++)
{

//Riemann s o l v e r
#pragma f o r c e i n l i n e r e c u r s i v e

SRHD_Lamberts_Riemann(
. . .

Optimized Relativistic Code for Massive Parallel Systems 115

3.5 MPI Parallelization

The data exchange is carried out in such a way that neighboring processes
exchange boundary values twice. All processes send the single rightmost layer of
their subdomain to their right neighbor. Then they receive the leftmost layer of
the right neighbor. After that, there is a similar exchange with the left neighbors.

Functions serialize_sdlt_data() and deserialize_sdlt_data() serial-
ize and deserialize the data from SDLT containers to and from the “flat” buffer
for transferring via the MPI.

Listing 1.2. MPI communication code
// Communications to r i g h t
i f (rank == 0)
{

s e r i a l i z e_sd l t_da ta (parabola_container , bu f f e r , NX − 2) ;
MPI_Send(bu f f e r , bu f f e r_s i z e , MPI_DOUBLE, rank_right ,

TAGTORIGHT, MPI_COMM_WORLD) ;
MPI_Recv(bu f f e r , bu f f e r_s i z e , MPI_DOUBLE, rank_left ,

TAGTORIGHT, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
de s e r i a l i z e_sd l t_data (parabola_container , bu f f e r , 0) ;

}
else
{

MPI_Recv(bu f f e r , bu f f e r_s i z e , MPI_DOUBLE, rank_left ,
TAGTORIGHT, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

de s e r i a l i z e_sd l t_data (parabola_container , bu f f e r , 0) ;
s e r i a l i z e_sd l t_da ta (parabola_container , bu f f e r , NX − 2) ;
MPI_Send(bu f f e r , bu f f e r_s i z e , MPI_DOUBLE, rank_right ,

TAGTORIGHT, MPI_COMM_WORLD) ;
}
// Communications to l e f t
i f (rank == s i z e − 1)
{

s e r i a l i z e_sd l t_da ta (parabola_container , bu f f e r , 1) ;
MPI_Send(bu f f e r , bu f f e r_s i z e , MPI_DOUBLE, rank_left ,

TAGTOLEFT, MPI_COMM_WORLD) ;
MPI_Recv(bu f f e r , bu f f e r_s i z e , MPI_DOUBLE, rank_right ,

TAGTOLEFT, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
de s e r i a l i z e_sd l t_data (parabola_container , bu f f e r , NX − 1) ;

}
else
{

MPI_Recv(bu f f e r , bu f f e r_s i z e , MPI_DOUBLE, rank_right ,
TAGTOLEFT, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

de s e r i a l i z e_sd l t_data (parabola_container , bu f f e r , NX − 1) ;
s e r i a l i z e_sd l t_da ta (parabola_container , bu f f e r , 1) ;
MPI_Send(bu f f e r , bu f f e r_s i z e , MPI_DOUBLE, rank_left ,

TAGTOLEFT, MPI_COMM_WORLD) ;
}

116 E. N. Akimova et al.

4 Code Research

In the context of a hybrid implementation, it is important to consider two types
of scalability:

1. Strong scalability. This refers to the ability to reduce the computation time of
a single step for a given problem as the number of devices utilized increases.
In other words, strong scalability measures the efficiency of parallelization
when distributing the workload across a varying number of devices. The goal
is to achieve a proportional reduction in computation time as more devices
are added.

2. Weak scalability. This concept involves maintaining a constant single-step
computation time and an equivalent workload per device while simultane-
ously increasing the number of devices employed. The objective is to assess
the scalability of the system as the problem size expands alongside the number
of devices. Achieving good weak scalability implies that the computational
resources can be efficiently utilized to handle larger and more complex prob-
lems without a significant increase in the computation time per device.

By considering both strong and weak scalability, one can comprehensively
evaluate the performance and efficiency of the hybrid implementation across
different computational scenarios.

The experiments were performed on the Uran supercomputer of the
Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS. The
nodes used have a pair of 18-core Intel Xeon Gold 6254 processors and 384 GB of
RAM. A mesh with a size of 512×512×512 points was used for the model prob-
lem. The computing times given below represent a single time step and exclude
the time spent on initialization, finalizing, and file operations.

4.1 OpenMP Threading Performance: Strong Scalability

To assess the threading performance, we utilized the speedup coefficient Sm =
T1/Tm and the efficiency coefficient Em = Sm/m), where Tm represents the
computing time on m OpenMP threads for the same problem.

Table 1 presents the results obtained from solving the problem with a grid
size of 512 × 512 × 512 points using varying numbers of OpenMP threads. The
table includes the computation time for a single time step, as well as the corre-
sponding speedup and efficiency coefficients. Figures 3 and 4 show the graphs of
the speedup and efficiency.

Optimized Relativistic Code for Massive Parallel Systems 117

Table 1. Threading performance for the test problem

Number m of
OpenMP threads

Time Tm

(seconds)
Speedup
Sm

Efficiency
Em

1 89.7 – –
2 46.2 1.94 0.97
4 24.1 3.72 0.93
8 15.2 5.90 0.73
18 7.5 11.96 0.66

A 12-fold speedup on the 18-core processor was achieved.

4.2 MPI Performance: Weak Scalability

The scalability of the code was evaluated using a grid of size p · 512 × 512 ×
512, where p represents the number of nodes utilized. Consequently, each node’s
subdomain has size 512 × 512 × 512 points. The scalability, denoted as Fp, was
calculated using the formula Fp = T1/Tp, where Tp represents the computation
time on p nodes.

Table 2 contains the results obtained from the scaling experiments. It pro-
vides the computation times Tp for a single time step, the scalability values Fp

corresponding to various numbers p of nodes, and the associated problem sizes.
Figure 5 illustrates the graph displaying the scalability results.

Table 2. Scalability for the test problem

Number p of
nodes

Grid size Time Tp

(seconds)
Scalability
Fp

1 512× 512× 512 7.5 –
2 1024× 512× 512 8.1 0.93
4 2048× 512× 512 9.0 0.83
8 4096× 512× 512 9.3 0.81
16 8192× 512× 512 9.7 0.77

For these experiments, 1 to 16 nodes (18 to 288 cores of the Intel Xeon Gold
6254 processor) were used. The code used 18 OpenMP threads on each node.
An 80% performance was reached.

There are several points to note.

– Despite the single node having two 18-core processors, the experiments were
performed on a single processor, binding all threads to a single socket. No
NUMA optimizations were implemented.

118 E. N. Akimova et al.

Fig. 3. The speedup of the parallel code on the 18-core Intel Xeon Gold 6254 processor.
The dashed line represents the ideal speedup.

Fig. 4. The efficiency of the parallel code on the 18-core Intel Xeon Gold 6254 processor

Optimized Relativistic Code for Massive Parallel Systems 119

– The algorithm is memory-bound, so the performance of the code on a single
node is limited by the memory bandwidth [17].

– The speedup from vectorization is also limited by the memory bandwidth.
When the bandwidth is saturated, the vectorized and unvectorized codes
show similar times.

– The Coarray Fortran technology has been identified as a viable alternative
to MPI for the development of parallel programs designed for distributed
memory architectures [18].

Fig. 5. Scalability of the code on the Uran supercomputer

5 Collision of Relativistic Jets

We consider the simulation of the interaction of two galactic jets. The formulation
of the problem is described in detail in [18]. The simulation was performed using
Algorithm 3.2. Figure 6 shows the density of the jets at a time point of 2000
years. The simulation requires a resolution of at least 512×512×512 points and
about 8000 time steps.

120 E. N. Akimova et al.

Fig. 6. Simulation of colliding jets

We do not dwell on the physical description of the interaction. Let us only
note that spherical shock waves and their interaction can be well described in
terms of spatial resolution, and so can the “cocoon” containing the relativistic
jet. The resulting structure of the shock waves is free from the artifacts of the
numerical method and is consistent with the observed phenomena.

With the developed code, a single time step takes less than 10 s to complete.
Thus, the whole simulation, taking into account the cost of saving the results,
requires more than 20 h. For a resolution of 512×512×512 points, we can perform
the simulation using only a single 18-core processor. If we use the 1024× 1024×
1024 grid, we need eight nodes to obtain a similar computing time. Note that
the larger grid also requires more memory. The 512 × 512 × 512 grid requires
about 140 GB, while the 1024 × 1024 × 1024 grid takes eight times as much. A
single node of the Uran supercomputer has only 384 GB. Thus, we need MPI
parallelization so we can use a higher resolution.

6 Conclusions

We presented in this paper a hybrid parallel code for the hydrodynamical simu-
lation of astrophysical flows on clusters with multicore processors. Vectorization
and OpenMP technology allowed us to achieve a 12-fold speedup on a single
node with an 18-core processor with AVX-512 instructions. The scalability of
the MPI code reached 80% on 16 nodes (288 processor cores) of the Uran super-
computer. The numerical experiments focused on the simulation of the collision
of two relativistic jets, which served as the model problem for the research.

Optimized Relativistic Code for Massive Parallel Systems 121

Acknowledgments. The computations were performed on the Uran supercomputer
at the Institute of Mathematics and Mechanics UB RAS, Ekaterinburg, Russian Fed-
eration.

The work of Igor Kulikov and Igor Chernykh was supported through the base-
budget program of the Institute of Computational Mathematics and Mathematical
Geophysics SB RAS (№ 0251-2021-0005).

References

1. Araudo, A., Bosch-Ramon, V., Romero, G.: Gamma rays from cloud penetration
at the base of AGN jets. Astron. Astrophys. 522, Article Number 522 (2010).
https://doi.org/10.1051/0004-6361/201014660

2. Begelman, M., Blandford, R., Rees, M.: Theory of extragalactic radio sources. Rev.
Mod. Phys. 56, 255–351 (1984). https://doi.org/10.1103/RevModPhys.56.255

3. Laing, R.: The sidedness of jets and depolarization in powerful extragalactic radio
sources. Nature 331, 149–151 (1988). https://doi.org/10.1038/331149a0

4. Shakura, N., Sunyaev, R.: Black holes in binary systems. Observational appearance.
Astron. Astrophys. 24, 337–355 (1973)

5. Bisnovatyi-Kogan, G., Blinnikov, S.: A hot corona around a black-hole accretion
disk as a model for CYG X-1. Sov. Astron. Lett. 2, 191–193 (1976)

6. Artemova, Y., Bisnovatyi-Kogan, G., Igumenshchev, I., Novikov, I.: Black hole
advective accretion disks with optical depth transition. Astrophys. J. 637, 968–
977 (2006). https://doi.org/10.1086/496964

7. Narayan, R., Yi, I.: Advection-dominated accretion: a self-similar solution. Astro-
phys. J. Lett. 428, L13–L16 (1994). https://doi.org/10.1086/187381

8. Glushak, A.P.: Microquasar jets in the supernova remnant G11.2–0.3. Astron. Rep.
58(1), 6–15 (2014). https://doi.org/10.1134/S1063772914010028

9. Barkov, M.V., Bisnovatyi-Kogan, G.S.: Interaction of a cosmological gamma-ray
burst with a dense molecular cloud and the formation of jets. Astron. Rep. 49,
24–35 (2005). https://doi.org/10.1134/1.1850203

10. Istomin, Ya.N., Komberg, B.V.: Gamma-ray bursts as a result of the interaction of
a shock from a supernova and a neutron-star companion. Astron. Rep. 46, 908–917
(2002). https://doi.org/10.1134/1.1522079

11. Artyukh, V.S.: Phenomenological model for the evolution of radio galaxies such
as Cygnus A. Astron. Rep. 59(6), 520–524 (2015). https://doi.org/10.1134/
S1063772915060025

12. Artyukh, V.S.: Effect of aberration on the estimated parameters of relativis-
tic radio jets. Astron. Rep. 62(7), 436–439 (2018). https://doi.org/10.1134/
S106377291806001X

13. Butuzova, M.S.: Search for differences in the velocities and directions of the
kiloparsec-scale jets of quasars with and without X-ray emission. Astron. Rep.
60(3), 313–321 (2016). https://doi.org/10.1134/S1063772916030033

14. Butuzova, M.S.: The blazar OJ 287 jet from parsec to kiloparsec scales. Astron.
Rep. 65(8), 635–644 (2021). https://doi.org/10.1134/S1063772921080023

15. Sotomayor, P., Romero, G.: Nonthermal radiation from the central region of super-
accreting active galactic nuclei. Astron. Astrophys. 664, Article Number A178
(2022). https://doi.org/10.1051/0004-6361/202243682

16. Kulikov, I.: A new code for the numerical simulation of relativistic flows on super-
computers by means of a low-dissipation scheme. Comput. Phys. Commun. 257,
Article Number 107532 (2020). https://doi.org/10.1016/j.cpc.2020.107532

https://doi.org/10.1051/0004-6361/201014660
https://doi.org/10.1103/RevModPhys.56.255
https://doi.org/10.1038/331149a0
https://doi.org/10.1086/496964
https://doi.org/10.1086/187381
https://doi.org/10.1134/S1063772914010028
https://doi.org/10.1134/1.1850203
https://doi.org/10.1134/1.1522079
https://doi.org/10.1134/S1063772915060025
https://doi.org/10.1134/S1063772915060025
https://doi.org/10.1134/S106377291806001X
https://doi.org/10.1134/S106377291806001X
https://doi.org/10.1134/S1063772916030033
https://doi.org/10.1134/S1063772921080023
https://doi.org/10.1051/0004-6361/202243682
https://doi.org/10.1016/j.cpc.2020.107532

122 E. N. Akimova et al.

17. Akimova, E.N., Misilov, V.E., Kulikov, I.M., Chernykh, I.G.: OMPEGAS: opti-
mized relativistic code for multicore architecture. Mathematics 10, Article Number
2546 (2022). https://doi.org/10.3390/math10142546

18. Kulikov, I., et al.: A new parallel code based on a simple piecewise parabolic method
for numerical modeling of colliding flows in relativistic hydrodynamics. Mathemat-
ics 10(11), Article Number 1865 (2022). https://doi.org/10.3390/math10111865

19. Intel Corporation. SIMD Data Layout Templates. https://www.intel.com/
content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-
guide-and-reference/top/compiler-reference/libraries/introduction-to-the-simd-
data-layout-templates.html. Accessed 23 Feb 2022

20. Intel Corporation. Intel Advisor User Guide. https://www.intel.com/content/
www/us/en/develop/documentation/advisor-user-guide/top.html. Accessed 23
Feb 2022

https://doi.org/10.3390/math10142546
https://doi.org/10.3390/math10111865
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-reference/libraries/introduction-to-the-simd-data-layout-templates.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-reference/libraries/introduction-to-the-simd-data-layout-templates.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-reference/libraries/introduction-to-the-simd-data-layout-templates.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-reference/libraries/introduction-to-the-simd-data-layout-templates.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top.html

Using Parallel SAT Solving to Study
Hard Combinatorial Problems Associated

with Boolean Circuits

Victor Kondratiev1(B) , Stepan Kochemazov2 , and Alexander Semenov1

1 ITMO University, St. Petersburg, Russian Federation
vikseko@gmail.com

2 ISDCT SB RAS, Irkutsk, Russian Federation

Abstract. We propose a family of parallel algorithms aimed at solving
problems related to hardware verification. We consider the Logical Equiv-
alence Checking problem (LEC) and a particular case known as Auto-
mated Test Pattern Generation (ATPG). The main algorithmic basis for
solving LEC and ATPG consists of state-of-the-art SAT-solving algo-
rithms. However, for extremely hard SAT instances, the situation often
arises when we can say nothing about the runtime of the SAT solver on
a considered instance. We can, nonetheless, estimate the runtime if we
decompose the original instance into a family of simpler instances that
can be solved in a reasonable time. As an additional bonus, this approach
provides a means for solving a given problem in parallel. We exploit the
described idea in some extremely hard ATPG instances in SAT form
and demonstrate that parallel computing is essential for efficient ATPG
solving.

Keywords: Boolean satisfiability · Parallel SAT solving algorithms ·
Electronic design automation · Logical equivalence checking ·
Automated test pattern generation

1 Introduction

The algorithms for solving the Boolean satisfiability problem (SAT) are success-
fully applied today to a vast spectrum of practical problems from diverse areas,
such as software verification and program testing [4,8,19], computer security and
cryptanalysis [2,9,29,30,34], combinatorics and Ramsey theory [14,15,18,35],
and others. Hardware verification—in particular, Electronic Computer-Aided
Design (ECAD) and Electronic Design Automation (EDA)—remains one of the
major industrial areas where complete SAT solvers are employed. The SAT
solvers based on the CDCL algorithm [20] are among the principal computa-
tional tools in EDA.

One of the particularly challenging problems related to SAT solvers is that,
given a hard SAT instance, it is not known how long it will take a solver to
solve it. To the best of our knowledge, this problem has not been systematically
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 123–136, 2023.
https://doi.org/10.1007/978-3-031-38864-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_9&domain=pdf
http://orcid.org/0000-0003-0356-5149
http://orcid.org/0000-0003-2848-5786
http://orcid.org/0000-0001-6172-4801
https://doi.org/10.1007/978-3-031-38864-4_9

124 V. Kondratiev et al.

studied until recently, although it was mentioned in the studies of the so-called
heavy-tailed behavior [13]. In [27], it was suggested to estimate the hardness
of SAT instances with respect to some decomposition of an original formula
into a family of simpler subproblems that can be (individually) solved relatively
fast. The approach from [27] is based on those described in [33] and [1], and its
founding ideas combine well with the parallel computing paradigm. Here and in
what follows, we use methods similar to that proposed in [27] to solve extremely
hard problems related to EDA.

In the present paper, the central object of study is the problem of Logical
Equivalence Checking of Boolean circuits (LEC) and its special case related
to the Automatic Test Pattern Generation (ATPG) in the context of the so-
called stuck-at-fault model. We demonstrate that parallel computing is essential
for successfully solving the considered problems. The main practical result of
the paper is the implementation of several parallel algorithms for solving the
problems outlined above. Note that the only publicly available software that
can be used for solving problems of this kind is the well-known ABC tool [6].
However, it employs a deprecated embedded MiniSat SAT solver [12] and does
not support parallel mode.

Thus, the main contributions of this paper are the following: 1) we show
that it is possible to adapt the technique from [28] to estimate the time required
for solving hard ATPG instances and to solve them in parallel; 2) we develop
and implement parallel algorithms for solving hard ATPG instances; 3) we suc-
cessfully use the developed algorithms to solve in parallel some extremely hard
benchmarks.

The paper is organized as follows. Section 2 describes the basic concepts
and terms used in the study. Section 3 provides a description of the method
for estimating hardness of LEC with respect to the SAT partitioning. Section 4
describes the developed algorithm for parallel ATPG testing using the “stuck-
at fault” model. Section 5 presents the results of computational experiments on
the application of the developed methods for solving problems of constructing
complete sets of ATPG tests for several multipliers. Conclusion summarizes the
study and points directions for further work.

2 Preliminaries

Electronic Design Automation (EDA) is a critically important area of the mod-
ern computer industry. It studies the problems related to the development and
testing of integrated circuits. In recent years, the number of combinatorial prob-
lems arising in the context of these research directions has steadily increased,
emphasizing the relevance of developing algorithms for solving them.

Boolean circuits are among the simplest and most widely used models of
digital circuits. The convenience of Boolean circuits as a model is determined by
the fact that their primary properties can be formulated within the framework
of well-developed mathematical formalisms from graph theory and the theory of
Boolean functions. This fact makes it possible to directly express many properties
of real-world digital circuits in the language of Boolean circuits.

Parallel SAT Solving for LEC 125

2.1 Boolean Circuits

A Boolean circuit is a directed acyclic labeled graph, defined as an ordered pair
(V,E), where V is a set of vertices and E is a set of directed edges, called
arcs. This graph can be viewed as a method for defining a complex function
that transforms binary words into binary words. The vertices from V denote
the input and the elementary functions that compose the considered function.
Elementary functions are called gates and correspond to the logical connectives
from some predefined basis. The most widely used bases are {∧,∨,¬}, {∧,¬},
{⊕,∧, 1}, and so forth. Concerning the vertices from V , we will use the standard
definitions from graph theory: for any arc (u, v) ∈ E, vertex u is called parent,
and vertex v child. The vertices without parents form the set of inputs of a
circuit, which we denote by V in; the vertices without children correspond to the
circuit outputs, and their set is denoted by V out. Every vertex v ∈ V \ V in is
called a gate. A logical connective from the considered basis is associated with
each gate.

An example of a Boolean circuit implementing the function f : {0, 1}3 →
{0, 1}2 over the basis {∨,∧,¬,⊕} is given in Fig. 1.

Fig. 1. An example of a Boolean circuit with three inputs (i1, i2, i3) and seven gates

2.2 Boolean Satisfiability and Circuits

The Boolean satisfiability problem (SAT) is formulated as follows: for an arbi-
trary Boolean formula, determine whether it is satisfiable. Usually, it is assumed
that the formula is in the Conjunctive Normal Form (CNF). Recall that (see,
for example, [5]) a Boolean formula F is said to be satisfiable if there exists
such an assignment of the variables occurring in F that the substitution of this
assignment into F (see [7]) results in F taking the value 1 (True). We refer to
such an assignment as a satisfying one. If there are no satisfying assignments
for a given formula, then we say that the formula is unsatisfiable.

SAT is NP-complete in its decision variant and NP-hard when viewed as
a search problem (i.e., when a formula is satisfiable, we should also provide a
satisfying assignment). During recent years though, there have appeared many

126 V. Kondratiev et al.

industrial problems in which the algorithms for solving SAT (SAT solvers) show
good performance. Electronic Design Automation (EDA) is one of the areas
where we can find many problems of this kind. Here we study a particular prob-
lem from EDA, called Logical Equivalence Checking (LEC). It can be stated as
follows. For two different Boolean circuits Sf and Sh that define the functions
f, h : {0, 1}n → {0, 1}m, determine if it holds that f ∼= h (pointwise equivalence)
or, put otherwise, Sf and Sh specify the same discrete function.

For two circuits Sf and Sh, we can efficiently (in polynomial time in the
number of vertices in the circuits) construct a CNF that is unsatisfiable if and
only if f ∼= h. Below, we briefly describe the corresponding procedure.

Assume that B is a set of Boolean variables. Here and below, by {0, 1}|B| we
denote the set of all possible assignments of variables from B. Associate with each
vertex v ∈ V of circuit Sf a separate Boolean variable and denote the resulting
set of variables by X. Assume that X is endowed with the same order relation as
V . Let X in = {x1, . . . , xn} be the set formed by all variables associated with the
inputs of a circuit, and let Y = {y1, . . . , ym} be the set of variables associated
with circuit outputs. Suppose that v ∈ V \V in is an arbitrary gate, gv is a logical
connective corresponding to v, and x is a variable associated with v. Let P (v) be
the set of vertices that are the parents of v. By XP we denote the set of variables
associated with vertices from P (v). Let F (XP) be an arbitrary formula over XP

that defines the function gv. Consider the function φv : {0, 1}|XP ∪{x}| → {0, 1}
defined by the formula F (Xp) ≡ x and denote by Cv the CNF representation of
φv. We will refer to the following formula as the template CNF for the function
f : {0, 1}n → {0, 1}m:

Cf =
∧

v∈V \V in

Cv. (1)

Note that the transition from the circuit Sf , which defines the function f , to
CNF (1) consists of the sequential application of Tseitin transformations [31].

Recall that the notation xσ, σ ∈ {0, 1}, stands for the formula x when σ = 1
and the formula ¬x when σ = 0. Both formulas are called literals for the variable
x. Note that under this notation σ¬σ = 0 for any σ ∈ {0, 1}. The following state-
ment is very important for determining various properties of Boolean circuits.
In its formulation, we refer to the well-known Unit Propagation rule [20], i.e.,
the main method for Boolean constraint propagation used in SAT solvers based
on the CDCL algorithm.

Lemma 1. For any α ∈ {0, 1}n, α = (α1, . . . , αn), the application of only the
unit propagation rule to the formula xα1

1 ∧ . . . ∧ xαn
n ∧ Cf results in the inference

of values in the form of literals for all variables from X \ X in, including the
variables from Y : y1 = γ1, . . . , ym = γm : f(α) = γ, γ = (γ1, . . . , γm).

This statement has appeared several times in papers related to Boolean circuits
and SAT, e.g., [3,11,26].

Parallel SAT Solving for LEC 127

2.3 Equivalence Checking for Boolean Circuits

Let us again consider the LEC problem for two circuits Sf and Sh such that
f, h : {0, 1}n → {0, 1}m. Assume that the same order is defined on the sets of
inputs of Sf and Sh (which matches the order of bits of an input word from
{0, 1}n) and glue the pairs of inputs of these two circuits having the same num-
bers. We denote the obtained circuit by SfΔh. Note that it defines (in the sense
described above) a function fΔh : {0, 1}n → {0, 1}2m. Next, construct a tem-
plate CNF CfΔh for SfΔh using the algorithm described in the previous sub-
section. Assume that Y f = {yf

1 , . . . , yf
m} and Y h = {yh

1 , . . . , yh
m} are the sets of

variables associated with the outputs of the circuits. Consider the formula

M = (yf
1 ⊕ yh

1 ∨ . . . ∨ yf
m ⊕ yh

m),

which is called a miter [23], and construct an equisatisfiable CNF for it using
Tseitin transformations. We denote the resulting CNF by C(M). It is easy to
show that the circuits Sf and Sh are equivalent (f ∼= h) if and only if the CNF
CfΔh ∧ C(M) is unsatisfiable.

2.4 Automatic Test Pattern Generation for Boolean Circuits

The following problem is of extreme importance for the microelectronic industry.
Assume that there is some possibility of defects when manufacturing digital
circuits. As a result of a defect, one (or more) nonconstant gate in a circuit
becomes constant and outputs only 0 or only 1 on every input word. This type of
defect is known as the stuck-at-fault model. The usual practice to check whether
the circuits have stuck-at-fault defects is to test some control sample of randomly
chosen designs from the manufactured products. In this context, it is important
to have a technology that, based on the inputs given to a tested circuit and the
output values obtained from it, makes it possible to understand that some gate
does not satisfy the original specification due to being stuck at either 0 or 1.
Naturally, a circuit with a stuck-at-fault gate is defective if it is not equivalent
to an original correct circuit. Thus, in the context of this problem, for each gate
v ∈ V \ V in of a considered circuit, we need to find the assignments (α0, γ0, γ

′
0)

and (α1, γ1, γ
′
1) that can be used to detect whether v is stuck at some value.

For example, if gate v is stuck at constant 0 (and this fact does not agree with
the design of the original circuit), then on some input α0, an original circuit
would produce the output γ0, while a defective one would output γ′

0. Thus, to
thoroughly test a circuit containing K gates for stuck-at-fault gates, we need
2K triplets of the kind indicated above, generated in advance. It is worth noting
that a gate v stuck at some value may not influence the functionality of a circuit,
i.e., a faulty circuit may be equivalent to an original one. That situation is not
considered critical for obvious reasons. The problem of constructing a complete
set of tests for all gates of Sf in the above context is known as the Automated
Test Pattern Generation problem (ATPG) for the stuck-at-fault model.

128 V. Kondratiev et al.

3 Solving ATPG for Boolean Circuits Using Parallel
SAT-Based Algorithms

In this section, we consider ATPG for two Boolean circuits over the basis {∧,¬}.
The corresponding circuits are known as And-Inverter Graphs (AIG) and are
widely used in symbolic verification.

3.1 The Hardness of LEC with Respect to SAT Partitioning

An interesting fact is that modern SAT solvers based on the CDCL algorithm
[20] often show good efficiency on the ATPG problem for many commercial
digital circuits. This fact was one of the main reasons for the explosive growth of
interest in the use of SAT solvers in EDA. However, for many functions specified
by circuits, ATPG can be extremely hard, at least for some gates. In such a
situation, a SAT solver may work with a corresponding LEC problem for hours
or even days, and for standard sequential SAT solvers, there are no known ways
to construct any prognosis regarding how long it will take to solve a problem.
However, such a prognosis can be constructed if we split an original hard SAT
instance into a family of simpler subproblems that can be solved in parallel. It
was proposed in [27] to estimate the hardness of a Boolean formula with respect
to its decomposition drawing on ideas from [33] and [1].

3.2 Exploiting the Structure of Circuits When Solving ATPG

Below we employ the approach described in [28] for estimating the hardness of
the considered instances. In particular, we consider LEC for two Boolean circuits
Sf and Sh. In the set of variables associated with the vertices of the circuit SfΔh,
we outline the set X in = {x1, . . . , xn} of variables corresponding to the inputs
of the circuits. Next, we split X in into pairwise disjoint subsets X1, . . . , Xq as
described below. We choose some 1 < k < n and set q = n/k if n is divisible
by k. Otherwise, we set q = 	n/k
. In the first case, each Xj , j ∈ {1, . . . , q},
contains k variables from X in. In the second case, each set X1, . . . , X�n/k� con-
tains k variables, while the set Xq contains r variables, n = �n/k� · k + r,
r ∈ {1, . . . , k − 1}. With each set Xj , j ∈ {1, . . . , q}, we associate two Boolean
functions λj

1 : {0, 1}|Xj | → {0, 1} and λj
2 : {0, 1}|Xj | → {0, 1} such that λj

2 = ¬λj
1.

Recall that a SAT partitioning [16] of an arbitrary CNF formula C over
variables X is a set of formulas G1, . . . , Gs such that two conditions are satisfied:

1. C and C ∧ (G1 ∨ . . . ∨ Gs) are equisatisfiable;
2. for any i, l ∈ {1, . . . , s}, i = l, formula C ∧ Gi ∧ Gl is unsatisfiable.

Denote by φj
1 and φj

2 the Boolean formulas in CNF that specify the functions
λj
1 and λj

2. It was shown in [28] that the set of all s = 2�n/k	 formulas of the
kind φ1 ∧ . . . ∧ φ�n/k	, where φj , j ∈ {1, . . . , 	n/k
}, represents both φj

1 and φj
2,

defines a SAT partitioning of CfΔh ∧ C(M).

Parallel SAT Solving for LEC 129

An important property of any SAT partitioning is that all problems of the
kind Gi ∧C, i ∈ {1, . . . , s}, can be solved in parallel. That is why, using the SAT
partitioning from [28], to solve SAT for CfΔh ∧C(M) we need to determine the
satisfiability of 2�n/k	 formulas of the kind

φ1 ∧ . . . ∧ φ�n/k	 ∧ CfΔh ∧ C(M),

and this can be done in parallel.
Another important property of the partitioning strategy from [28] is that

the total time required to solve all 2�n/k	 subproblems of the described kind
can be quite accurately estimated for some hard LEC instances using a simple
probabilistic algorithm (related to the Monte Carlo method), described in [27]
and [28]. For this purpose, it is sufficient to use a sample of N out of 2�n/k	

formulas of the kind φ1 ∧ . . . ∧ φ�n/k	, chosen independently and uniformly from
the set of all possible formulas of this kind, and calculate the following value:

1
N

N∑

j=1

tA

((
φ1 ∧ . . . ∧ φ�n/k)j ∧ CfΔh ∧ C(M)

)
. (2)

In (2), we denote by
(
φ1 ∧ . . . ∧ φ�n/k)j

the formula number j in the random
sample of size N formed by formulas of the kind φ1 ∧ . . . ∧ φ�n/k	 and by tA(C)
the runtime of a complete SAT solver A on formula C. From the results in [27],
it follows that the value (2) the better approximates the hardness of the formula
CfΔh ∧ C(M) with respect to the SAT partitioning

Π =
{(

φ1 ∧ . . . ∧ φ�n/k)l
}2�n/k�

l=1
,

the larger N is. However, it was shown in [28] that the estimate (2) can be accu-
rate for some circuits, even if N is in the range of hundreds. We will use expres-
sions of the kind (2) to estimate the hardness of some hard ATPG instances.

4 LEC and ATPG Using Parallel Computing

In this section, we describe the general strategy employed for solving ATPG
instances in parallel. Parallel solving is relevant here because, to construct a
complete set of ATPG tests, it is often necessary to solve tens of thousands of
LEC instances. An important fact is that such problems are relatively simple
for modern SAT solvers in most cases, even when we consider circuits specifying
functions for which the inversion problems are well known to be hard, e.g.,
multiplication algorithms. However, there are no a priori known estimates for
the runtime of a SAT solver, even for relatively simple ATPG instances. Aside
from that, as we will see below, some ATPG instances are extremely hard for any
state-of-the-art SAT solvers. Both reasons make an appealing case for solving
ATPG in parallel.

130 V. Kondratiev et al.

Assume that we have the correct original circuit Sf and a circuit Sf ′ =
S(f,v′,δ), constructed out from Sf by changing a gate v into a gate v′ of the same
arity that takes on the constant value δ ∈ {0, 1}. We refer to v′ as the stuck-at-
fault image of gate v. Next, fix some arbitrary v′ ∈ V \ V in and δ ∈ {0, 1} and
consider the circuits Sf and Sf ′ . Note that the same order (described above) is
defined on the sets of vertices of both circuits. We refer to vertices that have the
same numbers under this order as same-named vertices.

First, glue the same-named inputs of circuits Sf and Sf ′ , thereby constructing
a circuit SfΔf ′ . Note, that the gluing procedure can be further extended to some
of the gates from SfΔf ′ . Ideologically, the corresponding procedure is similar to
the one used to glue the vertices of a binary decision tree, by defining a Boolean
function when constructing the corresponding Reduced Ordered Binary Decision
Diagram (ROBDD) [22]. In particular, each gate v of the circuit SfΔf ′ is defined,
depending on its arity, by three coordinates, which specify its parents (one or
two) and the Boolean connective linked with v. If the two gates are specified by
the same coordinates, then they can be glued. For an arbitrary gate v ∈ V \V in,
consider all paths connecting v with vertices from Y . We denote by Dv the set of
all vertices these paths pass through (including v) and refer to Dv as the shadow
of the vertex v.

Let v ∈ V \ V in be an arbitrary gate and v′ the stuck-at-fault image of gate
v. It is easy to see that the following fact holds.

Statement 1. When the gluing procedure described above is applied to circuits
Sf and Sf ′ , it glues all same-named vertices, except for a (possible) set of same-
named vertices that lie in the shadows Dv and D′

v.

The proof of this statement follows directly from the definition of the gluing
procedure and the fact that v = v′ in the sense of equivalence of the correspond-
ing coordinates.

We denote by S̃fΔf ′ the circuit obtained from SfΔf ′ by gluing all possible
vertices using the procedure described above. Note that some of the same-named
outputs of circuits Sf and Sf ′ can also be glued together. Let us construct for
S̃fΔf ′ its template CNF C̃fΔf ′ . We denote by C̃(M) the CNF formula that
represents (in the sense mentioned above) the miter of the same-named outputs
of all output variables of Sf and Sf ′ that have not been glued together. Then
the following theorem holds.

Theorem 1. If the CNF formula C̃fΔf ′ ∧ C̃(M) is satisfiable, then by solving
SAT for this formula we get the triplet (αδ, γδ, γ

′
δ) for detecting the corresponding

fault in gate v.

Proof Sketch. Similar to many other facts that establish the interconnection
between the properties of circuits and that of the formulas constructed for those
circuits, this proof is based on Lemma 1. It follows from the lemma that the
number of assignments that satisfy the CNF C̃fΔf ′ is equal to 2n since each
input vector α ∈ {0, 1}n induces (in the sense of Lemma 1) a single assignment

Parallel SAT Solving for LEC 131

that satisfies C̃fΔf ′ . It is easy to see that, for any assignment satisfying C̃fΔf ′ ,
there exists a single input α ∈ {0, 1}n that induces it. Assume that some α ∈
{0, 1}n induces for the circuits Sf and Sf ′ assignments in which the values of
the variables y ∈ Dv and y′ ∈ Dv′ are different, where y and y′ are output
variables with the same number in both Sf and Sf ′ . In this case, it is clear
that such an assignment also induces an assignment satisfying C̃fΔf ′ ∧ C̃(M),
which yields the corresponding triplet (αδ, γδ, γ

′
δ) for detecting the fault in the

gate v. In the opposite case, i.e., if every α ∈ {0, 1}n induces an assignment in
which all pairs of output gates with the same number have the same value, then
the formula C̃(M) takes on the value False, and therefore, C̃fΔf ′ ∧ C̃(M) is
unsatisfiable. ��

We mentioned above that SAT for the CNF C̃fΔf ′ ∧C̃(M) may be either sim-
ple or extremely hard for modern SAT solvers. Unfortunately, we cannot always
estimate the hardness of an arbitrary problem quickly since the corresponding
procedure may possibly require a lot of time, thus making its application unrea-
sonable for simple problems. In this situation, we use the following approach.
We denote by R the set of CNF formulas encoding all possible ATPG problems
for the considered circuit Sf . Define some time limit t1 and launch a SAT solver
A on each formula C ∈ R in parallel, with the time limit t1 for each instance. If
the solver A succeeds in proving the satisfiability of a formula, then we obtain
the corresponding test of the kind (αδ, γδ, γ

′
δ), δ ∈ {0, 1}. Otherwise, denote by

Rt1 the set of all CNF formulas from R for which the unsatisfiability was proven
in time ≤ t1. Consider the set R1 = R \ Rt1 , fix a time limit t2, t2 > t1, and
repeat the operations above. Next, fix some k, k ≥ 1, and perform k iterations
of the described process. Let Rk = Rk−1 \ Rtk be the final set. If Rk = ∅ and
the unsatisfiability was proven for all formulas, then Sf and Sf ′ are equivalent.

Otherwise, set Rk consists of hard CNF formulas, and we can consider SAT
for each one separately. We refer to the described procedure as k-step SAT
filtering of R. The algorithm in pseudocode is given in Algorithm 1.

5 Computational Experiments

Here we present the results of computational experiments on solving ATPG
using the algorithms described above. In all experiments, as a computing envi-
ronment, we used a Yandex Cloud machine based on the Intel Ice Lake platform
with 96 CPU cores at a clock speed of 2 GHz and 288 GB of RAM. All algo-
rithms were implemented as MPI applications using the Python programming
language and the mpi4py library. For debugging, we employed the Academi-
cian V. M. Matrosov cluster of the Irkutsk Supercomputer Center [21]. In all
experiments, we used the Kissat SAT solver1 to solve ATPG instances in SAT
form.

Note that the choice of the programming language here is mostly dictated by
the fact that the presented results are considered a study. Of course, for indus-
trial implementation, it makes sense to implement all considered algorithms in
1 https://github.com/arminbiere/kissat.

https://github.com/arminbiere/kissat

132 V. Kondratiev et al.

Algorithm 1: Pseudocode of the algorithm of iterative sieving of ATPG

instances for all gates in a circuit

Input : Set of CNFs R; Number of steps k ≥ 0; SAT-solver A; Set of time
limits T = {t1, t2, . . . , tk}, t1 < t2 < . . . < tk.

Output: Set of CNFs Rk.
R0 ← R;
for i ← 1 to k do

for C ∈ Ri−1 do
// Run A on CNF C with time limit ti
result ← SolveProblem(A,C, ti);
if result is INDET then

C add to Ri;
end

end

end

C/C++, for instance. It is also worth noting that the considered benchmarks are
computationally quite hard. For this reason, the major portion of the program
runtime was spent on invoking the Kissat solver (written in C). Compared to
the total runtime of all Kissat runs, the time spent on executing the Python
code was very small.

We used as benchmarks the problem of constructing complete sets of ATPG
tests for several functions implementing algorithms for multiplying pairs of nat-
ural numbers. Specifically, the following multiplication algorithms were consid-
ered: standard column multiplier, Wallace tree algorithm [32], Dadda algorithm
[10], and Karatsuba decomposition algorithm [17]. We considered the variants
of the algorithms that multiply two Q-bit numbers, where Q ∈ {20, 32}. We
refer to the corresponding benchmarks as CQ, WQ, DQ, and KQ for Column,
Wallace, Dadda, and Karatsuba algorithms, respectively. For each algorithm, a
Boolean circuit was constructed implementing the algorithm in the form of an
And-Inverter Graph (AIG) (i.e., over the basis {¬,∧}), using the Transalg pro-
gram [24,25]. Furthermore, to construct a complete set of ATPG tests for the
corresponding AIG, a specific tool was developed as a Python script.

In the first series of experiments, we used k-step SAT filtering (Algorithm
1). The results are given in Table 1. The column “Algorithm” shows the multi-
plication algorithm in question; “Number of problems” gives the total number
of subproblems in the complete ATPG test suite for the considered algorithm,
which is twice the number of gates in the corresponding circuit. The follow-
ing columns indicate the number of subproblems solved and unsolved (INDET
columns) at each step. At each filtering step, the algorithm attempts to solve all
the subproblems remaining unsolved from the previous step but with a larger
time limit. Thus, for problems with Q = 20, the time limit in the first step was
2 s, in the second step it was increased to 100 s, and in the third step, to 43 200 s
(that is, 12 h). In the cases with Q = 32, since the corresponding problems were

Parallel SAT Solving for LEC 133

Table 1. k-step SAT-filtering for ATPG testing of multipliers

Algorithm Number of
problems

First step Second step Third step

Solved INDET Solved INDET Solved INDET

C20 18592 18574 18 18 0 – –

D20 17038 17026 12 12 0 – –

W20 18034 18034 0 – – – –

K20 37726 39540 186 164 22 21 9

C32 48962 48298 664 659 5 5 0

D32 44926 44789 137 137 0 – –

W32 46978 46978 0 – – – –

K32 86826 83025 3801 3727 74 52 22

significantly harder, the time limit was increased for the first two steps, namely,
to 3 s in the first step and to 1000 s seconds in the second.

Based on the results of the first part of the experiments, we can draw the
following conclusions. All ATPG problems for CQ, WQ, and DQ, Q ∈ {20, 32},
were easy for Kissat (the longest solving time was 2353 seconds for one of the
problems for C32). However, several tests for the algorithms K20 and K32 proved
extremely hard: Kissat consistently failed to solve them in 12 h. Nevertheless, all
such problems for K20 were solved in parallel using the technique described in
Sect. 3.2. Specifically, the set of input variables X in was split into subsets of four
variables each. Thus the sets Xj , j ∈ {1, . . . , 10}, were used for K20, whereas
the sets Xj , j ∈ {1, . . . , 16}, were used for K32. In each case, the function

λj = x1
j ⊕ x2

j ⊕ x3
j ⊕ x4

j

and its negation were associated with the set Xj in the manner described in
Sect. 3.2. The results of the second part of the experiments are given in Table 2.

Let us describe Table 2. In all columns concerning the time, it is given in sec-
onds. The “Instance” column contains the name of the ATPG instance for K20,
which includes the number identifying the stuck-at-fault gate and its polarity
(“n” for negative and “p” for positive). In “Total number of subproblems”, we
have the total number of subproblems in the partitioning. The column “Average
time” shows the mean total time required to solve a subproblem. In “Total time”,
we see the total time required to solve all subproblems using one processor core.
The “Wall-clock time (96 cores)” column shows the time it took to solve all sub-
problems from the corresponding partitioning; this time corresponds to the total
time the user would need to solve the LEC instance using the given partitioning
on 96 cores. Unfortunately, 22 similar problems for K32, not solved by the 3-step
filtering algorithm, proved very hard even to be solved with the described parti-
tioning strategy; in this case, we have only their rather large hardness estimates.
For example, in one of those problems, we estimated that the total time required

134 V. Kondratiev et al.

Table 2. Solving hard ATPG instances for K20 using Input Decomposition

Instance Total number of
subproblems

Average time Total time Wall-clock
time (96 cores)

19187n 1024 460.24 471285.76 5618

19188n 1024 450.17 460974.08 5494

19189p 1024 450.00 460800.00 5493

19192p 1024 1681.61 1721968.64 19670

19193n 1024 1685.78 1726238.72 19794

19648n 1024 911.63 933509.12 10501

19649p 1024 910.97 932833.28 10480

19656n 1024 1399.76 1433354.24 16261

19657n 1024 1402.14 1435791.36 16329

to completely solve the subproblems from the decomposition would be at least
1.54 × 108 s (almost 20 days of wall-clock time on 96 cores).

Thus, it is clear that, for all considered multiplication algorithms (except
K32), the proposed method made it possible to construct systems of ATPG tests
that reveal a single fault of the specified kind for each gate in the corresponding
circuit. In this sense, the constructed suites of tests can be regarded as complete.

6 Conclusion

In the paper, we studied extremely hard SAT instances that arise in the Auto-
mated Test Pattern Generation area of Electronic Design Automation. We
showed that using a special form of SAT partitioning it is possible to decom-
pose these problems and solve them in parallel. To improve the efficiency of
parallel solving, we proposed an algorithm for filtering ATPG instances using
a SAT solver, exploiting the fact that ATPG SAT instances for different gates
have drastically different hardness. While the vast majority of such instances are
relatively simple, their total number can be in the tens of thousands. This fact
together with the existence of extremely hard instances, which can be tackled
using the decomposition strategy, makes the use of parallel computing a require-
ment for efficient test generation, and the results of our experiments emphasize
this conclusion.

Acknowledgments. Victor Kondratiev and Alexander Semenov were supported by
the Russian Science Foundation (project 22-21-00583). They contributed to the theoret-
ical foundations of the proposed method and developed the corresponding algorithms.

Stepan Kochemazov received support from the Ministry of Science and Higher Edu-
cation of the Russian Federation (research project № 121041300065-9). He developed
the benchmark sets used in the experimental part of the research.

Parallel SAT Solving for LEC 135

References

1. Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Measuring the hardness of SAT
instances. In: AAAI, pp. 222–228 (2008)

2. Bard, G.V.: Algebraic Cryptanalysis. Springer, USA (2009). https://doi.org/10.
1007/978-0-387-88757-9

3. Bessière, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and
decompositions of global constraints. In: IJCAI, pp. 412–418 (2009)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
FAIA, 2nd edn., vol. 336. IOS Press (2021)

6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

7. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving. Com-
puter Science Classics, Academic Press, Cambridge (1973)

8. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

9. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol.
4887, pp. 152–169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77272-9 10

10. Dadda, L.: Some schemes for parallel multipliers. Alta Frequenza 34(5), 349–356
(1965)

11. Drechsler, R., Junttila, T.A., Niemelä, I.: Non-clausal SAT and ATPG. In: Hand-
book of Satisfiability. FAIA, 2nd edn., vol. 336, pp. 1047–1086. IOS Press (2021)

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

13. Gomes, C.P., Selman, B., Crato, N., Kautz, H.A.: Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. J. Autom. Reason. 24(1/2), 67–
100 (2000)

14. Heule, M.J.H.: Schur number five. In: AAAI, pp. 6598–6606 (2018)
15. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean

Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 15

16. Hyvärinen, A.E.J.: Grid based propositional satisfiability solving. Ph.D. thesis.
Aalto University Publication Series (2011)

17. Knuth, D.: The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley Series in Computer Science & Information Processing.
Addison-Wesley (1969)

18. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In:
Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 219–226. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09284-3 17

19. Kroening, D.: Software verification. In: Handbook of Satisfiability. FAIA, 2nd edn.,
vol. 336, pp. 791–818. IOS Press (2021)

https://doi.org/10.1007/978-0-387-88757-9
https://doi.org/10.1007/978-0-387-88757-9
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-77272-9_10
https://doi.org/10.1007/978-3-540-77272-9_10
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-09284-3_17

136 V. Kondratiev et al.

20. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Handbook of Satisfiability. FAIA, 2nd edn., vol. 336, pp. 133–182. IOS Press
(2021)

21. Irkutsk Supercomputer Center of SB RAS. http://hpc.icc.ru
22. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design: OBDD

- Foundations and Applications. Springer, Heidelberg (1998). https://doi.org/10.
1007/978-3-642-58940-9

23. Molitor, P., Mohnke, J.: Equivalence Checking of Digital Circuits: Fundamentals,
Principles, Methods. Kluwer Academic Publishers (2004)

24. Otpuschennikov, I., Semenov, A., Gribanova, I., Zaikin, O., Kochemazov, S.:
Encoding cryptographic functions to SAT using TRANSALG system. In: ECAI,
pp. 1594–1595 (2016)

25. Semenov, A., Otpuschennikov, I., Gribanova, I., Zaikin, O., Kochemazov, S.: Trans-
lation of algorithmic descriptions of discrete functions to SAT with applications to
cryptanalysis problems. Log. Methods Comput. Sci. 16(1), 1–42 (2020)

26. Semenov, A.A.: Decomposition representations of logical equations in problems of
inversion of discrete functions. J. Comput. Syst. Sci. Int. 48, 718–731 (2009)

27. Semenov, A.A., Chivilikhin, D., Pavlenko, A., Otpuschennikov, I.V., Ulyantsev,
V., Ignatiev, A.: Evaluating the hardness of SAT instances using evolutionary
optimization algorithms. In: CP, LIPIcs, vol. 210, pp. 47:1–47:18 (2021)

28. Semenov, A.A., Chukharev, K., Tarasov, E., Chivilikhin, D., Kondratiev, V.: Esti-
mating the hardness of SAT encodings for logical equivalence checking of Boolean
circuits. arXiv abs/2210.01484 (2022)

29. Semenov, A., Zaikin, O., Bespalov, D., Posypkin, M.: Parallel logical cryptanalysis
of the generator A5/1 in BNB-grid system. In: Malyshkin, V. (ed.) PaCT 2011.
LNCS, vol. 6873, pp. 473–483. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23178-0 43

30. Semenov, A.A., Zaikin, O., Otpuschennikov, I.V., Kochemazov, S., Ignatiev, A.: On
cryptographic attacks using backdoors for SAT. In: AAAI, pp. 6641–6648 (2018)

31. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Studies
in Constructive Mathematics and Mathematical Logic, Part II, pp. 115–125 (1970)

32. Wallace, C.S.: A suggestion for a fast multiplier. IEEE Trans. Electron. Comput.
EC-13(1), 14–17 (1964)

33. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:
IJCAI, pp. 1173–1178 (2003)

34. Zaikin, O.: Inverting 43-step MD4 via cube-and-conquer. In: IJCAI, pp. 1894–1900
(2022)

35. Zhang, H.: Combinatorial designs by SAT solvers. In: Handbook of Satisfiability.
FAIA, 2nd edn., vol. 336, pp. 819–858. IOS Press (2021)

http://hpc.icc.ru
https://doi.org/10.1007/978-3-642-58940-9
https://doi.org/10.1007/978-3-642-58940-9
https://doi.org/10.1007/978-3-642-23178-0_43
https://doi.org/10.1007/978-3-642-23178-0_43

Parallelization of the Generalized
Multimode Nonlinear Schrödinger

Equation Solver: A Performance Analysis

Evgeniy Kazakov, Jiexing Gao(B), Pavel Anisimov, and Viacheslav Zemlyakov

Huawei Technologies Co., Ltd., Russian Research Institute,
Moscow, Russian Federation

gaojiexing@huawei.com

Abstract. The numerical modeling of optical signal propagation in
fibers usually requires high-performance solvers for the nonlinear
Schrödinger equation. Multicore CPUs and Graphical Processing Units
(GPUs) are usually used for highly intensive parallel computations. We
consider several implementations of solvers for the generalized multimode
nonlinear Schrödinger equation. Reference MATLAB code (freely avail-
able at https://github.com/WiseLabAEP/GMMNLSE-Solver-FINAL)
of the split-step Fourier method (SSFM) and the massively parallel
algorithm (MPA) have been redesigned using the C++ OpenMP inter-
face and C-oriented Compute Unified Device Architecture (CUDA) by
Nvidia. Using this code, we explore several approaches for paralleliza-
tion of computations. We show that, for small numbers of modes, the
OpenMP implementation of the MPA is up to an order of magnitude
faster than the GPU implementation owing to data transfer overheads,
while the GPU implementation overperforms the CPU one starting from
10 modes. We also give several practical recommendations regarding the
integration step size of the solvers.

Keywords: Nonlinear Schrödinger equation · Split step Fourier
method · Massively parallel algorithm

1 Introduction

Optical fibers are widely used in telecommunication. The so-called multimode
fibers enable the simultaneous propagation of multiple guided modes. Each mode
can be encoded as an independent signal, increasing the throughput via spatial
multiplexing. The propagation of light in such fibers is influenced by several
physical phenomena (polarization effects, high-order dispersion, Kerr and Raman
nonlinearities [1]) and can be described by the generalized multimode nonlinear
Schrödinger equation (GMMNLSE) [10].

The GMMNLSE can be solved numerically by the split-step Fourier method
(SSFM), in which the integration of the linear term of the GMMNLSE is done
over the frequency domain, while that of the nonlinear term is done over the time
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 137–151, 2023.
https://doi.org/10.1007/978-3-031-38864-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_10&domain=pdf
https://github.com/WiseLabAEP/GMMNLSE-Solver-FINAL
https://doi.org/10.1007/978-3-031-38864-4_10

138 E. Kazakov et al.

domain. The complexity of the SSFM grows as O(P 4), where P is the number
of modes. That makes computations time-consuming in the case of multimode
fibers.

The massively parallel algorithm (MPA) was introduced in [9]. Originally, the
method was designed for multicore CPUs and allowed performing simulations
M/2 times as fast as the SSFM, where M is the number of CPU cores. Later,
a GPU implementation of the MPA was described in [13]. It provided orders-of-
magnitude speedup over the SSFM executed on CPUs. A 30-fold speedup with
respect to the single processor version of the code was reported in [7].

Owing to the high computational burden, it is very important to set the
optimal parameters of the solvers to guarantee accurate results or, at least, to
assess the accuracy of computations. The principal parameter controlling the
computational time and accuracy is the integration step size, i.e., the spatial
discretization step of the fiber along its length. So far, there is no well-established
guide to choosing the optimal step size apart from empirical rules that are not
fail-safe.

In this work, we develop parallelized C++ versions of the SSFM and MPA
based on the MATLAB code from [12]. Section 2 provides short theoretical basics
about GMMNLSE, SSFM and MPA. Section 3 presents C++ code implementa-
tions for both multicore CPU and GPU platforms. By using them, In Sect. 4 we
explore performance issues, with a particular focus on how to maximize accuracy
in a minimum time. Sections 4.2–4.5 formulates our practical recommendations
on the platform to be used (i.e., CPU versus GPU), parallelization strategy,
floating-point precision, integration step size and application adaptive step size.
Conclusions are drawn in Sect. 5.

2 Theoretical Information

The GMMNLSE has been extensively described [1]. Here we briefly summarize
the mathematical background to put the subsequent discussion into proper con-
text. The GMMNLSE of the electric field temporal envelope Ap(z, t) for the
spatial mode p in time t at spatial position z can be written in an operator form
as

∂Ap

∂z
= DAp + NAp, (1)

where D is a linear (dispersion) operator involving the temporal derivatives of
Ap,

DAp = i
(
β
(p)
0 −Re β

(0)
0

)
Ap − i

(
β
(p)
1 −Re β

(0)
1

)∂Ap

∂t
+ i

∑

n≥2

β
(p)
n

n!

(
i
∂

∂t

)n

Ap, (2)

Parallelization of the GMMNLSE 139

and N is a nonlinear operator of Ap involving also other modes (Aq, q �= p),
namely,

NAp =i
n2ω0

c

(
1 +

i

ω0

∂

∂t

)
×

×
∑

l,m,n

{
(1 − fR)SK

plmnAlAmA∗
n + fRSR

plmnAl [h ⊗ (AmA∗
n)]

}
; (3)

β
(p)
j stands for the j-th-order dispersion coefficient of the p-th mode; n2 is the

nonlinear index coefficient; ω0 is the center frequency; fR denotes the fractional
Raman contribution to nonlinearity; SK

plmn and SR
plmn are the modal overlap

tensors for the Kerr and Raman terms, respectively; h is the Raman response
function; ⊗ represents the convolution operator.

We consider the SSFM, that is, the spatial discretization of the fiber along
its length. The integration step Δz along the z direction is chosen small enough
so as to assume that operators D and N act independently. That is the so-
called weak nonlinearity approximation. Then the integration of Eq. (1) can be
decoupled with the operator N integrated over the time domain and the operator
D integrated over the frequency domain using the Fourier transform. The SSFM
algorithm can be summarized as follows:

1. Integrate Eq. (1) by setting D = 0 to compute AN
p (t, z).

2. Apply the Fourier transform to AN
p (t, z) to compute AN

p (ω, z).
3. Integrate DAN

p (ω, z) in the frequency domain to compute Ap(ω, z + Δz).
4. Take the inverse Fourier transform of Ap(ω, z + Δz) to obtain Ap(t, z + Δz).

Note that all computations for the SSFM are performed sequentially.
In the MPA, computations are performed using M threads. Besides the fine

discretization (as in the SSFM) with the step Δz, we consider the long step size
L = MΔz, which incorporates M substeps of Δz. Computations are performed
iteratively. For i = 1, . . . ,M , Eq. (1) is integrated by the SSFM with the inte-
gration step size equal to iΔz, thereby computing Ap(t, zi) for a given Ap(t, z0),
where zi = z0 + iΔz. Note that this step is executed in parallel by M threads
providing Ap(t, zi), i = 1, . . . ,M . To perform step 3 of the SSFM algorithm, the
values of Ap(t, zi), i = 1, . . . ,M , are collected across M threads and summed
using the trapezoidal rule. Since the points at the beginning of the interval L
are computed more accurately than those at its end, iterations may be required.
During the next iteration, the aforementioned steps are repeated but using now
as initial values of Ap those found in the previous iteration. Once the difference
between results in the current and previous iterations is below a given threshold,
the process is deemed convergent.

Both SSFM and MPA require temporal and spatial discretization of the (z, t)-
domain. It is a common practice to discretize the time domain by 2N points and
apply the fast Fourier transform (FFT). Depending on the application, the value
of N is in the range 12 to 16. The optimal value of Δz is unknown beforehand. In
[13] a rule of thumb is suggested, namely, Δz should be ∼ 10−2LN, where LN is

140 E. Kazakov et al.

the characteristic nonlinear length. After traversing a distance ∼ LN, the impact
of nonlinear effects incorporated in N becomes significant. The value of LN is
inversely proportional to the pulse power. Likewise, the dispersion length LD

may correspond to dispersion effects in fibers. The value of LD does not depend
on the pulse power but rather on the time window and fiber characteristics.
Computational formulas for LN and LD can be found in [1].

3 The Implementations of SSFM and MPA

We used publicly available MATLAB implementations of SSFM and MPA from
[12] as references. Based on them, we developed several C++-based codes, which
we outline below.

Computations were performed on a server platform with thirty-two Intel
Xeon Gold 6151 CPUs at 3.0 GHz, an Nvidia Tesla V100 graphics card with
16 GB graphics buffer, and 125 GB of DDR4 RAM.

3.1 The SSFM

The C++ implementation of the SSFM (referred to hereinafter as the CPU
SSFM) is a serial implementation of the classical split-step method on a CPU
platform. The code was validated against the reference MATLAB code. For all
considered scenarios, we obtained an agreement up to the sixth digit.

The developed code was profiled to find the most time-consuming parts of
the SSFM. We distinguished the time tNA, required to compute the terms in
NA, and the time tFFT, required for performing forward and inverse FFTs. The
results are shown in Table 1. For small numbers of modes, the FFT takes the
principal portion of the computation time. As the number of modes increases,
the computation of the nonlinear term becomes the performance bottleneck.

We consider two OpenMP implementations of the SSFM. The first one is
straightforward and is based on parallelization across the modes. All four stages
of the SSFM are performed independently for P modes. After making a step
Δz, the values of the modes are exchanged between the threads (via the shared
memory), and the integration along the z direction continues. Such a strategy
decreases tNA. Since the number of points along the t direction is large, the
forward and inverse fast Fourier transforms are computed in parallel in the sec-
ond implementation. For this, we used a parallelized library fftw3 [4], which
allowed us to decrease tFFT. We also give an estimate of the maximum speedup
in conformity with Amdahl’s law [2] assuming that the FFT elapsed time can be
reduced to zero. We found out that the performance gain from parallelizing the
FFT computation for P = 3 modes is 20% for Nt = 212 and 50% for Nt = 216.
That agrees with estimates consistent with Amdahl’s law. We conclude that the
FFT parallelization on CPUs makes sense for small numbers of modes and large
numbers of time points.

Parallelization of the GMMNLSE 141

Table 1. The computation time of the NA operator and FFT

Number of modes Time, ms

tNA tFFT
tFFT
tNA

1 0.02 0.36 15.53

6 8.60 7.44 0.86

10 90.01 20.18 0.22

3.2 The SSFM with GPU Support

We add GPU support to our code to accelerate the computation of NA as the
most time-consuming stage of the SSFM (as shown in the previous section). For
a given zi, a set of NAp(zi, tj), p = 1, . . . , P , j = 1, . . . , Nt, is computed by Nt

threads. The required forward and inverse FFTs (see steps 2 and 4 of the SSFM)
are computed by a single thread on a CPU. This approach is efficient only for
large numbers of available threads. This is why we consider this implementation
only for the GPU platform.

To take advantage of GPU capabilities, we should remember that the non-
linear operator N is applied to each point tj in the profile Ap(z, ti). In this
regard, the grid of threads on the GPU is set as follows. Given the amount
of shared memory per block Mshared and the amount of memory required to
process a single mode Mmode, the number of threads per block is estimated
as Nthreads = Mshared/Mmode. The number of blocks Nblocks is computed as
Nt/Nthreads.

3.3 The MPA with OpenMP Support

For the MPA, we use the OpenMP framework as the most straightforward option.
The shared memory is exploited between threads to minimize the time required
for collecting data across threads. The loop across M is executed in parallel.
Parallelization is implemented in such a manner that each substep iΔz, i =
1, . . . ,M , is calculated by its own thread. Thus each thread gets the whole copy
of the initial field Ap(zi, tj), p = 1, . . . , P , j = 1, . . . , Nt, computes NA, and
performs FFTs.

We can run the MPA code as a serial one. In this case, we obtain a serial
SSFM with one extra loop across M substeps. Note that the SSFM and MPA
use different integration methods. The SSFM relies on a Runge–Kutta solver
of the fourth order, while the MPA adopts the Euler scheme (even though the
MPA involves iterations). The computation time of SSFM and MPA executed
on a single CPU and that of MPA with OpenMP support on 10 CPUs are shown
in Table 2. Note that the serial MPA implementation is significantly faster than
the SSFM, while the MPA with OpenMP is faster than both serial codes.

142 E. Kazakov et al.

Table 2. The computation time of a single-threaded SSFM, single-threaded MPA, and
multi-threaded MPA with M = 10

Number of modes Time, s

SSFM MPA

1 CPU 1 CPU OMP M CPUs

1 3 2 1

3 24 14 5

6 122 89 20

10 912 639 86

15 3519 2529 275

3.4 The MPA with OpenMP and GPU Support

The MPA can be parallelized by GPU as described in Sect. 3.2. We consider
a combined usage of OpenMP and GPU for accelerating the MPA. The idea
of combining the GPU and OpenMP approaches in the MPA is illustrated in
Fig. 1. On GPU, MNt threads are used to compute Ap(zi, tj), i = 1, . . . ,M ,
j = 1, . . . , Nt, p = 1, . . . , P . Thus each thread computes Ap(zi, tj) for given zi
and tj and all modes. The forward and inverse FFTs are performed on CPUs
in parallel using OpenMP support from the fftw3 library. This implementation
can be further improved by using CUDA streams, but we do not consider this
approach in this paper.

Fig. 1. One-iteration flowcharts of the MPA with OpenMP support without GPU (a)
and with GPU (b) support

Parallelization of the GMMNLSE 143

4 Numerical Results

4.1 Computation Time

In this section, we compare the corresponding computation times for various
implementations of the SSFM and MPA. The computations correspond to a
fiber length of 1 m. The integration step size Δz is set to 500 μm. The results for
1, 3, 6, 10, and 15 modes are summarized in Fig. 2. The GPU implementation
of the SSFM is slower than the CPU implementation of the MPA (it was indeed
expected since the SSFM is not a parallel algorithm, whereas using the GPU
leads to additional overheads attributable to “host-device” data transfer). The
GPU implementation of the MPA outruns the CPU implementation for P ≥ 10
modes. However, the computation times corresponding to the GPU and CPU
implementations of the MPA are close to each other.

Fig. 2. The computation time of different implementations of the SSFM and MPA for
1, 3, 6, 10, and 15 modes

In Fig. 3, we replicate the results demonstrated in Fig. 3 from [13] and show
how the computation time changes with respect to M for P = 10 modes in the
CPU and GPU versions of the SSFM and MPA.

The largest gap in solution time is observed between the SSFM on CPUs
and the MPA on CPUs (red lines) since the SSFM is executed on a single core,
whereas the MPA utilizes M cores. Comparing the MPA implementations on
GPU and CPU (solid lines), we can see that the gain in performance from GPUs
is not significant.

We also note that the computation time quickly decreases when M increases
from 1 to 5 and reaches a plateau at M = 10. Consequently, it is possible to
obtain a maximal speedup gain through parallelism on widely available CPUs.

144 E. Kazakov et al.

Fig. 3. The MPA M factor evolution. The fiber length L = 1 m, P = 10 modes, and
step size Δz = 500 µm.

4.2 GPU Performance in the MPA

We analyze in this section the performance of the GPU implementation of the
MPA to identify the causes of the relatively low GPU performance compared to
the OpenMP implementation of the MPA for small numbers of modes.

The code profiling shows that the performance bottleneck in the GPU code
of both SSFM and MPA is the evaluation of the NAp term. In the MPA, the
NAp term is computed once per iteration at M points within the long step
L = MΔz. In practice, the MPA converges in 3–4 iterations. In the SSFM, on
the other hand, the NAp term is computed four times (as long as the Runge–
Kutta integration method is employed) to perform the integration in Δz.

The GPU elapsed time TGPU
total consists of the time required to perform com-

putations on GPU (denoted by TGPU
comp) plus the time for sending data to and

receiving them from the GPU (denoted by TGPU
send and TGPU

recv , respectively):

TGPU
total = TGPU

send + TGPU
comp + TGPU

recv . (4)

Table 3 contains the code profiling results. The corresponding times are given
for a single MPA iteration. For P = 1 and P = 3 modes, the overheads signifi-
cantly exceed TGPU

comp. As the number of modes increases, TGPU
comp increases faster

than TGPU
send and TGPU

recv . For 15 modes, TGPU
comp is larger than TGPU

send + TGPU
recv .

Apparently, as the time resolution increases, so does the computational load.
In this case, the use of GPU becomes beneficial. Table 4 displays the results
obtained for different values of Nt. While the computation time on both CPU and

Parallelization of the GMMNLSE 145

Table 3. The computation time of the NA term for a single MPA iteration, Nt = 212

Number of
modes

Number of data
points sent

Data size, MB Time, ms

Send Recv Send Computation
of NAp

Recv

1 00 122 880 1.875 1.25 0.70 0.01 0.35

3 00 614 400 9.375 7.50 4.43 0.09 1.50

6 11 966 080 30.000 26.25 8.27 0.87 5.00

10 14 915 200 75.000 68.75 18.00 30.00 15.00

15 10 333 800 159.375 150.40 38.02 97.10 36.00

Fig. 4. GPU computation time of the NA term versus the number of modes, with
N = 212 points along the t axis

GPU increases with Nt, GPU outruns CPU already at six modes for Nt = 216.
For lower numbers of modes, the CPU implementation is still advantageous
(Fig. 4). The same conclusions are valid for the SSFM.

4.3 Single and Double Precisions

It is well known that, using single precision instead of double precision, one
can save a significant amount of time on GPUs. However, the choice of single
precision can affect the accuracy. For this reason, it is important to consider many
aspects of floating-point behavior to achieve the highest performance with the
precision required for a specific application [11]. In this section, we investigate the

146 E. Kazakov et al.

Table 4. The computation time of a single MPA iteration on a 10-core CPU and GPU
for Nt points along the t axis

Number of modes Time, ms

Nt = 212 Nt = 214 Nt = 216

CPU GPU CPU GPU CPU GPU

1 0.1 1.5 0.4 5.0 1.1 12.8

3 0.7 5.6 9.0 20.0 23.8 66.2

6 7.6 13.9 105.0 65.0 267.5 236.0

10 78.9 63.0 1115.0 258.0 3187.3 767.0

15 321.8 171.0 4522.0 745.0 13 335.0 1944.0

Fig. 5. Speedup factors of the GPU implementation of MPA compared to the one
based on OpenMP, for different values of P and Nt

impact of the floating-point precision on the speed and accuracy of GMMNLSE
solvers (Fig. 5).

We have both single- and double-precision versions of our C++ codes. The
SSFM and MPA are executed for a fiber length of 1 m and a pulse power of
10 kW. The corresponding results are shown in Table 5. Although the results
are somewhat heterogeneous, we can see that switching from double to single
precision roughly provides a two-fold speedup both on CPU and GPU. The
results of the single- and double-precision codes agree up to the fifth digit in all
cases, except for a pulse power of 10 kW (a rather high value), where the relative
difference is about 0.2%. This error is much less than the errors due to choosing
a coarse integration step. Thus we conclude that the single-precision code can

Parallelization of the GMMNLSE 147

be employed in practice as it provides a relative speedup of about 1.5 compared
to the double-precision code.

Table 5. Solution time for SSFM and MPA using double or single precision

Number of modes Solution time, s

SSFM MPA

CPU CPU + GPU CPU CPU + GPU

double single double single double single double single

1 3.6 1.6 6 5 0.8 0.4 1.4 1.0

3 24.0 13.0 22.0 14.0 5.0 3.0 5.0 4.0

6 122.0 60.0 71.0 41.0 20.0 16.0 26.0 12.0

10 912.0 391.0 203.0 129.0 86.0 76.0 68.0 45.0

15 3519.0 1481.0 542.0 352.0 275.0 250.0 150.0 102.0

4.4 Impact of the Integration Step Size

The accuracy of the SSFM and MPA is strongly affected by the integration
step size (Δz and L, respectively). Essentially, the value of Δz is a trade-off
between computational speed and accuracy. It is, therefore, crucial to estimate
the maximal step value for the solver for which a stable solution can be obtained
in the fastest manner. Modifying a rule of thumb from [13], we propose to relate
Δz to the characteristic length LC, defined as

LC =
(

1
LD

+
1

LN

)−1

. (5)

Then the solver step is expressed as

Δz =
LC

n
, (6)

where n is the safety factor for the step size, i.e., the larger n is, the more
accurate and time-consuming the solver is.

Table 6 provides the maximum relative error of the SSFM algorithm, the
MPA, and the difference between both methods. The computations are done for
several values of the pulse power and safety factor. The fiber length is set to 5 m.
As expected, the solution error decreases as the safety factor increases. However,
the accuracy of the solution still depends on the input pulse power, suggesting
that the safety factor should also be adjusted to the energy (i.e., be a function
of the pulse energy, as well as LN and LD).

148 E. Kazakov et al.

Table 6. The maximum relative error (in %) for different values of the safety coefficient
n

Power, W LC , m n Δz, m Max. relative error, %

SSFM MPA Difference between
SSFM and MPA

10 000 0.1 100 10−3 6.3 3.4 7.0

1000 10−4 1.5 · 10−2 1.0 · 10−2 4.0

10 000 10−5 1.2 · 10−4 1.5 · 10−3 4.0

100 5.0 100 5 · 10−2 0.5 0.1 2.8 · 10−1

1000 5 · 10−3 1.1 · 10−1 1.2 · 10−1 1.3 · 10−1

10 000 5 · 10−4 2.0 · 10−3 1.2 · 10−3 1.2 · 10−1

1 50 100 6 · 10−1 6.0 · 10−2 6.0 · 10−2 1.1 · 10−1

1000 5 · 10−2 1.5 · 10−3 4.0 · 10−4 3.0 · 10−3

10 000 5 · 10−4 2.0 · 10−4 1.3 · 10−4 1.3 · 10−3

4.5 Adaptive Step Size

As we have shown, choosing an appropriate value for the integration step size
beforehand is not a straightforward procedure. An alternative approach is to tune
the step size during integration. It is a common technique originally applied in
ordinary differential equation solvers with adaptive steps. The idea behind this
is that the integration is done with several values of the step. If the difference
between solutions exceeds a given threshold, the step size is reduced according
to a certain rule. On the contrary, if the difference is smaller than a threshold,
the step is increased. The application of adaptive step algorithms to GMMNLSE
solvers is considered in [3,8]. Note that these works rely on some assumptions
and limitations regarding the width of the input pulse, the allowed range of Δz,
and others. Following [6], we have implemented a Runge–Kutta solver of the
fourth order for integrating the nonlinear term in Eq. 1. This approach does not
require additional limitations with respect to the original solver.

We took the adaptivity criterion from [5] and implemented it in our C++
code. The magnitude by which the step has to be adjusted depends on the
difference between Ap(zk−1, t) and Ap(zk, t), obtained by the Runge–Kutta inte-
gration method of the fourth order. The solution error at each step (for all modes
and the whole field) is estimated by the formula

ε =
P∑

p=0

Nt∑

i=0

(
k4

atol + rtol · max(Ap(ti, zk), Ap(ti, zk−1))

)2

, (7)

where k4 is the fourth-order derivative in the Runge–Kutta solver; atol and rtol
are, respectively, the absolute and relative error levels that should be set for the
Runge–Kutta solver. The real and imaginary parts of ε are computed, and the
greatest of them is taken. As our computations demonstrate, to obtain accurate

Parallelization of the GMMNLSE 149

Fig. 6. Step-size evolution for initial step sizes of 500 µm and 0.2 m. The fiber length
is 1 m; the pulse power is 1 kW.

results, the value of ε must be smaller than 0.5. First, we check how the adaptive
algorithm behaves when the initial value of Δz is too small or too large. We
consider a fiber length of 1 m and a pulse power of 1 kW. The step size can be
either 500 μm or 0.2 m. Figure 6 shows that the algorithm adjusts the integration
step size in both cases, bringing it to a constant level after traversing a certain
distance. Fig. 7 describes how the adaptive step algorithm works with different
values of rtol. The values of Δz converge at higher values as the rtol parameter
increases. Thus we can influence the solution accuracy by setting the value of rtol
instead of Δz. Note that the adaptive step version of the solver is 20% slower

Fig. 7. Step-size evolution in a fiber of 1 m with an initial integration step size of 1 µm
and a pulse power of 1 kW

150 E. Kazakov et al.

than the one based on constant step size. Bearing in mind that the step size
reaches a plateau after a certain distance is traversed, it makes sense to switch
back to the constant integration step size after reaching the plateau. In this
case, the overheads associated with the adaptive step size computation become
negligible.

5 Conclusions

We considered in this paper several implementations of algorithms for solving
the GMMNLSE. Based on freely available code from [12], we developed C++
versions of the SSFM algorithm and MPA. To speed up computations, we par-
allelized the code using the OpenMP and CUDA frameworks, which enabled us
to run the code on both CPU and GPU. Several parallelization strategies were
considered. Our main results can be summarized as follows:

1. The parallelization of the FFT parts in the SSFM makes sense for small
numbers of modes (P < 6) and large numbers of time points (Nt > 214). In
particular, the performance for P = 3 modes and Nt = 216 was enhanced by
50%.

2. Even single-threaded MPA is faster than the SSFM by 30% while providing
almost the same level of accuracy.

3. The profiling showed that a significant amount of time is spent in the data
transfer between host and device. As the temporal resolution of computa-
tions increases, so does the complexity of the algorithm, making GPU com-
putations advantageous. The effect of using GPU increases with the number
of modes and Nt. For P ≤ 3 and Nt < 214, the GPU implementation is
slower than the one based on OpenMP. For P = 15 modes and Nt = 216,
the GPU implementation provided a seven-fold speedup compared to the
OpenMP implementation.

We showed that the accuracy of computations is determined by the ratio of
the integration step size to the characteristic length. However, this dependency
can not be formulated as a simple rule. In this regard, we implemented an adap-
tive step algorithm in the developed code. It adjusts the integration step size
during computations. We also showed that the adaptive strategy based on the
Runge–Kutta method efficiently corrects the step size in cases when its initial
value is too small or too large. The integration step size stabilizes after traversing
a certain distance along the fiber. Since the adaptive algorithm leads to addi-
tional overheads, we suggest using it at the beginning of computations until a
plateau is reached. Once this happens, computations may switch back to the
constant integration step size. Such a strategy allows the user to avoid concerns
related to the choice of step size.

Finally, we investigated the impact of single precision on computational speed
and accuracy. With single precision instead of double precision in the SSFM and
MPA, we achieved speedup factors of about 2 and 1.5, respectively, while the

Parallelization of the GMMNLSE 151

agreement between the results of both versions was up to the fifth digit. However,
we noticed a difference of about 0.2% in the presence of strong nonlinearities (in
our case, a pulse power of 10 kW).

References

1. Agrawal, G.P.: Fiber-Optic Communication Systems. Wiley, Hoboken (2021).
https://doi.org/10.1002/9781119737391

2. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18–20, 1967, Spring Joint
Computer Conference on - AFIPS. ACM Press (1967). https://doi.org/10.1145/
1465482.1465560

3. Farag, N.G.A., Eltanboly, A.H., EL-Azab, M.S., Obayya, S.S.A.: On the analytical
and numerical solutions of the one-dimensional nonlinear Schrodinger equation.
Math. Probl. Eng. 2021, 1–15 (2021). https://doi.org/10.1155/2021/3094011

4. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005)

5. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin
Heidelberg (1991). https://doi.org/10.1007/978-3-662-09947-6

6. Heidt, A.M.: Efficient adaptive step size method for the simulation of supercontin-
uum generation in optical fibers. J. Lightwave Technol. 27(18), 3984–3991 (2009).
https://doi.org/10.1109/JLT.2009.2021538

7. Korotkevich, A.O., Lushnikov, P.M.: Proof-of-concept implementation of the mas-
sively parallel algorithm for simulation of dispersion-managed WDM optical
fiber systems. Opt. Lett. 36(10), 1851–1853 (2011). https://doi.org/10.1364/ol.
36.001851

8. Liu, X.: Adaptive higher-order split-step Fourier algorithm for simulating lightwave
propagation in optical fiber. Opt. Commun. 282(7), 1435–1439 (2009). https://doi.
org/10.1016/j.optcom.2008.12.051

9. Lushnikov, P.M.: Fully parallel algorithm for simulating dispersion-managed
wavelength-division-multiplexed optical fiber systems. Opt. Lett. 27(11), 939
(2002). https://doi.org/10.1364/ol.27.000939

10. Poletti, F., Horak, P.: Description of ultrashort pulse propagation in multimode
optical fibers. J. Opt. Soc. Am. B 25(10), 1645 (2008). https://doi.org/10.1364/
josab.25.001645

11. Whitehead, N., Fit-Florea, A.: Precision and performance: floating point and
IEEE 754 compliance for NVIDIA GPUs TB-06711-001 v11.8 (2022). https://docs.
nvidia.com/cuda/pdf/Floating Point on NVIDIA GPU.pdf

12. Wright, L.G.: Gmmnlse-solver (2017). https://github.com/WiseLabAEP/
GMMNLSE-Solver-FINAL. Accessed 08 Feb 2022

13. Wright, L.G., et al.: Multimode nonlinear fiber optics: massively parallel numerical
solver, tutorial, and outlook. IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16
(2018). https://doi.org/10.1109/JSTQE.2017.2779749

https://doi.org/10.1002/9781119737391
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1155/2021/3094011
https://doi.org/10.1007/978-3-662-09947-6
https://doi.org/10.1109/JLT.2009.2021538
https://doi.org/10.1364/ol.36.001851
https://doi.org/10.1364/ol.36.001851
https://doi.org/10.1016/j.optcom.2008.12.051
https://doi.org/10.1016/j.optcom.2008.12.051
https://doi.org/10.1364/ol.27.000939
https://doi.org/10.1364/josab.25.001645
https://doi.org/10.1364/josab.25.001645
https://docs.nvidia.com/cuda/pdf/Floating_Point_on_NVIDIA_GPU.pdf
https://docs.nvidia.com/cuda/pdf/Floating_Point_on_NVIDIA_GPU.pdf
https://github.com/WiseLabAEP/GMMNLSE-Solver-FINAL
https://github.com/WiseLabAEP/GMMNLSE-Solver-FINAL
https://doi.org/10.1109/JSTQE.2017.2779749

On a Template Programming Approach
for Shared Memory Parallel Architectures
with Applications to the Fully Implicit

Stokes Solver

N. M. Evstigneev(B) and O. I. Ryabkov

Federal Research Center “Computer Science and Control” of the Russian Academy
of Sciences, Moscow, Russian Federation

evstigneevnm@yandex.ru

Abstract. In this paper, we consider a fully implicit Stokes solver imple-
mentation targeting both GPU and multithreaded CPU architectures.
The solver is aimed at the semistructured mesh often emerging dur-
ing permeability calculations in geology. The solver basically consists
of four main parts: geometry and topology analysis, linear system con-
struction, linear system solution, and postprocessing. A modified ver-
sion of the AMGCL library developed by the authors in earlier research
is used for the solution. Previous experiments showed that the GPU
architecture can deliver extremely high performance for such types of
problems, especially when the whole stack is implemented on the GPU.
However, the GPU memory limitation significantly reduces the avail-
able mesh sizes. For some applications, the computation time is not as
important as the mesh size. Therefore, it is convenient to have both
GPU (for example, CUDA) and multithreaded CPU versions of the same
code. The direct code port is time-consuming and error-prone. Several
automatic approaches are available: OpenACC standard, DVM-system,
SYCL, and others. Often, however, these approaches still demand care-
ful programming if one wants to deliver maximum performance for a
specific architecture. Some problems (such as the analysis of connected
components, in our case) require totally different optimal algorithms for
different architectures. Furthermore, sometimes native libraries deliver
the best performance and are preferable for specific parts of the solu-
tion. For these reasons, we used another approach, based on C++ lan-
guage abilities as template programming. The main two components of
our approach are array classes and ‘for each’ algorithms. Arrays can be
used on both CPU and CUDA architectures and internally substitute
the memory layout that best fits the current architecture (as an ‘array
of structures’ or ‘structure of arrays’). ‘For each’ algorithms generate
kernels or parallel cycles that implement parallel processing for index-
ing data structures. For other algorithms, we use the Thrust library.
The internal AMGCL multiarchitecture approach is also employed. In

The reported study was funded by the Russian Science Foundation (project № 23-21-
00107).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 152–166, 2023.
https://doi.org/10.1007/978-3-031-38864-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_11&domain=pdf
http://orcid.org/0000-0002-8785-6762
https://doi.org/10.1007/978-3-031-38864-4_11

Template Programming for Shared Memory Parallel Architectures 153

this work, we demonstrate that this approach can deliver a performance
that is very close to that of native-architecture programming models for
general problems such as matrix assembly. At the same time, specific
algorithms can be implemented for some fine-grained tasks as analysis
of connected components.

Keywords: Template metaprogramming · GPU · CPU · CUDA ·
OpenMP · C++ · AMGCL · Stokes solver · Coupled linear systems ·
Fully implicit methods

1 Introduction

We start with a concrete problem and observe how our approach can be incor-
porated into its solution. We need to solve a Stokes-type coupled linear system.
This results in a saddle-point finite dimensional linear problem discretized by
means of a converging approximation as follows:

Ax = b ⇔
(
A BT

B 0

)(
u
p

)
=

(
f
0

)
, (1)

where A is the discrete Laplace operator, B is the discrete divergence operator,
BT is the discrete gradient operator, u is the velocity vector, p is the pressure
vector, and f is a right-hand-side vector. The system can be solved using a
Krylov-type linear solver (in our case, we apply the GMRES method) with a left
or right preconditioner. The preconditioner for the coupled system is constructed
in a BFBt [4] or block triangular form. An Algebraic Multigrid (AMG) method
is applied at each stage of the selected preconditioners. Here we apply a heavily
modified version of the AMGCL solver [1,2]. The original problem (1) is initially
solved using a Graphics Processing Unit (GPU). It basically consists of four main
parts: geometry and topology analysis of the computational domain, assembly of
the linear system (1), linear system solution, and data postprocessing for storage
and analysis. More details on the preconditioning strategies, discretization, and
performance on GPUs of the developed solver are given in [6]; test data of AMG
modifications are considered in [5,10].

In this paper, we discuss the extension of the developed solver to CPU
or CPU-GPU implementations for shared-memory computational architectures.
Two main approaches to the problem exist.

The seemingly easier way one employs directive-based compilers to anno-
tate parallel sections which are capable of extending these sections to CPUs,
GPUs, or possibly other coprocessors. Examples of such standards are Ope-
nACC (www.openacc.org), OpenHMPP (handwiki.org/wiki/OpenHMPP) [3],
C-DVMH (http://dvm-system.org) [7], and others. These standards encapsu-
late the lower-level programming for parallel parts of the code on the compiler
side and allow the user not to focus on the specific parallel design of the code.
Basically, they provide a loose relationship between an application code and the
use of a hardware accelerator, which is indeed an advantage. Moreover, such

www.openacc.org
https://handwiki.org/wiki/OpenHMPP
http://dvm-system.org

154 N. M. Evstigneev and O. I. Ryabkov

approaches as SAPFOR (from the authors of DVM) can be used to extend the
project to distributed-memory systems. As it turns out, the extension of our
Stokes solver project based on programming standards with compiler directives
is quite restrictive. The complexity of the used methods in several parts and their
interaction is primarily due to the low-level CUDA C++ kernels and template
metaprogramming. Such an approach is determined by the desire to facilitate the
utilization of GPU capabilities at maximum. Thus the original method is well
optimized for the GPU architecture and uses various highly optimized kernels to
analyze the computational domain (including Connected Component Labeling
and topological analysis), assemble system (1) in the compressed row storage
format right on a GPU, and solve it using the highly modified AMGCL solver
[5] only on a GPU without any data movement from the accelerator to the host
memory. With these methods already implemented, it makes no sense to rewrite
the code in a higher-level approach with compiler directives that can degrade
the achieved performance on a GPU accelerator.

The other approach makes use of embedded domain-specific languages that
are based on modern C++ and can handle different accelerations, such as
GPUs. These include SYCL (www.khronos.org/sycl/) [9], RaftLib (www.raftlib.
io, Vulkan (https://vulkan.org/), and others. Within our paradigm, one would be
most interested in using SYCL since it is a C++17 (so far) comparable language
that can be used to redesign the CUDA kernels and extend the list of available
accelerations. In our case, however, it is necessary to design different algorithms
for different accelerators in this case. Such a code redesign is error-prone and
time-consuming (under the assumption that we already have a designed near-
optimal code based on CUDA C++).

As an alternative to these approaches, we use our own designed extensions of
data structures and operations based on modern C++ with the use of template
metaprogramming. The two main components of our approach are array classes
and ‘for each’ algorithms. The use of a particular accelerating coprocessor can be
encapsulated into these components. Currently, only the host CPU (OpenMP
and serial) and CUDA C++ supporting devices are implemented. Arrays can
be used for both CPU and CUDA architectures and internally substitute the
memory layout that best fits the current architecture (as ‘array of structures’
or ‘structure of arrays’). Moreover, ‘for each’ algorithms simply generate kernels
or parallel cycles for looping over data in parallel. For other algorithms, we use
the Thrust library. Our current library is called SCFD (an acronym for Scalable
Computation Framework Details).

The structure of the paper is as follows. In Sect. 2, we describe the design and
implementation of SCFD classes, including data structures, ‘for each’ operations,
memory modules, and utilities. In Sect. 3, we demonstrate the performance of
our template library on a simple example and compare the results with raw
pointers on CPU and GPU. Next, we consider the performance of the Stokes
solver ported from GPU-only code to Serial+OpenMP+GPU code. Also, we
compare the results of several approaches, namely, OpenMP, GPU-only (while
there is enough memory available on a device), and GPU-unified memory. In the
last section, we present the conclusions drawn from our research.

www.khronos.org/sycl/
www.raftlib.io
www.raftlib.io
https://vulkan.org/

Template Programming for Shared Memory Parallel Architectures 155

2 The Implementation

The implementation details are provided with regard to the source code of the
library. The interested reader is encouraged to consult the code along with the
description. The code can be found in a GitHub repository given below.

As previously stated, our C++ library consists of several small parts (we
call them modules). Each part is aimed to deliver a certain type of architecture
abstraction. Currently, the library is header-only, so most of the time the headers
provide both definition and declaration. In some cases, the implementation of the
class or function is moved to a separate header having the “_impl” suffix in this
case. For example, a class declared in the file “scfd/for_each/cuda.h” is defined
in “scfd/for_each/cuda_impl.cuh”. This is done to allow for the separation of
architecture-specific parts of the code (CUDA kernels in the case above) into
separate object files. Most of the time, the structure of folders replicates the
namespace structure. For example, the class scfd::for_each::cuda is declared
in the above-mentioned file “scfd/for_each/cuda.h”.

The library parts correspond to different namespaces. Currently, the public
repository contains the following parts:

– scfd::utils. It includes some basic utilities to simplify cross-architecture
programming. For example, scalar_traits unifies calls to some of the math
functions for different architectures and scalar types; device_tag.h contains
a simple macro to unify the definitions of functions (it adds the __device__
tag for the CUDA case); constant_data helps in working with small data
structures similar to CUDA constant memory. There are other macros and
functions such as CUDA_SAFE_CALL, timer wraps, and so on.

– scfd::static_vec. It includes a class of vector templates of static size and
basic vector operations which can be used both on CPUs and GPUs.

– scfd::static_mat. It includes a class of matrix templates of static size, as
well as basic matrix and vector-matrix operations that can be used both on
CPUs and GPUs.
Note that static_vec and static_mat should not be considered kind of a
basis for a linear-algebra library but rather useful small static arrays that can
work on different architectures.

– scfd::geometry. A very limited set of geometry algorithms, such as simplex
intersection.

– scfd::arrays. It includes classes of templates of multidimensional arrays
suited for different architectures. They are described in Subsect. 2.1.

– scfd::for_each. It includes classes that enable the writing of universal code
parts for parallel execution. They are described in Subsect. 2.2.

– scfd::memory. It includes a basic abstraction of memory allocation and copy
operations mainly intended as a sublayer of array classes. It can be used as a
standalone module. For details, see Subsect. 2.3.

– scfd::reduce. It is intended as an abstract reduction operation layer hiding
the details of other libraries such as Thrust and CUB. The current public
version, however, is limited.

156 N. M. Evstigneev and O. I. Ryabkov

One of the primary ideas is the orthogonality of the modules. There are, of
course, some internal dependencies between modules. For example, all modules
depend on scfd::utils. However, these dependencies were diminished as far as
it was possible. Arrays can be useful in normal CUDA kernels or C++ cycles
without scfd::for_each and, vice versa, scfd::for_each primitives will work
with plain pointers if needed. SCFD is not a solid framework but rather a set of
primitives and concepts helping to write and implement efficient parallel codes
in a straightforward manner.

2.1 The Implementation of Data Structures

The concept scfd::arrays provides lightweight template classes for multidi-
mensional arrays. Arrays in scfd::arrays should be considered more as “array
pointers” or “array references” rather than solid array classes. Copy and assign-
ment of these objects do not lead to data copy but rather to the creation of a
new reference to the existing data through the new object instance. The “nor-
mal” data-structure behavior is the one inherent to STL or Thrust. However, the
copy semantics of objects in Thrust makes them unsuitable for direct usage in
CUDA kernels, so the Thrust approach is to use iterators. Even though iterators
are a good choice for many algorithms, often (especially in scientific applica-
tions) their usage reduces the code readability. Simple access by index is more
suitable in these cases. Multidimensional arrays are even more useful in other
cases. These scfd::arrays can be passed directly to a CUDA kernel thanks to
their “shallow” copy semantics and give access to data elements through one or
several ordinal indexes.

The concept tensor_base class is an internal class that implements most
parts of the multiarray functionality. This class is not intended for direct use
in the code; tensor_array_nd is derived from tensor_base and gives public
functionality. The template parameters of this class are as follows:

template <class T, ordinal_type ND, class Memory ,
template <ordinal_type ... Dims > class Arranger ,
ordinal_type ... TensorDims >

class tensor_array_nd

Here we have the following:

– class T, the element type of the array. Note that, currently, only POD data
types (such as scalar types and simple structures) are supported.

– ordinal_type ND, the number of dimensions of a multidimensional array;
ordinal_type stands for the internal SCFD type scfd::arrays::ordinal_
type. This type defines all indexing inside arrays and, for the moment,
is managed by the global macro SCFD_ARRAYS_ORDINAL_TYPE. The default
ordinal_type is int.

– class Memory, a class that manages all memory operations (for now, these
are allocation, free, and copy). This class defines whether we use the device
memory, the unified memory, or the host memory.

Template Programming for Shared Memory Parallel Architectures 157

– template <ordinal_type... Dims> class Arranger, a template parame-
ter. It defines how multidimensional array elements are arranged in the lin-
ear memory. Usually, one uses one of the predefined Arranger classes from
scfd::arrays; however, a custom Arranger can be written.

– ordinal_type... TensorDims, additional dimensions (called tensor dimen-
sions). An empty list is allowed. Each value in TensorDims is either dyn_dim,
which is a predefined constant, or a positive ordinal value. In the last case,
the corresponding dimension is defined in the compile type and can not be
changed during array allocation.

Note that the total number of tensor_array_nd dimensions equals ND +
sizeof . . . (TensorDims). This array can be interpreted as an ND-dimensional
array of tensors of rank (sizeof . . . (TensorDims)). Consider the following exam-
ple (namespaces are omitted). The code

tensor_array_nd <float ,2,cuda_device ,
first_index_fast_arranger ,3> cuda_array;

represents a two-dimensional CUDA device array of three-dimensional floating
point vectors, and

tensor_array_nd <double ,3,host ,
last_index_fast_arranger ,2,2> host_array;

is a two-dimensional host array of 2 × 2-matrices of char elements. Now we can
access the elements of these arrays using operator():

float x = cuda_array(i1,i2 ,0),
y = cuda_array(i1,i2 ,1),
z = cuda_array(i1,i2 ,2);

or

float a11 = host_array(i1,i2,i3 ,0,0),
a12 = host_array(i1,i2,i3 ,0,1),
a21 = host_array(i1,i2,i3 ,1,0),
a22 = host_array(i1,i2,i3 ,1,1);

Note that the CUDA array is not accessible from the host code, and vice versa.
The element-wise copy (as the one implemented in thrust::device_vector) is
not implemented here to avoid its use by inexperienced GPU users.

Let us explain last_index_fast_arranger and first_index_fast_
arranger in more detail. These are the Arranger template parameters listed
above. The first arranger makes the last indexes (which correspond to “ten-
sor dimensions” in our arrays) to be the fastest regarding memory layout, i.e.,
the row-major order, used in plain C-arrays. The second arranger corresponds
to col-major order, used in Fortran arrays. It is known (see, for example, [8])
that the memory layout of data strongly influences the performance of CUDA
devices owing to the specific cache organization of the GPU. Structure of Arrays

158 N. M. Evstigneev and O. I. Ryabkov

(SoA) is usually preferred. At the same time, Array of Structures (AoS) usu-
ally fits better for host CPU processing because of cache misses. In the exam-
ples above, we chose first_index_fast_arranger for the CUDA array and
last_index_fast_arranger for the CPU array. This means that cuda_array is
located in the device memory as three successive two-dimensional arrays, which
corresponds to SoA, while host_array is a three-dimensional array of 2 × 2-
matrices, which corresponds to AoS. Usually, this choice of the Arranger parame-
ters is optimal. However, the optimal layout depends on the algorithm, the inter-
pretation of the dimensions, the order of processing of the elements, the current
hardware, and others. That is why the Arranger parameter can be set during
tensor_array_nd<> instantiation.

We see that the list of tensor_array_nd<> template parameters is quite
extensive. Considering the notes about the usually preferred Arranger type for
different memory types, we added shortcut versions of the tensor_array_nd<>
template with the default Arranger type deduced from the Memory parame-
ter. For instance, the arrays from the example given above can be equivalently
declared as

tensor1_array_nd <float ,2,cuda_device ,3> cuda_array;

and

tensor2_array_nd <double ,3,host ,2,2> host_array;

where the number after the word tensor corresponds to the tensor rank (the
number of tensor dimensions). For tensors of rank 0 (i.e., scalars), the word
tensor can be omitted:

array_nd <float ,2,cuda_device > cuda_array_2d;

is a two-dimensional CUDA device array. In the case of one-dimensional arrays,
the suffix “_nd” can be omitted:

tensor2_array <double ,host ,2,2> host_matrix_array;

is a one-dimensional array of 2 × 2-matrices; the array class stands for a one-
dimensional array:

array <float ,cuda_device > cuda_array_1d;

As we mentioned earlier, scfd::arrays uses “shallow” copy semantics. This
leads to the question of whether these arrays satisfy RAII. Technically, the
answer is yes. All data allocated with arrays will be freed as the array instances
are destroyed, and a double-free situation will not happen. However, it is impor-
tant to note that the scfd::arrays described above are not reference-counting.
Instead, an array that allocates new memory by the init method gets the
“owner” status and is responsible for freeing data. Neither of its copies has
the “owner” status. This means that when an “owner” array is destroyed, all
its copies are invalidated. This unsafe behavior is caused by the ability to pass
scfd::arrays directly to the CUDA kernels. Reference-counting pointers do not
make much sense when passed to device kernels since each thread would have its

Template Programming for Shared Memory Parallel Architectures 159

own copy of the pointer. The semantics of “shallow” copies is similar to the seman-
tics of iterators, which are invalidated when the data structure is erased. This
makes sense, considering that iterators are used in the Thrust library to access
data from kernels. To make current scfd::arrays at least partially safer, we
added move semantics that transfers the “ownership” during array move. To avoid
any unsafe behavior (accidental loss of data due to the “owner” array destruc-
tion), one must use scfd::arrays in the host part of the program as members
of non-copyable classes or classes with “deep” copy semantics. In the experimen-
tal private version of scfd::arrays, we implemented additional shared_array
(reference-counting) and unique_array (move-only) classes. These classes can
not be used directly in GPU kernels but have a special method get() to create
a “shallow” “non-owning” array. They are to be released in the public repository
as soon as all tests are completed.

2.2 The Implementation of ‘For Each’ Operations

The concept scfd::for_each delivers simple abstractions to execute a cer-
tain operation with each element from the sequence. The operation is per-
formed on each element independently. In fact, scfd::for_each is very close
to std::for_each from the modern C++ standard (main the difference is the
support of CUDA device kernels); it is also close to the thrust::for_each algo-
rithm. We can regard the differences as just cosmetic. First, scfd::for_each
uses indexes instead of iterators, which, in our opinion, is a more convenient
solution for scientific applications. Indexes can be shifted if needed, for example,
in MPI-scattered arrays. Also, n-dimensional versions of scfd::for_each exist
and they are useful for processing regular n-dimensional arrays, e.g., for struc-
tured grid indexing. In fact, we can consider scfd::for_each more as a minor
abstraction layer for current and future parallel platforms.

All classes in scfd::for_each can be divided into two groups: “plain”
for_each classes (work with one-dimensional indexes) and n-dimensional
for_each classes (work with n-dimensional execution grids). All parameters of
execution (as the CUDA block size) are supposed to be stored in the for_each
class instance. Each class corresponds to a particular parallel platform or even
a particular execution strategy within a given platform. Currently, the following
are implemented:

– Serial CPU. A one-threaded CPU implementation that is useful for debug-
ging. Classes: serial_cpu and serial_cpu_nd.

– Parallel CPU using OpenMP. Classes: openmp and openmp_nd.
– Parallel GPU using CUDA. Classes: cuda and cuda_nd.

One-dimensional scfd::for_each classes have the following public interface:

template <class Func >
void operator ()(Func f, T i1, T i2)const;
template <class Func >
void operator ()(Func f, T size)const;
void wait() const;

160 N. M. Evstigneev and O. I. Ryabkov

We can see that this interface is a template itself because we need to pass an
arbitrary operation functor; T is the ordinal type used. The first method per-
forms f for all indices in the range [i1, i2). The second method is a shortcut
to the first and works in the range [0, size). The third method synchronizes
the calling thread with the device that performs for_each (in the case of the
last being asynchronous). It is obvious that the implementation of for_each is
rather trivial. Here, n-dimensional scfd::for_each classes have basically the
same interface but with n-dimensional ranges.

2.3 The Implementation of Memory Models and Utilities

In Sect. 2.1, we mentioned the template parameter Memory of scfd::arrays
classes. For example, we used the cuda_device type for CUDA device arrays and
the host type for host CPU arrays. These types are defined in the scfd::memory
module. The general Memory class interface is as follows:

struct <current_memory_name >
{

typedef ... host_memory_type;
typedef ... pointer_type;
typedef ... const_pointer_type;
static const bool is_host_visible = ...;
static const bool prefer_array_of_structs = ...;

static void malloc(pointer_type* p, size_t size);
static void free(pointer_type p);
static void copy_to_host(size_t size ,

const_pointer_type src ,
pointer_type dst);

static void copy_from_host(size_t size ,
const_pointer_type src ,
pointer_type dst);

};

where

– host_memory_type declares the Memory class that can be used to copy data
from a device if current_memory cannot be accessed directly from a host. For
example, for the cuda_device memory (which represents the CUDA device
memory itself), host_memory_type is cuda_host memory (which represents
the host CUDA pinned memory). If current_memory is directly accessible
from a host, then host_memory_type coincides with current_memory.

– pointer_type and const_pointer_type are, for the moment, void* and
const void*.

– is_host_visible specifies whether current_memory is directly accessible
from a host.

– prefer_array_of_structs is used as a hint for the default array layout (see
Sect. 2.1 about AoS and SoA layouts).

Template Programming for Shared Memory Parallel Architectures 161

– malloc and free functions are wrappers to allocate and free current_memory
(CudaMalloc is used for cuda_device, for example); size is given in bytes.

– copy_to_host and copy_from_host functions are wrappers that copy data
between current_memory and host_memory_type if the memory is not acces-
sible from a host; size is given in bytes.

Note that the Memory class is somewhat similar to the Allocator concept from
Thrust or STL but with some additional abilities, such as copy-to-host func-
tions. Currently, Memory is supposed to be a static class, so all methods are
supposed to be static. The module scfd::arrays explicitly uses this feature.
Additional parameters can be passed only through additional static fields or
methods. However, we intend to extend this concept and provide a means to
have some information inside the Memory class itself, similar to the Allocator
concept.

3 Simple Application and Benchmarks

In this section, we describe the tests of the developed SCFD library on a simple
yet illustrative example. All tests were conducted on the following hardware:

– Intel Xeon Gold 6248R CPU @ 3.00GHz × 2 with 48 cores each and 1 TB
of RAM;

– Intel Xeon E5-2697 v2 @ 3.00GHz with 12 cores and 64 GB of RAM;
– Nvidia Tesla V100S GPU on PCIE with 32 GB;
– Nvidia GeForce RTX 3090 with 24 GB;
– Nvidia GeForce GTX TITAN X with 12 GB;
– Nvidia GeForce GTX TITAN Black with 6 GB.

The set of new and old hardware allowed us to compare the results on a wide
range of computational architectures. The number of OpenMP threads was
selected to maximize the efficiency by conducting multiple preliminary auto-
matic tests.

Table 1. Results of cross product tests on GPUs, measured by the ncu utility in
GFLOPS

GFLOPS AoS SoA tensor

GTX Titan Black 66.89 30.54 66.60
GTX Titian X 126.69 90.21 126.72
RTX 3090 192.55 237.08 236.96
Tesla V100 246.20 221.40 246.72

The test problem is the cross product of two arrays of 3D floating-point
vectors of size N , i.e., the cross product of vectors u,v ∈ R

N×3, from which we

162 N. M. Evstigneev and O. I. Ryabkov

obtain a vector w ∈ R
N×3 defined as wj = uj×vj , ∀j = 0, . . . , N−1. The size N

is selected to ensure that it fills up 95% of the GPU memory; thus N ranges from
5 · 107 to 8 · 108. In particular, N = 1 · 108 for the first CPU configuration, and
N = 1 ·107 for the second one. We observed no difference in the general behavior
for single and double precision in all tests (except for absolute execution times).
For this reason, only the double-precision results for floating-point vectors are
given in the table. Each test was carried out 10 000 times. The main point of
this example is to test our implementation of data structures, memory layout,
and ‘for each’ operations with raw pointers and low-level kernels on GPUs and
OpenMP optimized for loops on CPUs. We define a GPU layout of vectors as
an SoA (see Sect. 2.1), i.e.,

u := ((u0,0, u1,0, . . . , uN−1,0)(u0,1, u1,1, . . . , uN−1,1)(u0,2, u1,2, . . . , uN−1,2))T.

The CPU layout is defined as the AoS, i.e.,

u := ((u0,0, u0,1, u0,2), (u1,0, u1,1, u1,2), . . . , (uN−1,0, uN−1,1, uN−1,2))T.

Fig. 1. Wall-clock time for the computation of the cross product on CPUs with
OpenMP. Top: first CPU. Bottom: second CPU

We start by comparing the results of the CPU tests (see the graphs in Fig. 1).
The most suitable CPU layout is more important for the older hardware than for
the newer one. Optimally aligned vectors coincide with the raw pointer execution
time, whereas misaligned data are executed slower, by 3% on the new CPU and
by 12% on the old one. It is quite likely that the cause is the larger cache size.

Template Programming for Shared Memory Parallel Architectures 163

Fig. 2. Wall-clock time for the computation of the cross product on GPUs. Top: TITAN
X. Bottom: TITAN Black

Results for older GPUs are provided in Fig. 2. We definitely observe a depen-
dence on the layout of vectors, which gives a much clearer difference: a factor of
2.1 for TITAN X and 1.9 for TITAN Black. This behavior is expected and is in
full compliance with the used hardware.

Results for newer GPUs are shown in Fig. 3. Interestingly enough, the layout
affects the efficiency in a classical manner for Tesla V100 (increasing the perfor-
mance by 20% under the SoA layout), while the effect is the opposite for GTX
3090. This is likely because the Ampere architecture is tuned for neural network
training (including convolution networks), where the CPU-type data layout of
AoS is common. In addition, the 40 MB level 2 cache is seven times as large as
that for the Volta architecture (Tesla V100 card) and can suit and precache the
stride of our CPU vector layout. Note that switching between memory Arrangers
can be done in our implementation if hardware preferences are known with a sim-
ple template configuration, as it is demonstrated in Sect. 2.1. The numbers of
floating-point operations per second for GPUs are given in Table 1. We can see
the dependence of the SoA or AoS memory layout more closely.

4 Stokes Solver Performance

In this section, we consider tests on a rather sophisticated Stokes solver, discussed
in the introduction. The sources of the tests are several real problems related to
flows in porous media. Some of these problems are discussed in [6]. The redesign
of the code from GPU-only to CPU/GPU code is done in a short time since

164 N. M. Evstigneev and O. I. Ryabkov

Fig. 3. Wall-clock time for the computation of the cross product on GPUs. Top: Tesla
V100. Bottom: GTX 3090

the original GPU code uses the SCFD framework for data storage and memory
operations. The replacement of low-level CUDA kernels with ‘for each’ kernels is
performed straightforwardly. To consider an alternative approach, we also imple-
mented for the solver the ability to handle CUDA unified memory arrays. This
is done by applying the cudaMallocMannaged memory operation to our Memory
class operation (malloc, see Sect. 2.3). Such a substitution of memory for the
internal structure of the solver was made by just changing a configuration tem-
plate parameter in the data-types header file. Unified memory was incorporated
into the modified AMGCL library by using thrust::universal_vector arrays
in most places via a layer of abstraction type. As a result, we have the additional
ability to compare the performance of CUDA device memory with that of CUDA
universal memory. The test results are given in Table 2 and Fig. 4. In the tests,
we used the best hardware from the list given at the beginning of Sect. 3 (Tesla
V100 GPU and Xeon Gold CPUs). The solver used single-precision floating-
point arrays for both CPUs and GPUs. For each test case, its cubic size “linear
size3” and the total active number of unknowns are both given in Table 2. Note
that the cubic size and the number of unknowns are different because of the
porosity. Only active unknowns are used in the problem solution.

We see that the wall time depends linearly on the problem size (see Fig. 4,
left) for the device and OpenMP variants of the solver, confirming the correctness
of the implementation. We can also see that the original GPU implementation is
about 12 times as fast as the OpenMP CPU variant, rendering the solution to a
problem with 82 million unknowns in 20 s against 4min for the OpenMP variant.

Template Programming for Shared Memory Parallel Architectures 165

Table 2. Wall-clock time for the Stokes solver tests under different ported variants:
omp is an OpenMP CPU multithreaded variant using 76 threads (best performance),
unified is the CUDA-device variant with unified memory, device is the original CUDA
code.

linear size unknowns time omp, s time unified, s time device, s omp/unified omp/gpu

200 7 538 792 19.74 4.76 3.17 4.15 6.23

300 16 846 460 43.20 9.59 5.40 4.51 8.00

400 38 746 275 93.39 16.91 9.95 5.52 9.39

500∗ 81 661 178∗ 226.00 36.41 19.29 6.21 11.72

450∗ 123 483 006∗ 381.00 365.00 1.04

600 143 120 364 459.40 775.70 0.59

700 214 362 520 781.70 1407.00 0.56
∗The number of unknowns and the domain size are different because of the porosity.

Fig. 4. Left: wall-clock time for the Stokes solver tests. Right: device/host acceleration
for maximum device performance (device or unified memory). By max d.mem, we
denote the maximum problem size that fits the device memory.

The unified memory implementation is less efficient than the device memory by a
factor of two approximately. Once the unified managed memory starts using the
host memory, the GPU performance drastically decreases (see Fig. 4, right). We
can recommend the use of the OpenMP implementation, instead of the unified
memory GPU variant, for large problems that do not fit into the GPU memory.

5 Conclusions

In this report, we considered a Template Programming Approach for shared-
memory parallel architectures. The approach is implemented in the SCFD
header-only library and allows simplifying the implementation of the parallel
code and the process of porting the code from CPU to GPU-like coprocessors.
The library is aimed to provide the maximum performance of parallel codes
(with no penalty, unlike data structures using raw pointers). We tested it on
various computational architectures with shared memory and demonstrated that
a rather sophisticated solver can be ported to different parallel architectures in
the minimum time. We encourage readers to try our library, which can be down-
loaded at https://github.com/oryabkov/SCFD-all.

https://github.com/oryabkov/SCFD-all

166 N. M. Evstigneev and O. I. Ryabkov

References

1. Demidov, D.: AMGCL: an efficient, flexible, and extensible algebraic multigrid
implementation. Lobachevskii J. Math. 40(5), 535–546 (2019). https://doi.org/10.
1134/S1995080219050056

2. Demidov, D.: AMGCL – a C++ library for efficient solution of large sparse linear
systems. Softw. Impacts 6, 100,037 (2020). https://doi.org/10.1016/j.simpa.2020.
100037D

3. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: a hybrid multi-core parallel program-
ming environment. In: Workshop on General Purpose Processing on Graphics Pro-
cessing Units (GPGPU 2007) (2007)

4. Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy
and comparison of parallel block multi-level preconditioners for the incompressible
navier-stokes equations. J. Comput. Phys. 227(3), 1790–1808 (2008). https://doi.
org/10.1016/j.jcp.2007.09.026

5. Evstigneev, N.M.: Analysis of block stokes-algebraic multigrid preconditioners on
GPU implementations. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 22022. CCIS,
vol. 1618, pp. 116–130. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
11623-0_9

6. Evstigneev, N.M., Ryabkov, O.I., Gerke, K.M.: Stationary stokes solver for single-
phase flow in porous media: A blastingly fast solution based on algebraic multigrid
method using GPU. Adv. Water Resour. 171, 104,340 (2023). https://doi.org/10.
1016/j.advwatres.2022.104340

7. Kataev, N.: Application of the LLVM compiler infrastructure to the program anal-
ysis in SAPFOR. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2018. CCIS,
vol. 965, pp. 487–499. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05807-4_41

8. Mei, G., Tian, H.: Impact of data layouts on the efficiency of GPU-accelerated IDW
interpolation. SpringerPlus 5(1) (2016). https://doi.org/10.1186/s40064-016-1731-
6

9. Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J., Tian, X.:
Data Parallel C++. Apress (2021). https://doi.org/10.1007/978-1-4842-5574-2

10. Ryabkov, O.I.: Implementation of the algebraic multigrid solver designed for graph-
ics processing units based on the AMGCL framework. In: Sokolinsky, L., Zymbler,
M. (eds.) PCT 2022. CCIS, vol. 1618, pp. 131–142. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-11623-0_10

https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1016/j.simpa.2020.100037
https://doi.org/10.1016/j.simpa.2020.100037
https://doi.org/10.1016/j.jcp.2007.09.026
https://doi.org/10.1016/j.jcp.2007.09.026
https://doi.org/10.1007/978-3-031-11623-0_9
https://doi.org/10.1007/978-3-031-11623-0_9
https://doi.org/10.1016/j.advwatres.2022.104340
https://doi.org/10.1016/j.advwatres.2022.104340
https://doi.org/10.1007/978-3-030-05807-4_41
https://doi.org/10.1007/978-3-030-05807-4_41
https://doi.org/10.1186/s40064-016-1731-6
https://doi.org/10.1186/s40064-016-1731-6
https://doi.org/10.1007/978-1-4842-5574-2
https://doi.org/10.1007/978-3-031-11623-0_10
https://doi.org/10.1007/978-3-031-11623-0_10

Parallel Computing in the Tikhonov
Regularization Method for Solving

the Inverse Problem of Chemical Kinetics

Konstantin Barkalov1(B) , Marina Usova1 , Leniza Enikeeva2(B) ,
Dmitry Dubovtsev3, and Irek Gubaydullin2,3

1 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod,
Russian Federation

konstantin.barkalov@itmm.unn.ru
2 Ufa State Petroleum Technological University, Ufa, Russian Federation

leniza.enikeeva@yandex.ru
3 Institute of Petrochemistry and Catalysis, Subdivision of the Ufa Federal Research

Center of the Russian Academy of Sciences, Ufa, Russian Federation

Abstract. We investigate the advantages and disadvantages of the refin-
ing processes employed in gasoline production. As a way of increasing
the environmental friendliness of motor fuel, we suggest using alkylation
to a greater extent during its blending and for improving its quality.
The work describes the scheme of chemical transformations of the sulfu-
ric acid alkylation process taking into account the target reactions and
side effects. Based on the chemical nature of the studied reactions, the
authors pose the inverse problem of chemical kinetics and consider the
regularization method for its solution. The global optimization prob-
lem corresponding to the regularized inverse problem was solved using
a parallel optimization algorithm. We provide the results of computa-
tional experiments on a supercomputer which show the adequacy of the
obtained solution. The Tikhonov regularization method is an algorithm
intended to find an approximate solution to incorrectly posed operator
problems. Using this method, the authors solve the task of finding the
reaction constants of sulfuric acid alkylation of isoalkanes by alkenes.

Keywords: Global optimization · Multiextremal functions · Parallel
computing · Chemical kinetics · Inverse problems · Regularization

1 Introduction

To meet the environmental protection requirements, the standards of clean gaso-
line in the world are currently moving toward low contents of sulfur, olefins, and
aromatic substances and high octane numbers. This means that the refining
industry requires stricter fuel product standards and cleaner production pro-
cesses. Gasoline is a result of the blending of products of several refining pro-
cesses, such as catalytic reforming, isomerizate, catalytic cracking, and sulfuric
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 167–181, 2023.
https://doi.org/10.1007/978-3-031-38864-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_12&domain=pdf
http://orcid.org/0000-0001-5273-2471
http://orcid.org/0000-0002-0722-6884
http://orcid.org/0000-0003-4219-4870
https://doi.org/10.1007/978-3-031-38864-4_12

168 K. Barkalov et al.

acid alkylation. The use of each component is limited by certain factors, including
sulfur content, saturated vapor pressure, the content of aromatic hydrocarbons,
and the octane number of the final product [10].

The product of catalytic cracking is a catalyst obtained as a by-product
of the cracking of vacuum gas oil (fraction 350–500◦C). It contains aromatic
hydrocarbons, olefins, and a small amount of hydrocarbons from the feedstock
structure and is a source of sulfur in commercial gasoline.

An isomerizate of a high-octane component is obtained in the process of cat-
alytic isomerization of light gasoline fractions (i.b.p-62◦C). The octane number
of the isomerizate reaches up to 92 points, depending on the research method.
However, its excessive addition during blending leads to an increase in the pres-
sure of saturated vapors in commercial gasoline and the formation of steam plugs
in the power system during the hot season [10].

The source of aromatic contents in gasoline is a reformate obtained during
catalytic reforming of heavy gasoline fractions (fraction 85 (105)–180◦C). The
involvement of lighter fractions in reforming feedstocks results in an increase in
the proportion of benzene in the reformate.

Alkylated gasoline fully complies with the operational and environmental
requirements of modern European, US, and Russian industrial standards for
the production of fuels for automotive internal combustion engines and is an
ideal and essential component of reformed environmentally friendly gasoline.
The production rate of alkylate abroad exceeds 70 million tons a year; in the
Russian Federation, it reached 2 million tons in 2019. Alkylate is obtained as a
result of the alkylation of isoalkanes by alkenes in the presence of a catalyst. The
most commonly used process catalyst in Russia is sulfuric acid. The advantages
of alkylate include a high octane number (up to 90 points, depending on the
research method), low saturated vapor pressure, low content of heteroatomic
compounds, and good chemical stability. In addition, the sensitivity of alkylate
does not exceed 5 points [2].

There are target and side reactions, which proceed by the carbonium-ion
mechanism. The process is carried out in several stages:

1. The first stage is the addition of an acid proton to an olefin to produce a
tert-butyl carbation:

Fig. 1. The addition of an acid proton to an olefin to produce a tert-butyl carbation

Parallel Computing in the Tikhonov Regularization Method 169

2. In the second stage, the formed carbonium ion interacts with paraffin hydro-
carbon. In this case, the hydrogen anion from the tertiary carbon atom of
the isoparaffin hydrocarbon passes into the carbonium ion formed in the first
stage of the reaction:

Fig. 2. The interaction of the formed carbonium ion with paraffin hydrocarbon

3. The third stage consists of the addition of a tertiary carbonium ion to the
second olefin molecule to form carbonium:

Fig. 3. The addition of a tertiary carbonium ion to the second olefin molecule

4. The fourth stage consists of the skeletal isomerization of the secondary car-
bonium ion:

5. The fifth stage is the interaction of the formed carbonium ions with an
isoparaffin molecule by a tertiary carbon-hydrogen bond with the formation
of target products and a carbonium ion from isoparaffin (Figs. 1, 2, 3, 4 and
5):

For ease of use when compiling the model, we offer below a scheme containing
the reactions in the sulfuric acid alkylation process (Fig. 6).

It should be noted that the temperature range of the process is from 2◦C to
15◦C. Determining the optimal value for a given composition of feedstocks is one
of the study objectives. The solution to the problem of constructing a model of
the process of sulfuric acid alkylation of isobutane with butylenes is relevant in
this regard [10].

170 K. Barkalov et al.

Fig. 4. The skeletal isomerization of the secondary carbonium ion

Fig. 5. The interaction of the formed carbonium ions with an isoparaffin molecule

Fig. 6. The scheme of reactions of the sulfuric acid alkylation process

Parallel Computing in the Tikhonov Regularization Method 171

Since the mathematical model of the chemical reaction is a system of differen-
tial equations, it is only possible to find the values of the constants in this system
numerically (see, e.g., [5]). Note that the objective function in such problems is
usually multiextremal, i.e., it has many local extrema apart from the global one.

Assuming some additional properties of the objective function, it is possible
to construct efficient deterministic methods for finding a global solution. For
example, we can assume that the ratio of the function increment to the corre-
sponding argument increment can not exceed some threshold. In this case, the
functions are called Lipschitzian, and the problem itself is a Lipschitz optimiza-
tion problem. This paper continues a series of papers where the parallel methods
of Lipschitz optimization proposed in [12] are investigated and modified in their
application to solving inverse problems of chemical kinetics.

The main part of the paper is organized as follows. Section 2 describes the
mathematical model of the chemical reaction under study. The formal statement
of the Lipschitz global optimization problem and the general scheme of the search
for algorithms are given in Sect. 3. In that section, we also present a scheme of the
proposed asynchronous parallel algorithm for solving multiextremal problems.
The results of the numerical solution of the inverse problem of chemical kinetics
are discussed in Sect. 4.

2 The Problem Statement

To optimize the technological process, it is necessary to know the kinetic laws
and mechanisms of chemical reactions. To determine them, we should evaluate
the kinetic parameters of chemical reactions by solving the inverse problem of
chemical kinetics [1]. In most cases, the equations of chemical kinetics are systems
of ordinary nonlinear differential equations for the concentrations of substances
xi (1) with initial conditions (2):

dxi

dt
=

J∑

j=1

νijωj , i = 1,I, ωj = k0
j · exp

(
− Ej

RT

)
·

M∏

i=1

x
|aij |
i , (1)

t = 0, xi(0) = x0
i . (2)

Here k0
j ·exp

(− Ej

RT

)
are the so-called rate constants of the reaction stages; I is the

number of substances involved in the reaction; J is the number of reaction stages;
νij are stoichiometric coefficients; Ej are the activation energies of the reactions
(cal/mol); R is the universal gas constant (cal/(mol · K)); T stands for the
temperature (K); aij are the stoichiometric coefficients; k0

j are pre-exponential
multipliers.

The inverse problem of chemical kinetics is a global optimization prob-
lem implying the need to determine the vector of reaction rate constants
(k1, k2, . . . , kJ) at which the deviation of the calculated concentrations of the
reaction components from the experimental ones is minimal. Thus, to determine
the rate constants of the reaction, it is necessary to solve the inverse problem of

172 K. Barkalov et al.

chemical kinetics by repeatedly solving the direct problem, that is, by iterating
over the rate constants of the stages (or a set of pre-exponents and activation
energies) according to some algorithm. To solve the optimization problem, it
is necessary to minimize the functional (3), which expresses the deviation of
experimental data from the calculated values:

FF =
M∑

i=1

N∑

j=1

|xcalc
ij − xexp

ij |. (3)

Here xcalc
ij are the calculated values, xexp

ij are experimental data, M is the num-
ber of experimental points, and N is the number of substances involved in the
reaction. To solve the instability issue in optimization problem (3), consider the
minimization problem in the general form

f(z) → inf, z ∈ D, (4)

where D is some given set and f : D → R1 is a function (functional) defined
on it.

In this inverse problem of chemical kinetics, a number of kinetic parameters
act as a point z (as a rule, a vector of reaction rate constants), while the function
f is the deviation of the calculated concentrations of the reaction components
from empirical data (functional (3)). Problem (4) can be attributed to one of
two classes of problems, which in the literature are called correctly posed and
incorrectly posed minimization tasks, respectively. Inverse problems of chemical
kinetics are incorrectly posed problems (or, in other words, ill-posed problems).
According to Hadamard, a problem is considered to be correctly posed if: 1)
its solution exists, 2) the solution is unique, and 3) the solution is stable to
variations in the initial data. If at least one of the listed requirements does not
hold, the task is considered incorrectly posed. The inverse problems of chem-
ical kinetics encountered in practice usually have a solution, and condition 1
is, thus, fulfilled. Most often, however, conditions 2 and 3 do not hold [1]. To
solve ill-posed problems approximately, we need special methods to construct a
solution to problem (4). Such methods exist and are commonly called regular-
ization methods. In this paper, we rely on a regularization method suggested
by A. N. Tikhonov and called the stabilization method. Also, we use the classi-
cal machine-learning apparatus, i.e., normalization of features and scaling. The
main task that we will consider is the minimization problem

f0(z) → inf, z ∈ D ⊂ Z, (5)

in which we assume D to be a convex closed set in a Hilbert space Z. The
function f0 : D → R1 is considered continuous and convex on D. Suppose that
problem (5) has a solution, i.e., the set D∗ is nonempty. Denote by z0 the norm-
minimal solution to the problem. Suppose that instead of an exact function f ,
we know its approximation fδ, where δ ∈ [0, δ0], δ0 > 0, is a sufficiently small
number, and, moreover,

|fδ(z) − f0(z)| ≤ δ(1 + ||z||2), ∀z ∈ D. (6)

Parallel Computing in the Tikhonov Regularization Method 173

The main construction of the Tikhonov method is the smoothing function or
Tikhonov function

T δ
α(z) ≡ fδ(z) + α‖z‖2, z ∈ D, (7)

where α > 0 is the regularization parameter; α||z||2 is called the stabilizing term.
Consider the auxiliary minimization problem

T δ
α(z) → inf, z ∈ D. (8)

Various numerical methods can be applied to approximate the solution of this
problem. Suppose that, as a result of a finite number of iterations, we obtain a
point zδ,ε

α such that

T δ
α(z) ≡ min T δ

α(z) ≤ T δ
α(zδ,ε

α) ≤ T δ
α + ε, (9)

where ε > 0 is a number that characterizes the accuracy of the solution to
minimization problem (8). In this case, minimization problem (8) for each fixed
pair δ, α has, as a rule, a much larger “margin of stability” than the original
problem (4) and, in most cases, is correctly posed.

3 The Parallel Global Optimization Algorithm

3.1 The Optimization Problem

As we mentioned above, the task of identifying the model parameter values can
be considered a Lipschitz global optimization problem. From a formal point of
view, this problem is a mathematical programming problem of the form

ϕ∗ = ϕ(y∗) = min {ϕ(y) : y ∈ D}, (10)

D =
{
y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N

}
, (11)

where the vectors a, b ∈ RN correspond to the lower and upper bounds of the
search region, and ϕ(y) is the objective function, which satisfies the Lipschitz
condition

|ϕ(y1) − ϕ(y2)| ≤ L‖y1 − y2‖, y1, y2 ∈ D. (12)

We assume that the function ϕ(y) is multiextremal and is given as a “black
box” (i.e., as some subroutine with a vector of parameters as its input and the
calculated value of the function as its output). Moreover, we suppose that each
application of this procedure (hereinafter referred to as a search trial) is a time-
consuming operation. This formulation of the problem is fully consistent with
the inverse problem of chemical kinetics.

There are several algorithms that can be applied to solve Lipschitz optimiza-
tion problems. These include, among others, the nonuniform covering method
[3,4], and diagonal and simplicial partition methods [7,8]. In this paper, we rely
on the global search algorithm proposed by Strongin [12]. Under this approach,
the original multidimensional problem (10) is reduced to a one-dimensional opti-
mization problem using Peano–Hilbert curves.

174 K. Barkalov et al.

In fact, using a continuous one-to-one mapping (Peano curve) y(x) of the
segment [0, 1] of the real axis onto the hyperinterval D in (11), we can reduce
the original problem (10) to the one-dimensional problem

ϕ(y∗) = ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1]},

where the one-dimensional function ϕ(y(x)) satisfies the Hölder condition

|ϕ(y(x1)) − ϕ(y(x2))| ≤ H |x1 − x2|1/N

with H = 2L
√

N + 3. The numerical construction of various approximations of
such mappings is discussed in [11,12].

Thus, the search trial at some point x′ ∈ [0, 1] will involve, in the first place,
the construction of the image y′ = y(x′) and only then the computation of the
function value z′ = ϕ(y′).

3.2 Characteristic Algorithms

The global search algorithm we use belongs to the class of characteristic algo-
rithms, and this greatly simplifies the process of its parallelization. Recall that a
numerical optimization method belongs to the class of characteristic algorithms
if the algorithmic scheme of this method can be described as follows.

At the first iteration, the trials are performed at the points x1 = 0 and
x2 = 1. Then, each following (k + 1)-th, k ≥ 2, iteration of the global search is
executed as described below.

1. Renumber the points of the previous trials by increasing their x-coordinates
(the new order is determined by the subscripts):

0 = x0 < x2 < . . . < xk = 1.

2. For every interval (xi−1, xi), 1 ≤ i ≤ k, we calculate a value R(i) called the
interval characteristic. In the general case, R(i) can depend on the points xi

and the trial results zi = f(xi), 1 ≤ i ≤ k.
3. Find the interval (xt−1, xt) with the largest characteristic R(t), i.e.,

R(t) = max {R(i) : 1 ≤ i ≤ k} .

4. Examine the stop condition
Δt ≤ ε,

where ε > 0 is a given accuracy. If the stop condition is satisfied, then the
global search should be terminated; otherwise, the calculations continue.

5. Select a point xk+1 of the current iteration within the interval (xt−1, xt) in
accordance with some rule S(t), i.e.,

xk+1 = S(t) ∈ (xt−1, xt).

6. Calculate the function value zk+1 = f(xk+1).

Parallel Computing in the Tikhonov Regularization Method 175

7. Evaluate a global minimum estimate.
8. Increase the iteration number k = k + 1 and proceed to the next iteration.

As a possible interpretation of this scheme, we can consider the interval
characteristic R(i) as a measure of the global minimum being within the interval
(xi−1, xi). To construct a concrete form of the interval characteristic, we can use a
lower envelope (or minorant) of the function to be minimized or a mathematical
expectation of the function values, etc. Most well-known global optimization
methods can be formulated in accordance with this characteristic scheme, e.g.,

– uniform grid methods with a successively reduced step;
– random search (Monte Carlo) algorithms;
– the Piyavskii algorithm [9];
– one-step Bayesian algorithms proposed by Kushner and Žilinskas [13];
– information algorithms proposed by Strongin [12].

All these methods are based on different mathematical models but are presented
in a general characteristic scheme.

It should also be noted that the length of the interval with the largest char-
acteristic is examined at the stop condition. It is possible if the optimization
method converges to the global minimum. The details of these methods are
given in the cited sources. Here we highlight the main points.

For the Piyavskii method, the interval characteristic R(i) is an estimate (with
the inverse sign) of the minimum value of the objective function f(x) in the
interval (xi−1, xi). As a result, the point of a new trial is taken within the
interval containing the estimate of the minimum value of f(x) over the search
domain.

The Kushner technique and the Žilinskas method are constructed in the
framework of the approach when the objective function is regarded as a sample
of some Wiener process. For the Kushner technique, the point xk+1 of the current
iteration is the most probable point at which the function value f(xk+1) is not
greater than the value

z∗
k − γ(z+k − z∗

k),

where z+k and z∗
k are estimates of the function maximum and minimum values,

respectively. For the Žilinskas method, xk+1 is the point where the maximum
average improvement of the current estimate of the global extremum is expected.

The Strongin global search algorithm is constructed in the framework of
the information approach to global optimization (see [12]). This method has an
adaptive scheme to evaluate the numerical estimate of the unknown Lipschitz
constant.

3.3 Parallel Algorithm with Asynchronous Trials

The global search algorithm (GSA) belongs to the class of characteristic algo-
rithms; this fact suggests a possible way to parallelize it. As previously men-
tioned, the interval characteristic R(i) can be regarded as some measure of find-
ing the global minimum point in the given interval. Then, instead of a single best

176 K. Barkalov et al.

interval, several intervals with the highest characteristics can be chosen at once,
and successive trials can be carried out in these intervals in parallel. Moreover,
the scheme of characteristic algorithms also allows for asynchronous paralleliza-
tion, which minimizes the downtime of processors when the trial complexity
depends on a particular point in the search domain.

Let us now examine the parallel algorithm with asynchronous trials in more
detail. It implements a parallel scheme of the “master/worker” type. The mas-
ter process accumulates search information, evaluates on its basis the Lipschitz
constant for the target function, determines new trial points, and sends them
to the worker processes. Worker processes receive points from the master, carry
out new trials at these points, and send the results to the master.

When describing the parallel algorithm, we assume that there are p+1 com-
putational processes: one master and p worker processes.

At the beginning of the search, the master process (let it be process number
0) initiates p parallel trials at p different points of the search domain, two of
which are boundary points and the rest are internal points, i.e., at the points
{y(x1), y(x2), . . . , y(xp)}, where x1 = 0, xp = 1, xi ∈ (0, 1), i = 2, . . . , p − 1.

Suppose now that k trials have been performed (in particular, k can be 0), and
the worker processes perform trials at points {y(xk+1), y(xk+2), . . . , y(xk+p)}.

If a worker process completes the trial at some point (let it be the point
y(xk+1), corresponding to process number 1), then it sends the results of the
trial to the master process. Note that, in this case, we have a set of inverse
images of the trial points

Sk =
{
xk+1, xk+2, . . . , xk+p

}
,

where the trials have already started but are not completed yet.
After receiving the trial results at the point y(xk+1) from the worker pro-

cess, the master selects a new trial point xk+p+1 for it, according to the rules
corresponding to the scheme of the characteristic algorithm.

1. Renumber the set of inverse images of the trial points

Xk =
{
x1, x2, . . . , xk+p

}
,

which contains all inverse images at which the trials have either been carried
out or are being carried out, arranged in an ascending order (determined by
the subscripts), i.e.,

0 = x1 < x2 < . . . < xx+p = 1.

2. Calculate the values

M1 = max
{ |zi − zi−1|

(xi − xi−1)1/N
: xi−1 /∈ Sk, xi /∈ Sk, 2 ≤ i ≤ k + p

}
,

M2 = max
{ |zi+1 − zi−1|

(xi+1 − xi−1)1/N
: xi ∈ Sk, 2 ≤ i < k + p

}
,

M = max{M1,M2},

where zi = ϕ(y(xi)) for all xi /∈ Sk. If M equals 0, then assume M = 1.

Parallel Computing in the Tikhonov Regularization Method 177

3. Assign to each interval (xi−1, xi), xi−1 /∈ Sk, xi /∈ Sk, the characteristic R(i),
calculated by the formula

R(i) = rMΔi +
(zi − zi−1)2

rMΔi
− 2(zi + zi−1), (13)

where r > 1 is a method parameter and Δi = (xi − xi−1)
1/N .

4. Find the interval [xt−1, xt] to which the maximum characteristic corresponds,
i.e.,

R(t) = max {R(i) : xi−1 /∈ Sk, xi /∈ Sk, 2 ≤ i ≤ k + p} .

5. Determine the inverse image xk+p+1 ∈ (xt−1, xt) of the new trial point by
the formula

xk+p+1 =
xt + xt−1

2
− sign(zt − zt−1)

1
2r

[|zt − zt−1|
M

]N

.

Immediately after calculating the next trial point yk+p+1 = y(xk+p+1), the
master process adds it to the set Sk and forwards it to the worker process, which
initiates a trial at this point.

The master process completes the algorithm when one of two conditions
holds: Δt < ε or k + p > Kmax. The first one corresponds to stopping the
algorithm by accuracy, and the second one, by the number of trials. The real
number 0 < ε < 1 and the integer Kmax > 0 are algorithm parameters.

4 Numerical Experiments

To determine the constants of the process reactions, it is necessary to solve a
system of differential equations that describes the change in the concentrations
of the reaction components over time [2].

In preliminary experiments, we estimated the approximate time to calculate
one objective function using the corresponding sequential algorithm. The com-
puter architecture used for the experiments was based on Intel® Core™ i7-10750H
processors at 2.60 GHz. The average computation time of the objective function
was about 0.2 sec, which characterizes the problem as being computationally
complex. Solving the problem with the sequential algorithm would require no
less than 1 million trials, that is, at least 54 h (as an estimate). Therefore, only
the parallel algorithm with a stopping criterion based on the number of trials
Kmax = 106 was used for the calculations.

The numerical experiments were performed with the parallel asynchronous
algorithm outlined in Sect. 3.3, running 160 processes: 159 processes calcu-
lated the values of the objective function (worker processes), and one mas-
ter process controlled the algorithm. The experiments were conducted on the
Lobachevsky supercomputer, installed at the University of Nizhni Novgorod.
The asynchronous global optimization algorithm was implemented in C++ (with
GCC 9.5.0 and Intel MPI). The computation of the objective function values was
implemented in Python 3.9.

178 K. Barkalov et al.

Table 1. Dependence of the function minimum value ϕ∗ on the regularization param-
eter α

α ϕ∗ Time (sec.)

0.0 0.573920 838.9

0.001 0.540750 853.9

0.002 0.547907 850.0

0.003 0.583529 831.5

0.004 0.579725 821.4

0.005 0.615638 815.4

0.006 0.612614 834.7

0.007 0.619546 807.3

0.008 0.604817 830.4

0.009 0.630010 814.4

0.01 0.632944 825.2

0.02 0.669092 155.8

0.03 0.681520 809.2

0.04 0.736035 816.4

0.05 0.729415 804.7

0.07 0.759134 803.6

0.06 0.723404 810.9

0.08 0.808238 811.8

0.09 0.837868 828.6

0.1 0.810454 806.2

The short time obtained when solving the problem by the parallel algorithm
(approximately 14 min per problem) made it possible to investigate thoroughly
the dependence of the solution on the regularization parameter α. Table 1 shows
the minimum values of the objective function found for the corresponding value
of the regularization parameter and the time for solving the problem (in seconds).
The algorithm was run with the method parameter r = 4.0 from (13) and the
accuracy ε = 10−4 ‖b − a‖. After a given number of iterations or after reaching
the specified accuracy with the global search method, the solution was refined
by the Hooke–Jeeves local method [6] with the accuracy ε = 10−4 ‖b − a‖.

A detailed study of the region of the regularization parameter values in a
neighborhood of α = 0 (from 0.1 to 0.01 with steps of 0.01 and from 0.01 to
0.001 with steps of 0.001) showed that the value of the minimum decreases as
α decreases. The best solution, equal to 0.54075, was obtained with the regular-
ization parameter α = 0.001.

In the course of the research, we calculated the functional f(z) without tak-
ing into account the addition of the regularization term (Fig. 7). Afterward, we
carried out a similar calculation taking into account the regularization term.
The results for α = 0.002 were 0.527 without regularization and 0.547 with
regularization.

Parallel Computing in the Tikhonov Regularization Method 179

Fig. 7. The value of the functional f(z) without taking into account the addition of
the regularization term

The speedup of the parallel global optimization algorithm was estimated for
the problem to which the best solution was found, i.e., the problem with regu-
larization parameter α = 0.001. Since solving the problem in serial mode would
require about two days, the speedup was evaluated with respect to a parallel
launch involving a smaller number of processes. Table 2 shows the running time
and speedup of the parallel algorithm using 80 and 160 processes with respect
to the running time on 40 processes.

Table 2. The speedup of the parallel global optimization algorithm

p Time (sec.) Speedup

40 2778.7 —

80 1495.5 1.9

160 853.9 3.3

5 Conclusions

We solved in this paper an incorrectly posed problem using the Tikhonov reg-
ularization method and found the reaction constants of the process of sulfuric
acid alkylation of isoalkanes by alkenes. The optimization method allowed us
to find an accurate description of the experimental data. The authors plan to
use the Tikhonov regularization method in forthcoming research to build kinetic
models of other chemical processes.

180 K. Barkalov et al.

The parallel global search algorithm showed good results. The solution to the
problem was obtained in approximately 15 min on the Lobachevsky supercom-
puter; the estimated time for solving the same problem with the corresponding
sequential algorithm was more than 50 h. The experiments were conducted using
160 processes on the supercomputer nodes. However, an increase in the dimen-
sion of the considered global optimization problem (in the case of complex inverse
problems of chemical kinetics, the number of parameters can be hundreds) leads
to a decrease in search quality.

A possible topic for further research is the development of methods for ana-
lyzing the accumulated search information to identify groups of parameters that
have little effect on the objective function. To find the optimal values of such
parameters, it is sufficient to employ local optimization methods. The analysis
can rely, for example, on machine-learning methods. In this case, the cost of solv-
ing the whole problem decreases, and it becomes feasible to obtain the global
solution with good accuracy in an acceptable time.

Acknowledgments. This research was partially funded by projects № FSWR-2023-
0034, № 075-02-2022-883 (development of the parallel global optimization algorithm),
and № FMRS-2022-0078 (investigation of the chemical kinetics problem).

References

1. Adriazola, J.: On the role of tikhonov regularizations in standard optimization
problems (2022). https://doi.org/10.21203/rs.3.rs-2376984/v1

2. Cao, P., Zheng, L., Sun, W., Zhao, L.: Multiscale modeling of isobutane alkylation
with mixed c4 olefins using sulfuric acid as catalyst. Ind. Eng. Chem. Res. 58(16),
6340–6349 (2019). https://doi.org/10.1021/acs.iecr.9b00874

3. Evtushenko, Y., Malkova, V., Stanevichyus, A.A.: Parallel global optimization of
functions of several variables. Comput. Math. Math. Phys. 49(2), 246–260 (2009).
https://doi.org/10.1134/S0965542509020055

4. Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained
optimization. Optim. Lett. 7, 819–829 (2013). https://doi.org/10.1007/s11590-
012-0452-1

5. Gubaydullin, I., Enikeeva, L., Barkalov, K., Lebedev, I.: Parallel global search algo-
rithm for optimization of the kinetic parameters of chemical reactions. Commun.
Comput. Inf. Sci. 1510, 198–211 (2021)

6. Hooke, R., Jeeves, T.: “Direct search” solution of numerical and statistical prob-
lems. J. ACM 8(2), 212–229 (1961). https://doi.org/10.1145/321062.321069

7. Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in
branch and bound algorithm with simplicial partitions and combination of Lips-
chitz bounds. Optim. Lett. 4(2), 173–183 (2010). https://doi.org/10.1007/s11590-
009-0156-3

8. Paulavičius, R., Žilinskas, J., Grothey, A.: Parallel branch and bound for global
optimization with combination of Lipschitz bounds. Optim. Method. Softw. 26(3),
487–498 (2011). https://doi.org/10.1080/10556788.2010.551537

9. Piyavskii, S.: An algorithm for finding the absolute extremum of a function. Comp.
Math. Math. Phys. 12(4), 57–67 (1972)

https://doi.org/10.21203/rs.3.rs-2376984/v1
https://doi.org/10.1021/acs.iecr.9b00874
https://doi.org/10.1134/S0965542509020055
https://doi.org/10.1007/s11590-012-0452-1
https://doi.org/10.1007/s11590-012-0452-1
https://doi.org/10.1145/321062.321069
https://doi.org/10.1007/s11590-009-0156-3
https://doi.org/10.1007/s11590-009-0156-3
https://doi.org/10.1080/10556788.2010.551537

Parallel Computing in the Tikhonov Regularization Method 181

10. Semenov, I., Shelkovnikov, A.: Modeling of the process of isoparaffin sulfuric alky-
lation. Modern Technol. Sci. Technol. Prog. 1, 72–73 (2021). https://doi.org/10.
36629/2686-9896-2021-1-1-72-73

11. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization
Exploiting Space-filling Curves. Springer Briefs in Optimization, Springer, New
York (2013). https://doi.org/10.1007/978-1-4614-8042-6

12. Strongin R.G., Sergeyev Y.D.: Global Optimization with Non-convex Constraints.
Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht
(2000). https://doi.org/10.1007/978-1-4615-4677-1

13. Törn, A., Žilinskas, A. (eds.): Global Optimization. LNCS, vol. 350. Springer,
Heidelberg (1989). https://doi.org/10.1007/3-540-50871-6

https://doi.org/10.36629/2686-9896-2021-1-1-72-73
https://doi.org/10.36629/2686-9896-2021-1-1-72-73
https://doi.org/10.1007/978-1-4614-8042-6
https://doi.org/10.1007/978-1-4615-4677-1
https://doi.org/10.1007/3-540-50871-6

Parallel Implementation
of the Time-Reversal Mirror Method
for Retrieving the Position and Type

of a Seismic Source from Observational
Data

Anastasia Galaktionova and Galina Reshetova(B)

Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

kgv@nmsf.sscc.ru

Abstract. In this article, we present a parallel algorithm for determin-
ing the type of a seismic source from seismic observational data using the
Time-Reversal Mirror (TRM) method. This problem has a wide range of
applications, including virtual source modelling, non-destructive testing
of materials and engineering structures, and earthquake source location.

Our proposed algorithm is motivated by the need to retrieve not only
the location but also the type of the source. To achieve this, we use
numerical simulations based on a three-dimensional model of a dynamic
elasticity theory and a finite-difference scheme on staggered meshes.

To parallelize the algorithm, we use MPI functions and the domain
decomposition approach. To improve the efficiency, we rely on techniques
such as data exchange in the computational background and the non-
blocking MPI functions. We present and discuss the results obtained
from our numerical simulations, which demonstrate the possibility of
determining the type of seismic source. The proposed algorithm can be
used in a variety of scientific and engineering applications, particularly
in earthquake source location and non-destructive testing.

Keywords: Wave propagation · Seismic source · Time-Reversal
Mirror · Numerical solutions · Finite difference schemes · Parallel
programming · MPI · Domain decomposition

1 Introduction and Motivation

The problem of reconstructing the type of a seismic source is of great impor-
tance when studying the properties of geological media and the processes of
their corruption near zones of focal destruction. The development of observation
networks and the accumulation of an increasing amount of survey data simulta-
neously with the development of new mathematical algorithms make it possible
to use seismic data for source-type reconstruction.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 182–196, 2023.
https://doi.org/10.1007/978-3-031-38864-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_13&domain=pdf
http://orcid.org/0000-0002-5450-4293
http://orcid.org/0000-0003-2653-3166
https://doi.org/10.1007/978-3-031-38864-4_13

Seismic Source Position and Type Retrieval 183

The sources of seismic waves can be artificial or natural depending on their
origin. Earthquake sources of natural origin include those associated with faults
or shear movements of surfaces inside the Earth, volcanic tremors, microseismic
noise, and so on. Artificial sources are of technogenic origin (for example, above-
ground and underground nuclear explosions, explosions in quarries and mines,
and others). Seismic sources can serve for studying the internal structure of oil
and mineral deposits, mapping underground faults, and other kinds of scien-
tific research. The excitation of the source results in the generation of seismic
waves, which then propagate in geological media, reflecting from and refracting
at inhomogeneous inclusions, and can be recorded on the free surface by seismic
receivers, such as geophones or hydrophones. The registered signals can be sub-
jected to special processing and interpretation to study the internal structure
and mechanisms of the motion of Earth’s faults.

Several approaches have been proposed over the past decades to solve the
problem of retrieving a seismic source. Among them, we distinguish the emis-
sion tomography in the reconstruction of the spatial distribution of sources of
microseismic radiation in the Earth’s crust [1], waveform inversion methods for
earthquake sources [2,3], and others. The inversion method, first proposed in
[2], is based on minimizing the misfit between observational data and synthetic
data for a set of test sources using finite difference modeling in the time domain.
Unfortunately, this method can not retrieve the source type (indeed, when solv-
ing a system of differential equations, it is necessary to determine the response of
the source to the receiver for one of the preselected source types, i.e., a monopole,
a horizontal or vertical dipole) [4].

To solve the problem of retrieving the type of a seismic source, we use the
Time-Reversal Mirror (TRM) method. This approach has a wide range of appli-
cations, including nondestructive testing of materials in industrial engineering
[5,6], simulation of virtual sources [7], and many others associated with geophys-
ical problems [8–11]. The applicability of the TRM method for locating sources
is not new and is described in the literature, for example, in the context of the
location of acoustic emission sources in the core [12] and seismic sources [13].
Nevertheless, whether it is feasible to use this method to determine the source
type is still an issue attracting huge interest.

The paper is organised as follows. Section 2 is devoted to the description of
the seismic source type retrieval algorithm. Section 3 contains the mathematical
statement of the problem and the boundary conditions, and Sect. 4 presents the
finite difference scheme on the staggered grid derived by the finite volume tech-
nique applied to this mathematical statement. The numerical test is discussed in
Sect. 5. The conclusion summarizes the study and points directions for further
work.

2 Algorithm for Retrieving the Seismic Source Type

The problem of retrieving the position of a seismic source within a geological
medium using only free-surface seismograms and the velocity and density param-
eters of the medium is of great interest for practical geophysical and seismological

184 A. Galaktionova and G. Reshetova

applications. Retrieving not only the position of the source but also its type is
a more complex problem that requires more subtle approaches to its solution.

The algorithm for retrieving the source type relies on the Time-Reversal
Mirror method (TRM), which is based on a consequence of the principle of
time reversibility in media without attenuation. This principle consists in the
possibility of using the “inverted” time signal registered in the receivers as a
function of sources located at one point. In this case, the wave field must be
concentrated in the source both in space and time and, consequently, generate
an amplitude expansion at the source point. We investigate in this paper whether
the resulting wave field contains information about the properties of the original
source, in addition to its spatial location.

The algorithm for determining the source type consists of the two stages
described below.

Step 1. We simulate the wave field of wave propagation from the source. To do
this, we solve a system of differential equations from dynamic elasticity theory
and record traces of the wave field components at each moment using a series
of receivers. We assume that the seismic waves are produced by a certain type
of subsurface source (different types in different experiments). The recorded
seismograms are input data for the second stage.

Step 2. Assume that the location and type of the source are unknown. The
seismograms recorded in the previous step are reversed in time. Afterward, each
reversed trace appears as a function of the time of sources located on the free
surface at the same points where the trace was recorded. The TRM process is
carried out by solving the same system of differential equations with the same
velocity and density parameters of the medium but with a new set of sources on
the free surface.

Under such a procedure, the wave field must be concentrated in the source
position at the time corresponding to the moment the wave arises. To see the
spatial location of the source inside the computational domain, instead of visu-
alizing the components of the wave field at some time tm, we calculate the sum
Esum of the total energy E of the wave field for each grid point of the computa-
tional domain and all previous computational moments ti, namely,

Esum(xi, yj , zk, t
m) =

∑

ti≤tm

E(xi, yj , zk, t
i). (1)

The total energy E(xi, yj , zk, t
i) of the wave field is calculated by the formula

E(xi, yj , zk, t
i) = τxx(xi, yj , zk, t

i)εxx(xi, yj , zk, t
i)

+ τyy(xi, yj , zk, t
i)εyy(xi, yj , zk, t

i) + τzz(xi, yj , zk, t
i)εzz(xi, yj , zk, t

i)
+ 2τxy(xi, yj , zk, t

i)εxy(xi, yj , zk, t
i) + 2τxz(xi, yj , zk, t

i)εxz(xi, yj , zk, t
i)

+ 2τyz(xi, yj , zk, t
i)εyz(xi, yj , zk, t

i), (2)

Seismic Source Position and Type Retrieval 185

where xi, yj , zk are the spatial-grid points of the computational domain, ti is
the time in the finite-difference scheme, and τ and ε are the stress and strain
components, respectively.

We assume that the nature of the distribution of the total energy E of the
wave field may indicate the type of the source. To confirm this assumption, we
analyze in the following sections the simulated data and compare the spatial
distribution of the energy Esum and the polar plot of the radiation patterns in
the numerical solution of the direct dynamic seismic problem and those obtained
in the simulation of the inverse problem by the TRM method.

3 The Mathematical Statement of the Problem

Consider an elastic medium with a subsurface source of seismic waves. The
propagation of elastic waves in such a medium is described by the following
system of partial differential equations, known as the first-order velocity-stress
formulation:

ρ
∂vx
∂t

=
(

∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
,

ρ
∂vy
∂t

=
(

∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
,

ρ
∂vz
∂t

=
(

∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

)
,

∂τxx
∂t

= (λ + 2μ)
∂vx
∂x

+ λ

(
∂vy
∂y

+
∂vz
∂z

)
+ Fxx,

∂τyy
∂t

= (λ + 2μ)
∂vy
∂y

+ λ

(
∂vx
∂x

+
∂vz
∂z

)
+ Fyy,

∂τzz
∂t

= (λ + 2μ)
∂vz
∂z

+ λ

(
∂vx
∂x

+
∂vy
∂y

)
+ Fzz,

∂τxy
∂t

= μ

(
∂vx
∂y

+
∂vy
∂x

)
+ Fxy,

∂τxz
∂t

= μ

(
∂vx
∂z

+
∂vz
∂x

)
+ Fxz,

∂τyz
∂t

= μ

(
∂vy
∂z

+
∂vz
∂y

)
+ Fxz.

(3)

Elastic waves in this system are described by the displacement velocities
(vx, vy, vz), and the stress tensor components (τxx, τyy, τzz, τxy, τxz, τyz) are given
in a Cartesian coordinate system. The Lamé moduli λ and μ, and the density ρ
characterize the elastic medium.

The functions Fxx, Fyy, Fzz, Fxy, Fxz, and Fyz on the right-hand side of
Eqs. 3 determine a generalized moment-tensor source. Different sources can be
set up by varying the values of these functions. In particular, in the case of

186 A. Galaktionova and G. Reshetova

Fxx = Fyy = Fzz = f(t) · δ(x − x0, y − y0, z − z0), we obtain a source of the
volumetric type. Here f(t) defines the source signal wavelet in time (for exam-
ple, the Ricker wavelet) and δ(x − x0, y − y0, z − z0) is the Dirac delta function
centered at the source point (x0, y0, z0).

We apply the finite-difference method on staggered grids [14] to numerically
simulate the process of seismic wave propagation by solving system (3).

On the free surface of the medium under consideration, we impose a condition
that physically corresponds to the wave action on the Earth’s surface. The condi-
tion is that the normal stresses (τxx, τyy, τzz) and the shear stresses (τxy, τxz, τyz)
on the free surface are equal to zero. When sampling the medium, the normal
stresses are localized in integer nodes, and the shear stresses in half-integer ones.
Therefore the conditions upon the stresses will be formulated differently from
the point of view of the computational scheme.

We assume in the numerical experiments that data are recorded in an unlim-
ited space. To this end, all the boundaries of the computational domain, except
for the free surface, are surrounded by a convolutional perfectly matched absorb-
ing boundary layer (CPML) [15].

4 The Numerical Simulation

To numerically solve the problem under study, we use the explicit finite-difference
staggered grid discretization of linear system 3. To this end, we construct a grid
with integer nodes tn = nΔt, xi = iΔx, yj = jΔy, zk = kΔz and half-integer
nodes tn+1/2 = (n + 1/2)Δt, xi+1/2 = (i + 1/2)Δx, yj+1/2 = (j + 1/2)Δy,
zk+1/2 = (k + 1/2)Δz, where Δt, Δx, Δy, and Δz denote the grid sampling
intervals for the time and spatial variables (t, x, y, z) (Fig. 1).

The wave field components and medium parameters are defined at different
times and space grid nodes. Assume that the medium parameters are constant
within each grid cell [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] × [zk−1/2, zk+1/2], and the
possible discontinuities are aligned with the directions of the grid lines. Define
the components of the displacement velocities as (vx)n−1/2

i+1/2,j,k, (vy)
n−1/2
i,j+1/2,k,

and (vz)
n−1/2
i,j,k+1/2; the normal stress tensor components as (τxx)ni,j,k, (τyy)ni,j,k,

and (τzz)ni,j,k; and the shear stress tensor components as (τxy)ni+1/2,j+1/2,k,
(τxz)ni+1/2,j,k+1/2, and (τyz)ni,j+1/2,k+1/2.

Let fn
i,j = f(tn, xi, yj , zk) be a discrete function. We introduce the second-

order centered finite-difference time operator

Dt[f]ni,j,k =
(f)n+1/2

i,j,k − (f)n−1/2
i,j,k

Δt
, (4)

Seismic Source Position and Type Retrieval 187

Fig. 1. Finite-difference staggered grid

and the second-order centered finite-difference spatial operators

Dx[f]ni,j,k =
(f)ni+1/2,j,k − (f)ni−1/2,j,k

Δx
, (5)

Dy[f]ni,j,k =
(f)ni,j+1/2,k − (f)ni,j−1/2,k

Δy
, (6)

Dz[f]ni,j,k =
(f)ni,j,k+1/2 − (f)ni,j,k−1/2

Δy
. (7)

The finite-difference scheme on the staggered grid is derived by the finite
volume (balance law) technique [16] and is as follows:

Dt[vx]n−1/2
i+1/2,j,k = 〈1/ρ0〉i+1/2,j,k (Dx[τxx]n−1/2

i+1/2,j,k + Dy[τxy]
n−1/2
i,j+1/2,k

+ Dz[τxz]
n−1/2
i,j,k+1/2)

(8a)

Dt[vy]
n−1/2
i,j+1/2,k = 〈1/ρ0〉i,j+1/2,k (Dx[τxy]

n−1/2
i,j+1/2,k + Dy[τyy]

n−1/2
i,j+1/2,k

+ Dz[τyz]
n−1/2
i,j+1/2,k),

(8b)

Dt[vz]
n−1/2
i,j,k+1/2 = 〈1/ρ0〉i,j,k+1/2 (Dx[τxz]

n−1/2
i,j,k+1/2 + Dy[τyz]

n−1/2
i,j,k+1/2

+ Dz[τzz]
n−1/2
i,j,k+1/2),

(8c)

188 A. Galaktionova and G. Reshetova

Dt[τxx]ni,j,k = (λ + 2μ)i,j,kDx[vx]ni,j,k + λ(Dy[vy]ni,j,k + Dz[vz]ni,j,k)
+ (Fxx)ni,j,k

(8d)

Dt[τyy]ni,j,k = (λ + 2μ)i,j,kDy[vy]ni,j,k + λ(Dx[vx]ni,j,k + Dz[vz]ni,j,k)
+ (Fyy)ni,j,k

(8e)

Dt[τzz]ni,j,k = (λ + 2μ)i,j,kDz[vz]ni,j,k + λ(Dx[vx]ni,j,k + Dy[vy]ni,j,k)
+ (Fzz)ni,j,k

(8f)

Dt[τxy]ni+1/2,j+1/2,k = {μ}i+1/2,j+1/2,k (Dy[vx]ni+1/2,j+1/2,k

+ Dx[vy]ni+1/2,j+1/2,k) + (Fxy)ni+1/2,j+1/2,k

(8g)

Dt[τxz]ni+1/2,j,k+1/2 = {μ}i+1/2,j,k+1/2 (Dz[vx]ni+1/2,j,k+1/2

+ Dx[vz]ni+1/2,j,k+1/2) + (Fxz)ni+1/2,j,k+1/2

(8h)

Dt[τyz]ni,j+1/2,k+1/2 = {μ}i,j+1/2,k+1/2 (Dz[vy]ni,j+1/2,k+1/2

+ Dy[vz]ni,j+1/2,k+1/2) + (Fyz)ni,j,k.
(8i)

Here the effective medium parameters in the half-integer nodes are defined
through arithmetic averaging,

〈f〉i+1/2,j,k = (fi,j,k + fi+1,j,k)/2,

〈f〉i,j+1/2,k = (fi,j,k + fi,j+1,k)/2,

〈f〉i,j,k+1/2 = (fi,j,k + fi,j,k+1)/2,

or harmonic averaging [17],

{f}i+1/2,j+1/2,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[(
1

fi,j,k
+ 1

fi+1,j,k
+ 1

fi,j+1,k
+ 1

fi+1,j+1,k

)/
4
]−1

if fi+m,j+m �= 0, m = 0, 1;

0 if fi+m,j+m = 0 for some m = 0, 1.

(9)

The scheme obtained here is an explicit finite-difference scheme of the second
order in time and space for a homogeneous elastic medium. The stability condi-
tions and dispersion properties can be found in [14].

5 The Numerical Test

For the calculation, we choose a cube domain of size 3020 m × 3020 m × 3020 m
with a grid step of 20 m. The width of the perfectly matching layer is 400 m.
In this domain, the medium is homogeneous, vp = 3000 m/s, vs = vp/

√
3, and

ρ = 2000 kg/m3. The time step is 3 · 10−3 s, and the registration time is 13.5 s.

Seismic Source Position and Type Retrieval 189

The frequency of the source f0 = 5 Hz. The point source is located in the center
of the computational domain. The receivers are evenly spaced on the free surface
with a step of 20 m. The values of the normal stress components (τxx, τyy, τzz)
at each instant are recorded by the receivers and then used as seismograms.

In the first stage, the total energy Esum of the direct wave field (1) is calcu-
lated for different types of sources. In our case, we use sources directed in the
yz plane at a fixed angle (90◦, 30◦, 45◦, or 60◦) to the free surface plane. We are
considering the three-dimensional case, so we use slices in the plane containing
the source to display the result (Fig. 2). Since there are several such slices, it is
sometimes useful to view them all to obtain more complete information.

Fig. 2. Distribution of the total energy Esum of the direct wave field in the plain xy (z
fixed): (a) vertical source; (b) 30◦ source; (c) 45◦ source; (d) 60◦ source

190 A. Galaktionova and G. Reshetova

Afterward, we forget about the simulation and assume that we only know
the seismogram and the coordinates of the receivers. Now we follow the same
procedure as before, with the only difference being that the sources are now the
former receivers and the signals in the sources are the recorded and time-reversed
seismogram traces. In the same manner, we calculate the total energy (Fig. 3).

We also take into account the radiation pattern. This flat picture is easier to
perceive than the distribution of energy. To construct the diagram, we consider
the energy value only at those points of the plane that are at a certain distance
from the source. The obtained values are given in a polar coordinate system
(Fig. 4).

We can see that the energy distribution in the xy plane after the source
retrieval exhibits the same behavior as the energy distribution of the direct
wave. The larger the angle to the free surface, the smaller the distribution of
energy in one of the directions (Figs. 2 and 3).

Another is the situation with the distribution in the vertical planes xz and yz
(Fig. 4). Since the receivers are located only on the free surface of the medium,
the energy distributions and radiation patterns are more elongated in the ver-
tical direction but still exhibit different behaviors for different types of primary
sources.

We see that the directivity pattern of the direct wave varies depending on
the type of source. The general direction of the vertical wave diagram lies along
the vertical axis (Fig. 4 a) and shifts to the horizontal as the angle of deviation
of the source from the vertical grows (Fig. 4(c) and 4(e)). The shape of the
reconstructed radiation pattern does not match that of the direct wave but
has the same general direction. Thus, if the reconstructed radiation pattern
completely lies near the vertical axis, then we can confidently speak about a
source of the vertical type. For other types of sources, the reconstructed patterns
also differ, and the type can be determined by comparing the elongated shape
of the radiation pattern.

6 Parallel Implementation

The parallelization of the computational algorithm was carried out using the
properties of the algorithm proposed in Sect. 2. The complexity of the prob-
lem is associated with the large amount of memory required for storing the
input data and performing calculations in the three-dimensional formulation. In
the three-dimensional case, the computational load increases significantly along
with the size of the computational domain. All the above entails the need to
organize the parallelization of the computational algorithm. The most common
and convenient approach to this relies upon the method of splitting the com-
putational domain. The domain decomposition technique is a general name for
methods dedicated to solving boundary value problems for differential equations
by splitting them into smaller problems on subdomains of the original domain
and organizing the data exchange between these subdomains.

Seismic Source Position and Type Retrieval 191

Fig. 3. Total energy Esum distribution after TRM in the plain xy (z fixed): (a) vertical
source; (b) 30◦ source; (c) 45◦ source; (d) 60◦ source

To organize the data exchange between neighboring processes, we use the
so-called itable process numeration [18].

All computed parameters (ux, uy, uz, τxx, τyy, τzz, τxy, τxz, τyz) in the simula-
tion are distributed among several processes. The distribution of data among
processes is shown in Fig. 5. The number in the matrix indicates the rank of the
process to which the element belongs. Here we consider an example with eight
processes.

We prepare a process grid matrix itable to quickly search for adjacent pro-
cesses. In Fig. 6, NULL stands for MPI PROC NULL and means that if a message
is sent to it, there will be no real data transfer. In the program, each process
has its own (myranki, myrankj, myrankk) coordinates in the process grid. For
example, the coordinates of process number 5 are (2, 2, 1). Each process can find
its neighbors by referring to itable(myranki ± 1, myrankj ± 1, myrankk ± 1).
Under this representation of data, sending and receiving operations are carried

192 A. Galaktionova and G. Reshetova

Fig. 4. Radiation pattern in the plain xz (y fixed): (a) vertical source, direct wave; (b)
vertical source, after TRM; (c) 45◦ source, direct wave; (d) 45◦ source, after TRM; (e)
30◦ source, direct wave; (f) 30◦ source, after TRM

Seismic Source Position and Type Retrieval 193

Fig. 5. An example of data distribution among eight processes

out uniformly. The arguments of called functions and the number of calls do
not depend on the location of the data volume. If data are located on an edge,
then sending or receiving from the corresponding direction will not be carried
out since the argument will be MPI PROC NULL.

Fig. 6. An example of a grid of eight processes with two processes in each of the three
dimensions

To speed up the parallel algorithm, we also apply several simple but efficient
approaches. It is well known that the bottleneck in any parallel algorithm is
the data exchange procedure between neighboring processes. We use nonblock-
ing Isend/Irecv routines that allow us to send messages in the computational
background without interrupting the calculations within subdomains [19]. In
addition, computations in each subdomain start on its internal nodes, leaving
the edge nodes, which require data from a neighboring process, unused. Compu-
tations within the subdomain take some time; during this time, the nonblocking
MPI functions Isend/Irecv manage to deliver the necessary data. Thus this
approach allows us to overlap the communication process.

194 A. Galaktionova and G. Reshetova

Fig. 7. An example of a ratio of all MPI calls for four processes on one node from
Intel® Trace Analyzer and Collector

The test of the parallel program was carried out on the computers NKS-1P of
the Siberian Supercomputer Center (SB RAS) [20], consisting of nodes equipped
with Intel Xeon X5670 processors at 2.93 GHz (Westmere).

For the performance analysis of the algorithm, we ran the test calculation
described in Sect. 5 with different numbers of processes using “Event Timeline”
traces from Intel® Trace Analyzer and Collector. Figure 7 represents the ratio
of all MPI calls for four processes on one node. The results given in Fig. 8 show
good performance for the parallel program. The solid lines represent the ideal
speedup and efficiency, while the dotted lines correspond to the measured results.

Fig. 8. Strong scaling speedup and weak scaling efficiency. Solid lines represent the ideal
speedup and efficiency; dotted lines represent the measured speedup and efficiency.

Seismic Source Position and Type Retrieval 195

7 Conclusions

We described an algorithm for retrieving the type of a seismic source from seis-
mic observational data, based on the Time-Reversal Mirror method. The main
advantage of this approach is that it makes it possible to determine not only the
spatial location of the source but also its type, which was confirmed by numerical
simulations.

The simulations were based on finite-difference schemes of the second order
on staggered grids to approximate the three-dimensional model of a dynamic
elasticity problem.

The parallelization technique was implemented through the functions of the
MPI library and the domain decomposition approach. To organize data exchange
between neighboring processes, we used the itable process numbering, which
ensures easy and uniform communication between processes. To improve the
efficiency, we relied on such techniques as data exchange in the computational
background and the nonblocking MPI functions Isend and Irecv.

Acknowledgments. This work was financially supported by the Russian Science
Foundation (grant № 22-21-00759, https://rscf.ru/en/project/22-21-00759/). The
research was carried out on shared HPC facilities at the Siberian Supercomputer Center
[20].

References

1. Maxwell, S.C., Urbancic, T.I.: The role of passive microseismic monitoring in the
instrumented oil field. Geophysics 20, 636–639 (2001)

2. Kim, K., Fee, D., Yokoo, A., Lees, J.M.: Acoustic source inversion to estimate vol-
ume flux from volcanic explosions. Geophys. Res. Lett. 42(13), 5243–5249 (2015).
https://doi.org/10.1002/2015GL064466

3. Bleibinhaus, F.: Full-waveform inversion of controlled-source seismic data. In: Beer,
M., Kougioumtzoglou, I., Patelli, E., Au, I.K. (eds.) Encyclopedia of Earthquake
Engineering, pp. 1–13. Springer, Berlin (2016). https://doi.org/10.1007/978-3-642-
36197-5 376-1

4. Iezzi, A.M., Fee, D., Kim, K., Jolly, A.D., Matoza, R.S.: 3-D acoustic multipole
waveform inversion at Yasur volcano, Vanuatu. J. Geophys. Res.: Solid Earth
124(8), 8679–8703 (2019). https://doi.org/10.1029/2018JB017073

5. Fink, M., Wu, F., Cassereau, D., Mallart, R.: Imaging through inhomogeneous
media using time reversal mirrors. Ultrason. Imaging 13, 179–199 (1991)

6. Fink, M., Prada, C.: Acoustic time-reversal mirrors. Inv. Prob. 17(1), R1–R38
(2001). https://doi.org/10.1088/0266-5611/17/1/201

7. Wapenaar, K., Thorbecke, J.: Review paper: virtual sources and their responses,
part i: time-reversal acoustics and seismic interferometry. Geophys. Prospect.
65(6), 1411–1429 (2017). https://doi.org/10.1111/1365-2478.12496

8. Larmat, C., Montagner, J.-P., Fink, M., Capdeville, Y., Tourin, A., Clevede, E.:
Time-reversal imaging of seismic sources and application to the great Suma-
tra earthquake. Geophys. Res. Lett., 33(19) (2006) https://doi.org/10.1029/
2006GL026336

https://rscf.ru/en/project/22-21-00759/
https://doi.org/10.1002/2015GL064466
https://doi.org/10.1007/978-3-642-36197-5_376-1
https://doi.org/10.1007/978-3-642-36197-5_376-1
https://doi.org/10.1029/2018JB017073
https://doi.org/10.1088/0266-5611/17/1/201
https://doi.org/10.1111/1365-2478.12496
https://doi.org/10.1029/2006GL026336
https://doi.org/10.1029/2006GL026336

196 A. Galaktionova and G. Reshetova

9. Larmat, C., Tromp, J., Liu, Q., Montagner, J.-P.: Time reversal location of glacial
earthquakes. J. Geophys. Res. 113(B9), B09314 (2008). https://doi.org/10.1029/
2008JB005607

10. Montagner, J.-P., et al.: Time-reversal method and cross-correlation techniques
by normal mode theory: a three-point problem. Geophys. J. Int. 191(2), 637–652
(2012). https://doi.org/10.1111/j.1365-246X.2012.05619.x

11. Aslanov, T.G.: Definition of earthquake focus coordinates using a combined
method. Herald of Dagestan State Technical University. Tech. Sci. 44(2), 118–125
(2017). https://doi.org/10.21822/2073-6185-2017-44-2-118-125

12. Reshetova, G.V., Anchugov, A.V.: Digital core: simulation of acoustic emission in
order to localize its sources by the method of wave field reversal in reverse time.
Geol. Geophys. 62(4), 597–609 (2021)

13. Givoli, D.: Time reversal as computational tool in acoustics and elastody-
namics. J. Comput. Acoust. 22(3), 1430001 (2014). https://doi.org/10.1142/
S0218396X14300011

14. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-
difference method. Geophysics 51, 889–901 (1986). https://doi.org/10.1190/1.
1442147

15. Komatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer
improved at grazing incidence for the seismic wave equation. Geophysics 725,
sm155-sm167 (2007). https://doi.org/10.1190/1.2757586

16. Samarskii, A.A.: The Theory of Difference Schemes. CRC Press, Boca Raton (2001)
17. Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J., Halada, L.: 3D heterogeneous

staggered-grid finite-difference modeling of seismic motion with volume harmonic
and arithmetic averaging of elastic moduli and densities. Bull. Seism. Soc. Am.
92(8), 3042–3066 (2002). https://doi.org/10.1785/0120010167

18. Aoyama, Y., Nakano, J.: RS/6000 SP: Practical MPI Programming. IBM Redbooks
(1999)

19. Reshetova, G., Cheverda, V., Koinov, V.: Comparative efficiency analysis of MPI
blocking and non-blocking communications with Coarray Fortran. In: Voevodin,
V., Sobolev, S. (eds.) RuSCDays 2021. CCIS, vol. 1510, pp. 322–336. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92864-3 25

20. Novosibirsk Supercomputer Center of SB RAS. http://www.sscc.icmmg.nsc.ru

https://doi.org/10.1029/2008JB005607
https://doi.org/10.1029/2008JB005607
https://doi.org/10.1111/j.1365-246X.2012.05619.x
https://doi.org/10.21822/2073-6185-2017-44-2-118-125
https://doi.org/10.1142/S0218396X14300011
https://doi.org/10.1142/S0218396X14300011
https://doi.org/10.1190/1.1442147
https://doi.org/10.1190/1.1442147
https://doi.org/10.1190/1.2757586
https://doi.org/10.1785/0120010167
https://doi.org/10.1007/978-3-030-92864-3_25
http://www.sscc.icmmg.nsc.ru

Parallel Implementation of Fast
Algorithms in the Vortex Particle Method

Alexandra Kolganova(B) and Ilia Marchevsky

Bauman Moscow State Technical University, Moscow, Russian Federation

kolganchik@gmail.com

Abstract. The problem considered in this paper arises in the vortex
particle method and is similar to the N -body problem, which is the prob-
lem of determining the velocities of all the particles taking into account
their mutual interaction. The direct algorithm does not provide the per-
formance required for actual problems. Based on the classical Barnes–
Hut algorithm, we develop a hybrid algorithm that includes some ideas of
the Fast Multipole Method. Our algorithm provides accuracy control and
has quasilinear computational complexity. We construct the k-d tree by a
nonrecursive parallel algorithm and store the tree nodes in a linear array.
The developed algorithm is adapted for computing on GPUs with Nvidia
CUDA technology; all subroutines are optimized for GPU architectures.
The developed code provides higher performance than all known ana-
logues. We conducted several numerical experiments with the algorithm
on modern multicore CPUs and GPUs. When running on GPUs, the
algorithm is able to process tens of millions of particles per second.

Keywords: N -body problem · Barnes–Hut method · Multipole
expansion · OpenMP · Nvidia CUDA · Tree construction

1 Introduction

Vortex particle methods of computational hydrodynamics constitute a highly
specialized class of numerical methods that allow modeling incompressible flows
and computing flows around profiles [1,2]. The main field of application of these
methods is associated with problems of engineering analysis requiring the com-
putation of nonstationary aerohydrodynamic loads acting on structural elements
of technical systems in a liquid or gas flow (in the last case, the flow must be
essentially subsonic to neglect the compressibility effect).

Vortex particle methods belong to the class of meshless Lagrangian meth-
ods. They are most appropriately used in modeling flows around moving or
deformable surfaces, including the solution of coupled Fluid-Structure Inter-
action problems. Recently, the interest in Lagrangian methods has steadily
increased due to many factors. Among these factors, we should note, in the
context of our research, the rapid growth in the performance of graphics cards,
whose architecture offers an opportunity for a highly efficient implementation of
particle methods.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 197–211, 2023.
https://doi.org/10.1007/978-3-031-38864-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_14&domain=pdf
http://orcid.org/0000-0003-4899-4828
https://doi.org/10.1007/978-3-031-38864-4_14

198 A. Kolganova and I. Marchevsky

When considering the latest publications, we note that the most widespread
particle methods are SPH, MPM, and DEM, along with a large number of their
modifications in which the computational variables are “physical”, specifically,
density/mass, velocity/momentum, energy/enthalpy, and so on. Moreover, a
characteristic feature of these methods is that the influence of particles becomes
apparent only at relatively small distances, usually comparable with the typical
distance between separate particles.

Another feature of vortex particle methods is the use of vorticity as the pri-
mary computational variable (at the same time, knowing the vorticity distribu-
tion in an incompressible flow is sufficient to reconstruct other fields, such as the
velocity and pressure; in the case of compressible flows, it is also necessary to con-
sider in the flow domain the stream function or its analogue for three-dimensional
flows). On the one hand, this approach makes it possible to operate with much
smaller numbers of vortex particles (in contrast to the above-mentioned particle
methods) since the vorticity, as a rule, is different from zero only in a neighbor-
hood of streamlined surfaces and in the wakes behind them, whereas, in the rest
of the flow domain, it is absent or exponentially small, i.e., the vorticity can be
neglected there. On the other hand, it follows from the governing equations that
it is possible to reconstruct the flow velocity at an arbitrary point only by taking
into account the influence of the entire vorticity at this point, i.e., the influence
of all vortex particles, and this influence decreases proportionally to the distance
or the squared distance, i.e., rather slowly. Therefore, vortex particles are long-
range interacting particles. The last fact is a significant impediment to vortex
methods. In particular, the evolution of vorticity in the flow domain is modeled
by the transfer of vortex particles; within the framework of the deterministic
diffusion velocity model, the transfer velocity is the sum of the flow velocity and
the diffusive velocity. We will not touch upon the calculation of the latter (the
corresponding algorithms are well-known). The calculation of convective veloc-
ities requires considering the influence of all vortex particles, which makes the
task similar to the N -body problem. Although the N -body problem is one of
the classical problems of numerical mathematics and the methods to solve it are
well-studied, vortex particle methods have very significant features that do not
always allow for the direct application of existing algorithms. In this paper, we
consider algorithms only for 2D flows, in which the influence function of a vortex
particle differs from that of a three-dimensional gravitational problem.

In this work, we aim to develop an algorithm for the fast approximate calcu-
lation of the velocities generated by vortex particles in plane flows. This would
make it possible to control the accuracy of the result and efficiently perform
calculations on CPUs and GPUs.

The paper is organized as follows. In Sect. 2, we present the governing
equations. Section 3 describes the results of applying a direct algorithm using
OpenMP technology for shared memory and Nvidia CUDA for graphics accel-
erators. Section 4 contains a description of a tree-based fast algorithm and its
CPU and GPU implementations. Conclusion summarizes the study and points
directions for further work.

Parallel Implementation of Fast Algorithms in VPM 199

2 The Governing Equations

We consider a two-dimensional plane viscous incompressible flow around an air-
foil with a surface line S that satisfies the continuity condition and the Navier–
Stokes equation

∇ · V = 0,
∂V
∂t

+ (V · ∇)V = −∇p

ρ
+ νΔV,

in which V is the velocity field, p is the pressure field, and ρ and ν are, respec-
tively, the constant density and kinematic viscosity of the flow.

We supplement these equations with no-slip boundary conditions on the air-
foil boundary and perturbation decay conditions at infinity, namely,

V = 0 for r ∈ S and V → V∞, p → p∞ as |r| → ∞.

We assume, for the sake of simplicity, that the airfoil is immovable. However,
this assumption is not essential, and all the results can be easily transferred to
the general case with an arbitrary motion of S.

If we regard the vorticity Ω = ∇ ×V as the primary computational variable
and bear in mind that the vorticity vector in 2D flows has only one nonzero
component, i.e., Ω = Ωk, then we can apply the curl operation to the Navier–
Stokes equation and obtain the following scalar vorticity evolution equation (a
detailed derivation thereof can be found in [3,4]):

∂Ω

∂t
+ (V · ∇)Ω = νΔΩ. (1)

Since the vorticity distribution is represented as a set of vortex particles, we
have

Ω(r) =
N∑

i=1

Γiδ(r − ri),

where ri and Γi are, respectively, the position and the circulation of the i-th
particle, and δ(ξ) is the 2D Dirac delta function. Thus Eq. (1) can be solved
by transferring vortex particles with velocity V + W without changing their
circulations:

dri

dt
= V(ri) + W(ri),

dΓi

dt
= 0, i = 1, . . . , N, (2)

where W is the so-called diffusive velocity, which is proportional to the viscosity
coefficient,

W = −ν
∇Ω

Ω
.

Note that new vortex particles are also generated in the neighborhood of the
airfoil surface line; their circulations can be found by solving the corresponding
integral Eq. [5,6]. Nevertheless, after being generated, new vortex particles also
move in the flow domain according to Eq. (2).

200 A. Kolganova and I. Marchevsky

The velocity field V can be reconstructed according to the Biot–Savart law
by calculating the integral over the flow domain F :

V(r) = V∞ +
∫

k × (r − ξ)
2π|r − ξ|2 Ω(ξ) dSξ,

or taking into account the vorticity representation through vortex particles:

V(r) = V∞ +
N∑

w=1

Γw

2π

k × (r − rw)
|r − rw|2 .

This velocity field is unbounded in the vicinity of vortex particles. For this
reason, in the simulations, a small smoothing radius ε is introduced (so that
point vortices turn into circular Rankine vortices). Accordingly, the regularized
velocity field becomes

V(r) = V∞ +
N∑

w=1

Γw

2π

k × (r − rw)
max

{|r − rw|2, ε2
} . (3)

(note that other types of smoothing can also be used [1]).
Thus, the computation of the velocities Vi = V(ri) of all vortex particles

requires O(N2) operations, or 5N2 if we accept that only multiplications and
divisions are taken into account.

3 The Direct Algorithm

The implementation of the direct algorithm seems trivial but is acceptable only
when the number of vortex particles does not exceed a few tens of thousands.
Such an algorithm is implemented in the first version of the code VM2D [7,8]
(freely available at https://github.com/vortexmethods/VM2D), in which only
“direct” computational algorithms are used. The typical part of the subrou-
tine that computes the convective velocities accounts for about 80–90% of the
whole computational cost of the simulation. However, the direct algorithm for
computing the convective velocities can be easily parallelized through known
technologies.

3.1 OpenMP for Shared Memory and MPI for Cluster Systems

With OpenMP technology, it is possible to achieve an almost linear (ideal)
speedup when the number of vortex particles becomes close to N = 105 or
higher (Fig. 1)

The recommended number of vortex particles in real-life problems is of the
order of 106. Bearing this in mind, we conducted several numerical experiments
to estimate the time required by the direct algorithm to calculate the velocities of
N = 106 and N = 2 ·106 vortex particles (Table 1). We used two compilers in the

https://github.com/vortexmethods/VM2D

Parallel Implementation of Fast Algorithms in VPM 201

1 2 4 8 12 16 20 24 28 32cores

4

8

12

16

20

24

28

32
Qn

N = 10 000

N = 50 000

N = 100 000

N = 150 000

Fig. 1. The speedup of computations using OpenMP on a server with two 18-core Intel
Xeon Gold 6254 processors

computations, namely, Intel C++ Compiler Classic 20.2 (on a workstation with
two Intel Xeon 6254 processors and a personal computer with an 8-core Intel
i9-9900 processor) and Intel oneAPI C++ Compiler 2023.0 (on a workstation
with an 18-core Intel i9-10980XE processor).

Table 1. Time required to calculate convective velocities by the direct algorithm, for
N = 106 and N = 2 · 106 vortex particles, on various CPUs (using OpenMP)

Intel i9-9900 Intel i9-10980XE 2× Intel Xeon 6254

8 cores 18 cores 32 cores

106 particles 296 s 153 s 151 s

2 · 106 particles 1220 s 680 s 625 s

An additional speedup can be achieved on cluster systems by using MPI
technology. Since the algorithm is extremely simple and “uniform”, it is possible
to provide an ideal balancing for arbitrary numbers of nodes. Figure 2 shows the
graphs of speedup versus the number of nodes (28 cores each) for N = 300 000
and N = 600 000 vortex particles.

We can see that the graphs of the speedup versus the number of nodes for
tasks with 300 000 and 600 000 vortex particles approximately correspond to
those of Amdahl’s law for 0.40 and 0.25% of the sequential code, respectively.

The velocities of vortex particles are calculated at every time step of the
simulation of an unsteady flow; the number of such steps is usually of the order
of tens or hundreds of thousands. We can thus conclude that the trivial approach
achieves a reasonable performance (no more than 1 s per time step) only in
problems with no more than half a million vortex particles provided that a huge
computer cluster is used, having about 100 nodes with more than 2000 cores in
total. It is obvious that such an approach is extremely inefficient.

202 A. Kolganova and I. Marchevsky

Fig. 2. Speedup of computations when using MPI on a cluster. Each node is equipped
with two 14-core Intel Xeon E5-2690 v4 processors.

3.2 Nvidia CUDA for Graphics Accelerators

The direct algorithm for the computation of the velocities of vortex particles
by formula (3) can be trivially implemented in the framework of Nvidia CUDA
technology. The results obtained for some typical GPUs are shown in Table 2,
for both single and double precision.

Table 2. Time required to calculate convective velocities by the direct algorithm, for
N = 106 and N = 2 · 106 vortex particles, on various GPUs (using Nvidia CUDA)

GeForce Titan V Tesla V100 Tesla A100

2080 Ti, 68 sm 80 sm 80 sm 108 sm

Particles float double float double float double float double

N = 106 2.0 s 64.8 s 2.1 s 4.8 s 3.2 s 4.7 s 2.5 s 3.8 s

N = 2 · 106 7.8 s 262 s 11.2 s 19.1 s 12.8 s 18.6 s 10.2 s 14.9 s

Actually, the results are again almost the same: a performance of one time
step per second can be achieved only for no more than half a million vortex
particles (and single precision) but now on a single GPU instead of a large
computer cluster.

Figure 3 shows the speedup in multi-GPU mode. Several MPI processes ran
on a server with six Tesla A100 GPUs, each process on a separate GPU. The
performance improved, but no more than 1 million vortices could be processed
per second, even on such a powerful server.

Parallel Implementation of Fast Algorithms in VPM 203

Fig. 3. Speedup of computations on several GPUs Tesla A100 for different numbers of
vortices

4 Approximate Tree-Based Fast Algorithms

4.1 Tree-Based Fast Methods for the N-Body Problem

Biot–Savart law (more specifically, its discretized variant (3)) is indeed very
similar to Newton’s gravitational law. Therefore, all the approaches initially
developed for the N -body problem can be adapted to vortex methods.

The simplest method (from the implementation point of view) is the Barnes–
Hut (BH) algorithm [9], which has computational complexity O(N log N). How-
ever, a significant difference is associated with the fact that vortex particles in
2D problems can have both positive and negative circulations, while the masses
of bodies are always positive. The corresponding adaptation of the classical BH
algorithm was suggested in [10], but the resulting algorithm is not as efficient as
the initial one.

The general idea of the Barnes–Hut method is to split the flow domain (the
domain containing the vortex particles) hierarchically, that is, to build a k-d
tree or a quadtree whose cells are regarded as clusters of vortex particles. Then,
for each vortex particle, a tree traversal is executed: distantly placed cells (of
small size compared to the distance to them) are regarded as one “summary”
particle; tree leaves with a small relative distance are processed directly and
point-to-point interactions are calculated.

Another method is the Fast Multipole Method (FMM) [11,12], which is based
on similar ideas. In this case, however, only a quadtree is considered, and the
influence is calculated not for individual particles but for the whole tree cells
by constructing the so-called local expansions (which are power series in the
distance from the tree cell). The influence of each cell is represented as a multi-
pole expansion (power series in the distance from the influencing cell in negative
degrees). The tree traversal is performed only once; particle interactions between
neighboring cells are considered straightforwardly. Note that the numerical com-
plexity of the FMM is only O(N). Numerical experiments show that the classical
BH has a higher computational cost than the FMM. However, we can not exert

204 A. Kolganova and I. Marchevsky

“smooth” control over the accuracy with the FMM: it works perfectly when
the required accuracy is high (comparable with the machine accuracy), but it is
hardly possible to save computation time by reducing the accuracy (as a matter
of fact, machine precision is usually not required in vortex particle methods).

We can use these properties of two “basic” approaches for developing a hybrid
modification, the BH/multipole algorithm, which can be regarded as an improved
version of the BH method. The general algorithm is very similar to the classical
variant of BH, but some specific features appear [13]:

– The tree traversal is performed down to some specified level (let us call the
corresponding tree cells “lowest-level cells”) but not down to separate parti-
cles, which correspond to the leaf cells in the whole tree.

– For each cell, not only the total mass (or circulation) is stored but also higher
multipole moments, which are calculated directly for the leaf cells (for a cell
containing a separate particle, only one monopole moment is nonzero and is
equal to its circulation, while all higher-order moments are equal to zero) by
summation of the moments of children cells after being shifted to the center
of the parent cell.

– The influence is calculated for the lowest-level cells, in which a local (Taylor)
expansion of the influencing function is constructed taking into account only
those terms of the expansions of multipole terms having the proper order
of magnitude. Thus we reduce the computation time by avoiding computing
higher-order terms, which do not affect the accuracy.

Note that this approach turns out to be rather efficient in two-dimensional
problems since all the operations with multipole terms and their local expansions
can be expressed through simple multiplications of complex numbers.

4.2 CPU Implementation of the BH/Multipole Algorithm

The algorithm we briefly described above contains three user-defined param-
eters (Table 3) which influence the accuracy and numerical complexity of the
algorithm. Signs “+” and “−” indicate whether the corresponding influence is
essential or, respectively, can be neglected.

Table 3. Parameters of the hybrid BH/multipole algorithm and their influence

User-defined parameter Influence

accuracy complexity

Lowest level in the tree − +

Number of multipole terms + −
Proximity criterion + +

Parallel Implementation of Fast Algorithms in VPM 205

The optimal choice of these parameters requires a large number of numerical
experiments. As a model problem, we considered the uniform distribution of
vortex particles with random circulations −0.01 ≤ Γi ≤ 0.01 in a unit square.
To estimate the accuracy, we calculated the mean relative error of the velocities
of the particles and found the optimal parameters for δV = 10−3, 10−5, and
10−7. These optimal parameters are used below in all computations.

The tree construction is a rather simple operation from a “logical” point of
view, but its efficient implementation can be nontrivial. In the sequential code,
it is enough, as a rule, to implement a recursive subroutine to construct the k-d
tree; moreover, it can be constructed adaptively (Fig. 4) to exclude free space.

Fig. 4. Tree cells of the eighth level in the adaptive tree

At the same time, the efficient parallelization of the tree construction proce-
dure, especially the adaptive variant, is a rather difficult task. Among the many
approaches to solving it, we can point out the algorithm for the k-d tree con-
struction suggested by T. Karras [14]. It is based on sorting 2D points according
to the Morton order. Its main feature is associated with the nonrecursivity and
the storage of all the tree nodes (both internal nodes and leaves) in a linear
array. This algorithm is perfectly scalable since all internal nodes can be pro-
cessed independently. The remaining part of the algorithm consists of two main
operations:

– the upward tree traversal, during which the multipole moments of all the
internal cells are calculated;

– the downward tree traversal, which is performed multiple times for the above-
mentioned lowest-level cells, for which local expansions are constructed; the
velocities of separate vortex particles, provided that they are placed in higher-
level cells, are calculated through such expansions.

The results of numerical experiments with the OpenMP version of the algo-
rithm (it is freely available at https://github.com/vortexmethods/fastm/BH)
are shown in Table 4. Note that, here and further on, all simulations involve
N = 2 · 106 vortex particles.

The speedup and the parallelization efficiency with respect to the sequen-
tial code of the whole algorithm are given in Table 5. As we can see, the tree
construction subroutine is less scalable than tree traversals.

In all considered cases, the time required for the computation of velocities
of 2 million vortex particles is less than 1 s. The tree construction time depends
only on the number of particles; with low accuracy, it is approximately 30% of
the whole algorithm, whereas it is about 15% with high accuracy.

https://github.com/vortexmethods/fastm/BH

206 A. Kolganova and I. Marchevsky

Table 4. The computation time of the BH/multipole algorithm (in milliseconds) on
multicore CPUs with OpenMP

Accuracy 2× Intel Xeon 6254 Gold (32 cores) Intel i9-10980XE (18 cores)

Tree Upward Downward Tree Upward Downward

10−3 80 38 102 88 45 133

10−5 72 63 171 82 67 217

10−7 72 84 299 80 84 370

Table 5. Speedup and parallelization efficiency of the hybrid BH/multipole method
on multicore CPUs with OpenMP

Accuracy 2× Intel Xeon 6254 Gold (32 cores) Intel i9-10980XE (18 cores)

Tree Upward Downward Effic. Tree Upward Downward Effic.

10−3 12.5 25.7 29.1 0.70 6.9 12.5 15.2 0.67

10−5 14.4 27.2 28.5 0.78 7.4 12.7 14.9 0.71

10−7 14.7 24.9 32.7 0.89 7.8 13.0 14.9 0.75

MPI parallelization can be employed for further speedup. However, in this
case, node balancing becomes an essential task. For this reason, we limit ourselves
to OpenMP.

Theoretical estimates obtained for the classical Barnes–Hut algorithm assert
that the total numerical cost of the algorithm with the optimal parameters is
O(N log N). The hybrid modification does not change this estimate, which is
confirmed by the results of numerical experiments (Fig. 5). The computational
time dependence on N is not “ideal” due to specific features of some operations,
cache usage, and others.

Fig. 5. The number of operations in the BH/multipole algorithm versus the number
of vortex particles

Parallel Implementation of Fast Algorithms in VPM 207

Additionally, we provide a “summary” table containing the computation time
for the developed BH/multipole algorithm with optimal parameters on three
different CPUs (Table 6).

Table 6. The computation time of the BH/multipole algorithm on CPUs (in millisec-
onds) compared to that of the direct algorithm (in seconds)

Accuracy 2×Xeon 6254 Gold Intel i9-10980XE Intel i9-9900

32 cores 18 cores 8 cores

10−3 220 ms 266 433

10−5 306 ms 366 605

10−7 455 ms 534 773

Direct 625 s 680 s 1220 s

4.3 GPU Implementation of the BH/Multipole Algorithm

First of all, let us mention an outstanding investigation conducted by a user
of the popular internet resource Habr [15]. He considered several parallelization
technologies, such as threads, OpenMP, OpenCL, and CUDA, and applied them
to the direct algorithm and Barnes–Hut algorithm (in its classical variant). His
conclusions are impressive; in the case of the direct algorithm, they are close to
the results we presented above.

At the same time, the most widespread publication about the implementa-
tion of the Barnes–Hut algorithm on GPU with Nvidia CUDA is [16], written
by Martin Burtscher and Keshav Pingali. They suggested and implemented an
extremely efficient original algorithm and gave some advice on its optimization
on different graphics cards. Note that the code available on Burtscher’s web page
works perfectly on rather slow graphics cards (with small numbers of streaming
multiprocessors); on more powerful cards, such as Nvidia Titan V, Tesla V100,
or Tesla A100, data races usually occur. However, some minor issues (mainly
associated with the loss of volatile type qualifiers) can be fixed, and every-
thing works as expected. This code works much faster compared to the most
efficient algorithm from [15]. For this reason, we chose it as the basic code in
the present research. Note also that many variations and modifications of this
algorithm can be found on GitHub, including rather large projects (e.g., Galois,
Patistar).

As the code is freely available, we modified it to implement the suggested
hybrid BH/multipole algorithm. The resulting code can be found on GitHub
(https://github.com/vortexmethods/fastm/BHcu).

The result is a GPU-adapted implementation of the BH/multipole algorithm
with the following differences relative to the CPU code:

– a full quadtree is constructed instead of a k-d tree;
– a downward tree traversal is performed for the particles instead of the lowest-

level cells, so local expansions are not constructed;

https://github.com/IntelligentSoftwareSystems/Galois
https://github.com/Patistar/Nbody-Barnes-Hut-CUDA
https://github.com/vortexmethods/fastm/BHcu

208 A. Kolganova and I. Marchevsky

Moreover, the choice of optimal parameters for this algorithm differs from
that for the CPU case since now we are dealing with a quadtree. Note also that
now there are only two user-defined parameters: the number of multipole terms
and the proximity criterion.

Table 7 contains the results of numerical experiments for the same model
problem as in the previous section but solved now using the modified algorithm
on GPUs [16].

Table 7. The computation time of the modified algorithm on GPUs (in milliseconds)
compared to that of the direct algorithm (in seconds) for both single and double pre-
cisions

Accuracy GeForce 2080 Ti Titan V Tesla V100

68 SM 80 SM 80 SM

double float double float double float

10−3 180 23 29 23 30 22

10−5 332 37 49 35 59 34

10−7 586 — 75 — 84 —

Direct 262 s 7.8 s 19.1 s 11.2 s 18.6 s 12.8 s

We can see that if the average accuracy is acceptable (δV = 10−5), the
computations can be performed with single precision, and for all considered
graphics cards the speedup is of the order of 200–300 with respect to the direct
algorithm.

The computations with double precision on the Nvidia Titan V and Tesla
V100 cards are more time-consuming by a factor of 1.5. Note that these cards
were initially developed for high-precision computations. In the case of GeForce
2080 Ti, we observe a nearly 10-fold decrease in performance for double precision.
The accuracy δV = 10−7 can be achieved only with double precision. The GPU
code shows a performance that is nearly 10 times as high as that on multicore
CPUs.

The modified algorithm initially suggested by Burtscher [13,16] was merged
with the k-d tree structure, constructed according to the Karras algorithm [14],
which, as we suppose, is the most efficient for tree construction and its code
is easily transferred to GPUs. Moreover, the CUDA Toolkit contains integer
intrinsics, such as clz(int), which are particularly suitable for operations
with Morton codes.

The resulting code requires less time for the tree construction and its down-
ward traversal. However, the upward traversal becomes more complicated since
it is additionally required to sort the internal nodes. A similar sorting operation
is also performed for Morton codes of vortex particles; the RadixSort subroutine
from the CUB library provides a means to do it on GPU with high efficiency.
Also, some additional interface is added to ensure the compatibility of both data

Parallel Implementation of Fast Algorithms in VPM 209

structures, and some minor changes are made in the remaining part of the code
to take into account some required specific features. The obtained code can be
found on GitHub (https://github.com/vortexmethods/fastm/BHgpu).

For comparison purposes, we present the results of the obtained algorithm
with a k-d tree for intermediate and high accuracy levels (10−5 and 10−7) with
optimal parameters on three different GPUs (Table 8).

Table 8. The computation time of the code with k-d tree on GPUs (in milliseconds)
for single and double precisions

Accuracy GeForce 2080 Ti Titan V Tesla V100

68 SM 80 SM 80 SM

double float double float double float

10−3 154 21 27 20 30 19

10−5 286 35 44 31 56 32

10−7 496 — 67 — 77 —

As we can see by comparing this with Table 7, the tree structure exchange
can reduce the whole time by 10%.

The attempts to provide additional speedup by using several GPUs installed
on the same node produce the expected result only when the chosen parameters
are nonoptimal, in which case the computation time is rather high. In the case
of optimal parameters, it is possible to reduce the time for specific subroutines,
but data exchange between devices requires nearly as much time as has been
saved.

Note that the algorithm can be generalized to other operations related to
vortex particle methods, such as integral equation solving, velocity computation
at given points, and others.

5 Conclusions

We developed a code meant for the fast approximate solution of the N -body
problem and adapted it for 2D vortex particle methods. The code is in general
based on the classical Barnes–Hut algorithm but involves multipole expansions
up to terms of higher orders. The developed algorithm is adapted for computing
on GPUs with Nvidia CUDA technology. Considering the specific features of
GPU architecture and thousands of simultaneously working CUDA cores, the
GPU implementation of the algorithm is somewhat different and even easier:
the clusterization of particles is not performed together with the construction
of local expansions, and each CUDA core processes a single particle. The warp
divergence problem is solved using the original algorithm [16] or by sorting the
particles according to the Morton order in a k-d tree. As a result, closely placed

https://github.com/vortexmethods/fastm/BHgpu

210 A. Kolganova and I. Marchevsky

particles have close indices in the global array stored in memory, and the tree
traversal for them is similar.

We conducted several numerical experiments with this algorithm and can
state that the algorithm described in this paper is able to process up to 30
million particles per second and has a quasilinear computational cost, namely,
O(N log N). We plan to use it for developing an improved version of the
VM2D code, which implements vortex particle methods for solving engineering
problems.

References

1. Cottet, G.-H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cam-
bridge University Press, Cambridge (2000)

2. Branlard, E.: Wind Turbine Aerodynamics and Vorticity-Based Methods: Funda-
mentals and Recent Applications. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-319-55164-7

3. Dynnikova, G.Y.: The Lagrangian approach to solving the time-dependent Navier-
Stokes equations. Doklady Phys. 49(11), 648–652 (2004). https://doi.org/10.1134/
1.1831530

4. Dynnikova, G.Y.: Vortex motion in two-dimensional viscous fluid flows. Fluid Dyn.
38(5), 670–678 (2003). https://doi.org/10.1023/B:FLUI.0000007829.78673.01

5. Kuzmina, K.S., Marchevskii, I.K.: On the calculation of the vortex sheet and point
vortices effects at approximate solution of the boundary integral equation in 2d vor-
tex methods of computational hydrodynamics. Fluid Dyn. 54(7), 991–1001 (2019).
https://doi.org/10.1134/S0015462819070103

6. Marchevskii, I.K., Sokol, K.S., Izmailova, Yu.A.: T -schemes for mathematical mod-
elling of vorticity generation on smooths airfoils in vortex particle methods. Herald
Bauman Moscow State Tech. Univ. Ser.: Nat. Sci. 6, 33–59 (2022). https://doi.org/
10.18698/1812-3368-2022-6-33-59

7. Kuzmina, K.S., Marchevsky, I.K., Ryatina, E.P.: Open source code for 2D incom-
pressible flow simulation by using meshless Lagrangian vortex methods. In: Pro-
ceedings of the 2017 Ivannikov ISPRAS Open Conference (ISPRAS), pp. 97–103,
IEEE, Russia (2018). https://doi.org/10.1109/ISPRAS.2017.00023

8. Kuzmina, K., Marchevsky, I., Ryatina, E.: VM2D: open source code for 2D incom-
pressible flow simulation by using vortex methods. Commun. Comput. Inf. Sci.
910, 251–265 (2018). https://doi.org/10.1007/978-3-319-99673-8 18

9. Barnes, J., Hut, P.: A hierarchical O(N logN) force-calculation algorithm. Nature
324(4), 446–449 (1986). https://doi.org/10.1038/324446a0

10. Dynnikova, G.Y.: Fast technique for solving the N -body problem in flow simulation
by vortex methods. Comput. Math. Math. Phys. 49, 1389–1396 (2009). https://
doi.org/10.1134/S0965542509080090

11. Greengard, L.: The rapid evaluation of potential fields in particle systems. Ph.D.
thesis. Yale University, USA (1988)

12. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput.
Phys. 73(2), 325–348 (1987). https://doi.org/10.1016/0021-9991(87)90140-9

13. Ryatina, E., Lagno, A.: The Barnes – Hut-type algorithm in 2D Lagrangian vortex
particle methods. J. Phys.: Conf. Ser. 1715(1), 012069. https://doi.org/10.1088/
1742-6596/1715/1/012069

https://doi.org/10.1007/978-3-319-55164-7
https://doi.org/10.1007/978-3-319-55164-7
https://doi.org/10.1134/1.1831530
https://doi.org/10.1134/1.1831530
https://doi.org/10.1023/B:FLUI.0000007829.78673.01
https://doi.org/10.1134/S0015462819070103
https://doi.org/10.18698/1812-3368-2022-6-33-59
https://doi.org/10.18698/1812-3368-2022-6-33-59
https://doi.org/10.1109/ISPRAS.2017.00023
https://doi.org/10.1007/978-3-319-99673-8_18
https://doi.org/10.1038/324446a0
https://doi.org/10.1134/S0965542509080090
https://doi.org/10.1134/S0965542509080090
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1088/1742-6596/1715/1/012069
https://doi.org/10.1088/1742-6596/1715/1/012069

Parallel Implementation of Fast Algorithms in VPM 211

14. Karras, T.: Maximizing parallelism in the construction of BVHs, octrees, and k-
d trees. In: Proceedings Fourth ACM SIGGRAPH / Eurographics conference on
High-Performance Graphics, pp. 33–37. Eurographics Association, Paris (2012).
https://doi.org/10.2312/EGGH/HPG12/033-037

15. N -body problem, or how to blow up a galaxy without leaving the kitchen (in
Russian). https://habr.com/ru/post/437014/

16. Burtscher, M., Pingali, K.: Chapter 6 – An efficient CUDA implementation of
the tree-based Barnes Hut n-body algorithm. In: GPU Computing Gems Emerald
Edition. Applications of GPU Computing Series, pp. 75–92 (2011). https://doi.
org/10.1016/B978-0-12-384988-5.00006-1

https://doi.org/10.2312/EGGH/HPG12/033-037
https://habr.com/ru/post/437014/
https://doi.org/10.1016/B978-0-12-384988-5.00006-1
https://doi.org/10.1016/B978-0-12-384988-5.00006-1

Supercomputer Simulation

Implementation of an Asymptotically
Compact Algorithm for GPU Simulation

of an Acoustic Equation

Andrey Zakirov(B) and Anastasia Perepelkina(B)

Keldysh Institute of Applied Mathematics, Moscow, Russian Federation

mogmi@narod.ru, zakirov@kintechlab.com

Abstract. In this paper, an acoustic equation is simulated with a
numerical scheme involving a cross stencil. It is a memory-bound prob-
lem, and the performance depends greatly on data access patterns. In the
compact update, all data are loaded and stored once per data update, in
contrast to the usual update, where data accessed by stencil dependen-
cies can be loaded several times. Also, we implement the asymptotically
compact update in the TorreFold LRnLA algorithm on GPU. In the
LRnLA algorithm, several time layers are grouped into one task that
is asymptotically compact as a whole. Efficient memory transfers allow
the processing of data in the CPU storage with the GPU power, so we
demonstrate the efficiency through the solution of problems with more
than 160 GB of data. Multi-GPU parallel scaling is also established. A
performance of up to 50 billion LU/s (lattice updates per second) and
23 billion LU/s is obtained on RTX3090 for single and double precisions
correspondingly.

Keywords: GPU · LRnLA · Stencil · Wave equation

1 Introduction

Computational physics is one of the main purposes of modern supercomputer
programming and one of the heaviest tasks for it. A large part of simulation in
physics is made with stencil codes. In a stencil scheme, be it finite-difference,
finite-element, or even lattice Boltzmann [11], each node of a discrete mesh
is updated through a function, the input data for which come from the data
from the cells in the neighborhood. In cross stencils, the neighborhood is the
von Neumann neighborhood. Physical problems are typically three-dimensional
and require high resolution; thus, one update of the whole mesh requires a large
amount of data to be saved and loaded. While the computational performance of
modern processors increases, the gap between computing performance and mem-
ory bandwidth remains. For stencil problems that are memory-bound [13] and
whose performance bottleneck is data throughput, special methods of memory-
aware implementations are an interesting and relevant topic.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 215–230, 2023.
https://doi.org/10.1007/978-3-031-38864-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_15&domain=pdf
http://orcid.org/0000-0001-7346-6635
http://orcid.org/0000-0003-2517-6064
https://doi.org/10.1007/978-3-031-38864-4_15

216 A. Zakirov and A. Perepelkina

At the same time, the computational performance itself can be increased with
multilevel hybrid parallelism. One can take advantage of stencil locality both for
localization in higher memory levels and for less communication in the parallel
execution of tasks.

Even more computing efficiency can be obtained with loop transformation
techniques, such as polygonal optimization [2], wavefront blocking [14], temporal
blocking [1,15], and LRnLA algorithms [4]. With loop transformation, several
layers in time can be grouped together, and data, loaded into faster memory
levels, can be reused. With more locality of data access, more flexibility in con-
structing such methods is possible.

A cross stencil uses a center point and 2d neighbors in d-dimensional sim-
ulations. We propose to express the stencil update with even more locality by
separating the contribution from the neighbors into parts.

This is inspired by the introduction of a compact update for LBM streaming
patterns [20]. It was found that with the use of a unique feature of the LBM
scheme, that is, in one substep (streaming), data is copied from the cell to its
neighbors without modifications, the update can be expressed as follows: to fully
update a group of 2d cells, no more than 2d cells should be loaded and no more
than 2d cells should be stored. This expression leads to an optimal operation-
per-byte ratio for any kind of traversal, even before temporal blocking is used.
The absence of halo dependencies makes both parallelism and temporal blocking
convenient and efficient. It was later found that other fluid dynamics schemes,
expressed through fluxes, can be reinterpreted as asymptotically compact [17,21].
Here we use the expression “compact update” to denote a task in which, on
average, for one full stencil update, data from one cell has to be saved and
loaded.

In this work, we construct an asymptotically compact update for the general
expression of a stencil numerical scheme for use in conjunction with the LRnLA
algorithm DiamondTorre (Sect. 2). Also, we implement the scheme as a code for
CUDA GPU (Sect. 3) and benchmark the code’s performance on equations of
two types (Sect. 4).

2 The Algorithms

2.1 The Problem Statement

Let us start by expressing a stencil update in the form

f t+1
i,j,k = f t

i,j,k + RHS, (1)

where f t
i,j,k is an unknown scalar or vector function defined on a grid. The grid is

a collection of points ri,j,k = iΔx+ jΔy +kΔz, where i, j, and k are the integer
coordinates of a mesh point, and Δx, Δy, and Δz are the mesh steps. Finally,
RHS denotes a function that depends on the f t values in the von Neumann
neighborhood of the (i, j, k) node.

An Asymptotically Compact Algorithm 217

Let us define a finite difference scheme for an equation of the type

∂2f

∂t2
= V 2Δf + G(f) = V 2

(
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

)
+ G(f). (2)

Fig. 1. DiamondTorre in x-y-t (left). DiamondTorre in x-y projection (center): points
in the blue diamond are updated in one iteration, and points in the red diamond are
updated in the next iteration. A row of asynchronous DiamondTorres (right). Such
rows can tile the domain. (Color figure online)

With second-order finite difference discretization of the partial derivatives in
space and time provided that mesh steps are equal, i.e., Δx = Δy = Δz ≡ Δr,
we get

f t+1
x,y,z = 2f t

x,y,z −
[
f t−1

x,y,z − Δt2

Δr2
V 2

∑
✜

f t − Δt2G(f t
x,y,z)

]
, (3)

where the sum of values over the cross is defined as∑
✜

f t ≡ f t
x−1,y,z + f t

x+1,y,z + f t
x,y−1,z + f t

x,y+1,z + f t
x,y,z−1 + f t

x,y,z+1 − 6f t
x,y,z.

2.2 LRnLA Algorithms

The LRnLA algorithm [4] DiamondTorre [5,19], used in the current code, is
illustrated as a tower in x-y-t (Fig. 1). In the code, it is a loop with NT iterations.
At each iteration of the loop, data from the cells that fit into a diamond-shaped
region in x-y is updated. This diamond is shifted by one cell (the stencil width)
to the right along the x axis after each iteration.

The order of execution of DiamondTorres guarantees correct stencil depen-
dencies. If the lower diamond base intersects the right boundary of the domain
at its widest point, then the DiamondTorre has enough data to be fully pro-
cessed. Thus, at the start, a row of DiamondTorres with the same y-coordinate

218 A. Zakirov and A. Perepelkina

is executed. The updates in these DiamondTorres are asynchronous, so each Dia-
mondTorre can be assigned to a parallel thread. After this, the next row can be
started (Fig. 1, right). Row by row, the whole simulation domain is tiled, and all
cells are updated NT times. DiamondTorre provides computation locality. Data
in the DiamondTorre base persists in the thread registers, and only the stencil
halo of each diamond is loaded on each step.

At the same time, each DiamondTorre contains a large number of operations
and can be processed asynchronously with other DiamondTorres in the y = const
row, which results in good parallel ability.

Taking these two advantages into account, DiamondTorre should be pre-
ferred over traditional time loops for cross-stencil simulation on modern parallel
processors.

Fig. 2. Left: DiamondTorre update. The current iteration is outlined in blue, the next
iteration is outlined in red. Right: DiamondTorre update. The current iteration is
outlined in blue, the next iteration is outlined in red. (Color figure online)

2.3 Asymptotically Compact Update

The locality of the DiamondTorre can be expressed quantitatively with a measure
as arithmetic intensity [13]. The number of operations in a DiamondTorre can be
expressed as the number of updated nodes in a loop iteration multiplied by the
number of iterations and by the number of floating-pointing operations per node
update. The data required for the updates can be estimated as the projection
of DiamondTorre onto x-y space. Additionally, data from the stencil halo of the
updated nodes are read in the update.

To increase the locality, that is, the ratio of compute operations to data
access operations, the amount of data read can be further decreased in a Dia-
mondTorre by using the asymptotically compact update algorithm introduced
in [21], constructed for flux-based schemes of computational fluid dynamics. Let
us describe the construction of the asymptotically compact update for a general
case of an explicit cross-stencil scheme in the form (2).

To distinguish it from classic DiamondTorre implementations, we introduce a
new name, CompactTorre, to denote the asymptotically compact DiamondTorre.

Let us take a diamond base of minimum size. Note that the illustration is
two-dimensional. In this projection, one cell corresponds to a row of Nz cells of
the 3D simulation. Let us describe the usual (not compact) DiamondTorre using

An Asymptotically Compact Algorithm 219

Fig. 2 (left). To prepare for the iterations, load data for cells c0, c1 and h0, h1,
h2 into the registers. At each iteration,

1. load cells h3, h4, and h5;
2. update cells c0 and c1;
3. save c0 to the main memory storage;
4. shift data: c1 → c0, h5 → c1.

Fig. 3. Left: DiamondTorre with NT = 8. Right: CompactTorre with NT = 8. Orange
cells are read, black cells are read and fully updated, and grey cells are read and
partially updated (only RHS). (Color figure online)

There are NT iterations. In the last iteration, save both c0 and c1 and do
not perform the shift. This way, at each iteration, two values are updated, data
of one cell are saved, and data of three cells are loaded. In total, 3(NT + 1) + 2
cells are accessed.

One iteration of the CompactTorre consists of the following steps:

1. load cells c1 and c3 (c0 and c2 are available from the previous iteration);
2. update the RHS of cells c0 and c2 by adding the contribution from c0, c1, c2,

and c3;
3. update the RHS of cells c1 and c3 by adding the contribution from c0, c1, c2,

and c3;
4. the RHS of cells c1 and c3 is finalized, so use it to update c1 and c3 values;
5. save c0 and c2 to the main memory storage;
6. perform the shift: c1 → c0, c3 → c2.

There are NT iterations. So, no halo is used in the CompactTorre for the
stencil dependencies. This is good for shared access in parallel execution of Tor-
res and makes the implementation of data structure convenient. Two cells are
updated at each iteration, two cells are loaded, and two cells are saved. In total,
2NT cells are updated and 2NT + 2 cells are loaded in the course of one Com-
pactTorre execution. Thus, if we take a large NT , we can neglect the preparation
stage and the final stage and obtain an optimal arithmetic intensity equal to 1.
That is why the algorithm is asymptotically compact.

220 A. Zakirov and A. Perepelkina

We see that even without the introduction of fluxes (as it was done in [21])
the asymptotically compact algorithm can be constructed. Another difference
from [21] is that here the numerical scheme (3) contains three time layers. The
implementation details concerning the values on which time layers are loaded and
stored, as well as the proper treatment of the z axis, can be found in Sect. 3. The
fact that CompactTorre requires less data per cell update than DiamondTorre
is illustrated in Fig. 3.

Fig. 4. The first and second rows of CompactTorre starting from the right boundary.
The first row has one iteration and updates only the RHS; the second row is shifted
and has two iterations. The second row has finalized the update of the rightmost cells.

Finally, let us confirm the correctness of the CompactTorre algorithm when
the simulation domain is tiled with CompactTorres (Fig. 4). In the first row of
CompactTorres, only the c0 and c2 cells are inside the domain. Their RHS are
updated; this is the first and final iteration of this CompactTorres.

The second row is shifted by one cell in the x and y directions. In the Cone-
Torres of this row, c1 and c3 are the same cells that c0 and c2 were in the
previous row, redistributed between neighboring CompactTorres Thus, only the
remaining part of their RHS has to be computed. These CompactTorres have
two iterations. In their last iteration, only the cells c0 and c2 are inside the
domain.

The next row is shifted by one cell in the x and y directions once again. The
whole domain is tiled with such rows. When the CompactTorre is not cut off
by the boundary, it has NT iterations. For the rows on the left boundary of the
domain, only the top portion of ConeTorres is inside the domain.

3 The Implementation

The proposed algorithm is implemented in CUDA C++ for a multi-GPU work-
station. As in the previous implementations of DiamondTorre [18,19] and Com-
pactTorre [21], the code has the following features:

An Asymptotically Compact Algorithm 221

– The main data storage is in CPU RAM, and with CompactTorre locality
properties the GPU-CPU data transfers are concealed.

– One CompactTorre is assigned to one CUDA block; cells along the z axis are
distributed between CUDA threads.

– The CompactTorres are called row by row; a row may span several GPUs; all
CompactTorres in a row can be processed in parallel.

– CompactTorre data are in the thread registers; save and load operations are
performed between registers and the global memory.

– CUDA threads in a block communicate through the shared memory.

3.1 The Data Structure

The data structure is defined as shown in Listing 1.1.

Listing 1.1. Data Structures

struct Data{ ftype2 vals[Nx][Ny][Nz]; };// ftype2 is ftype[2];
struct Cell{ ftype val, rhs; }; // ftype is float or double
struct FArSh{

struct CellLine{ ftype2 valsf[Ns][Nz]; }; // Ns=Nx+3
CellLine cls[NFY]; };

Fig. 5. Algorithm illustration for multi-GPU exchange

As in [17,21], there are three structures for data storage. The main data
storage site is Data. It contains data values for the whole mesh and is located
in slower memory: CPU RAM or SSD storage. For the data exchange between
CompactTorre tasks, the FArSh data structure is defined in the GPU device
memory. This data structure was introduced in [8]; it provides optimal data
alignment for wavefront-type temporal blocking algorithms. CompactTorre reads
data from FArSh and saves data to FArSh by overwriting the same data that
were just read. FArSh is organized in CellLines. One line contains data for a
sequence of cells that are read and overwritten by a CUDA thread during the
algorithm execution. There is a separate FArSh on each GPU. The value NFY is
equal to the number of cells in the y direction divided by the number of GPUs
in use.

222 A. Zakirov and A. Perepelkina

For each mesh point, Data contains a pair of values that correspond to the f
value at two consecutive points in time. This is required since numerical scheme
(3) includes three points in time. It turns out that it is enough to store only
two values in the FArSh data as well. One of them corresponds to the middle
layer f t, and the other one stores either f t+1 or f t−1 since only one of these is
required at any given time. The details are provided in Sect. 3.3.

3.2 Data Exchange

FArSh in the device memory is a cyclic structure. On the x axis, it contains
cells from some ix0 to ix0 + Ns. After a row of CompactTorres is processed,
data are overwritten; the rightmost data can be saved to the main storage. The
new data for ix0 − 1 can be loaded in its place. The CompactTorres in a row
have alternating positions on the y axis, and GPU-GPU exchanges take place;
that is why FArSh is cyclic in y too. The periodic boundary is implemented
in the y direction. Taking into account the CPU-GPU, GPU-GPU, and thread
register-device memory data exchanges, the algorithm is as follows (Fig. 5)

1. Load Ny × Nz cells at ix0 from Data into a buffer, and then from the buffer
into the FArSh of each device. These cells are written into the left side on the
x axis (input), and with a shift in y equal to some iy shift value.

2. Each GPU executes NFY/2 CompactTorres in a row in parallel CUDA
blocks.

3. Copy data from the right side of FArSh (output) into the buffer and save
Ny × Nz cells from the buffer into the main storage Data at coordinate x =
ix0 + NT + 1.

4. Copy a CellLine on the y-axis boundary of the FArSh device to the next
device, i.e., from GPU 3 to GPU 4, from GPU 2 to GPU 3, and so on.

5. Shift in x: ix0 − 1 → ix0.
6. Shift the y coordinate for the FArSh storage: decrement iy shift by one.
7. Repeat.

The buffer in steps 1 and 3 is required since the Data storage may be inaccessible
from inside the GPU kernel, and the FArSh indexing is different from the Data
indexing. It is efficient to use a GPU kernel for this copy.

3.3 The CompactTorre Kernel

Listing 1.2 provides the compact update, i.e., one iteration of the CompactTorre
loop for the numerical scheme (3). Here, c[0], c[1], c[2], and c[3] corre-
spond to the numbering in Fig. 2; vals sh are stored in the shared memory. The
shared memory is used to exchange data between CUDA threads that update
the neighboring cells along the z axis.

At the start of the update, c[1] and c[3] contain f t as val and partially
computed RHS as rhs. At the end of the update, c[1] and c[3] contain f t+1

as val and f t as rhs. Thus, the rhs field, instead of being reset to 0, is used to

An Asymptotically Compact Algorithm 223

store information from another time layer. This allows to cut costs on memory
storage as mentioned in Sect. 3.1. The periodic boundary is implemented in the
z direction.

Listing 1.2. CompactTorre kernel

const ftype CFL= Vel*dt*dt/(dx*dx);
const ftype dt2=dt*dt;

inline __device__ void compact_step(Cell c[4], ftype* vals_sh){
const int iz=threadIdx.x;
c[0].rhs+= (-c[2].val-c[1].val)*CFL;
c[2].rhs+= (-c[0].val-c[3].val)*CFL;
const ftype c1Zm = vals_sh[(iz-1+Nz)%Nz],

c1Zp = vals_sh[(iz+1)%Nz],
c3Zm = vals_sh[(iz-1+Nz)%Nz+Nz],
c3Zp = vals_sh[(iz+1)%Nz+Nz];

ftype prev_val1=c[1].val, prev_val3=c[3].val;
c[1].rhs+= (-c[0].val - c[3].val - c1Zp - c1Zm + 6*c[1].val)*CFL +

dt2*Gfunc(c[1].val);
c[3].rhs+= (-c[2].val - c[1].val - c3Zp - c3Zm + 6*c[3].val)*CFL +

dt2*Gfunc(c[3].val);
c[1].val = 2*c[1].val - c[1].rhs;
c[3].val = 2*c[3].val - c[3].rhs;
c[1].rhs = prev_val1;
c[3].rhs = prev_val3;

}

Fig. 6. Simulation results for the scalar wave equation. The color corresponds to the
scalar value of f in the x-y-z domain at different instants.

4 The Benchmarks

In this section, we provide the simulation results of the implemented code and
performance benchmarks.

224 A. Zakirov and A. Perepelkina

4.1 Linear Scalar Wave Equation

To implement the scalar wave equation, we assume that G(f) = 0 in (2). We
tested a sample problem with Nx × Ny × Nz = 1024 × 1024 × 1024 cells. The
mesh and time step sizes are Δr = 1 and Δt = 0.3. The wave speed is equal to
V = 1. The initial condition is f = exp(((x−x0)2+(y−y0)2+(z−z0)2)/5). The
simulation result is shown in Fig. 6, where the color corresponds to the scalar
value of f in the x-y-z domain at different instants.

4.2 The Sine-Gordon Equation

As a nonlinear example, we choose the 3D sine-Gordon equation [10]:

∂2f

∂t2
= Δf − sin(f). (4)

This equation describes coherent localized structures such as solitons. One of
the solutions is a stationary or traveling breather (an oscillating soliton). Here
we choose a stationary breather as a sample solution.

The analytical solution is taken as the initial condition [7] with t = 0:

f(x, y, z, t) = −4 arctan

⎛
⎝√

1 − ω2

ω
sin(ωt)

∏
ξ=x,y,z

sech
(
ξ
√

1 − ω2
)⎞
⎠ . (5)

The ω parameter controls the size and oscillation frequency of the breather.
The simulation results are shown in Fig. 7. The size of the domain is 1024 ×

1024 × 1024 cells; the space and time steps are Δr = 1andΔt = 2π/640ω. The
breather parameter is ω = 0.999.

4.3 Performance Benchmarks

The performance peak for both the wave equation and the sine-Gordon equation
is determined by the memory throughput of the GPU device, that is, the data
exchange rate with the FArSh structure. In comparison with the previous imple-
mentations of the asymptotically compact algorithm, twice more data is stored
per cell and, thus, twice more data exchanges between FArSh and Data take place.
Let us estimate the peak performance for the Nvidia RTX3090 GPU with 24 GB
of GPU memory and a maximum performance throughput equal to 850 GB/s. It
follows from the asymptotically compact property (Sect. 2.3) that the complete
data set from one cell should be loaded and saved per one cell update. The size
of the data in one cell is sizeof(Cell) = 2 ∗ sizeof(float) = 8 bytes for single
precision and 16 bytes for double precision. Thus, the performance peak can
be estimated as 57 · 109 LU/s (lattice site updates per second) for single and
28.5 · 109 LU/s for double precision.

An Asymptotically Compact Algorithm 225

Fig. 7. Simulation results for the sine-Gordon equation. Color corresponds to the scalar
value of f in the x-y-z domain at different time instants.

Performance Versus NT . By NT we denote the CompactTorre height param-
eter. As a rule, in LRnLA algorithms, the performance increases with NT . Here,
a higher NT also leads to a better realization of the asymptotically compact
property.

In the current implementation, however, the size of FArSh increases with NT ,
and it is stored in the device memory. Thus, NT is limited, but the limit is high
enough for the performance to saturate for both single and double precisions.

We studied the performance dependence on NT in a 4000 × 2640 × 1024
domain (Fig. 8). The total memory is 80.6 GB for single precision and 161 GB
for double precision. The data of the whole domain is stored in the Data structure
in the CPU RAM.

In the case of single precision, the sine-Gordon equation and the linear wave
equation are modeled with approximately equal performance. In the case of
double precision though, the simulation requires twice as much data throughput,
thus, the performance is approximately twice lower. The maximum NT is lower,
owing to the FArSh size limit. The performance for the sine-Gordon equation is
even lower. A possible explanation is the computing cost of the double-precision
special function evaluation. In that case, the problem is not memory-bound.

The highest recorded performance was 49.74 GLU/s for a single precision
wave equation and 23.78 GLU/s for a double precision one.

Performance Versus Nz . By Nz we denote the number of nodes in the z-axis
direction. At the same time, it is the number of parallel CUDA threads in a
CUDA block. Thus the maximum value is 1024. Both Data size and FArSh size
increase with Nz.

We studied the performance dependency on Nz under the same conditions
as in the previous benchmark (Fig. 9. The performance increases with Nz since
parallelism is increased. The performance saturates with relatively low Nz.

226 A. Zakirov and A. Perepelkina

Fig. 8. Performance versus NT

Fig. 9. Performance versus Nz

4.4 Parallel Scaling

We studied weak and strong parallel scaling in the multi-GPU setup with dif-
ferent parameters.

In the strong scaling, the domain size is fixed, and we study the performance
against the number of GPUs in use (NGPU) (Fig. 10). Overheads of data exchange
between GPU increase together with NGPU. With smaller tasks, overheads are
more prominent, especially with a smaller size on the y axis since multi-GPU
parallelism is applied in this direction. The use of single or double precision does
not affect the scaling behavior.

In the weak scaling, the problem size in the y direction increases with NGPU

(Fig. 11). The scaling is close to linear when the data size is large enough (set 1:
2880× (1312 ·NGPU)× 1024 mesh cells) and NGPU is small. With higher NGPU,
overheads of data exchange become visible. For set 2 (4000×(164·NGPUs)×512),
the increase in performance is visible only up to NGPU = 4.

An Asymptotically Compact Algorithm 227

Fig. 10. Strong Scaling. Set 1: 4000×2624×1024, NT = 500. Set 2: 4000×480×1024,
NT = 500

Fig. 11. Weak scaling. Set 1: 2880 × (1312 · NGPU) × 1024, NT = 500. Set 2: 4000 ×
(164 ·NGPU) × 512, NT = 800

Figure 12 shows the effect of various connections between two GPUs. We
compared the NVlink connection, a connection through the PCIe bridge inside
one NUMA node, and a connection between different NUMA nodes.

5 Related Works

The most recent works in big data stencil simulation on GPU have been led by
the authors of [6], where the updates of data that are stored in CPU RAM are
referred to as ‘out-of-core’ simulations. Our research differs in that it is based on
the theory of LRnLA algorithms. The decomposition of the task in space-time
is different. LRnLA algorithms never include redundant halo computations. The
decomposition is performed on the x, y, and t axes. The decomposition shape
is a diamond in x-y, not to be confused with Diamond temporal blocking [15],
where the diamond shape is in x-t. The diamond shape follows the cross stencil
area of influence, thus arithmetic intensity is increased.

228 A. Zakirov and A. Perepelkina

Fig. 12. Parallel efficiency with different connection types

Another conceptual difference with out-of-core simulation in [6] is the use
of the wavefront-aligned data structure FArSh. Since the problems are memory-
bound, aligned and coalesced data access is essential to obtain higher perfor-
mance.

Finally, compact updates benefit the update locality in temporal blocking,
yet stencil codes are rarely expressed in a compact fashion, that is, the stencil
is rarely expressed in a manner that requires one cell load and one cell store per
one cell update. The closest concepts in modern computing are the EsoTwist [3]
update in LBM and block cellular automata [12] updates. Both concepts are
very limited to their specific areas. Nevertheless, we have managed to construct
a compact update in the general case of a stencil scheme.

6 Conclusions

The main contribution of this paper is the method of construction of asymp-
totically compact updates for cross-stencil schemes, which is not limited to flux
schemes. The use of LRnLA algorithms in stencil computing leads to high local-
ity and parallel ability of the code implementation of memory-bound stencil
schemes, which is once again demonstrated by the performance of the code
we have implemented. This is one of the rarest methods where data in CPU
RAM can be updated in GPU without loss in performance, that is, CPU-
GPU exchanges are concealed by the computations. Previously, the compact
update was used in the LRnLA algorithms for fluid-dynamics codes, for the
LBM method [20], and for cross-stencil methods written in fluxes [17,21].

The introduction of compact updates greatly benefits the LRnLA method
by eliminating spurious halo dependencies in the DiamondTorre. The optimal
arithmetic intensity value of one cell update per one cell load and one cell store
operations are coded in the update algorithm. It also leads to a convenient
implementation of the FArSh data structure: neighboring asynchronous tasks
never access the same CellLines. It opens new prospects for the development

An Asymptotically Compact Algorithm 229

and use of LRnLA algorithms. The code development becomes easier with FArSh
and compact updates, and the algorithms gain more parallelization options.

From now on, the use of the compact update is no longer limited to fluid
dynamics. A similar method can be applied to popular schemes such as the
FDTD method for fluid dynamics or the Levander scheme for seismic wave prop-
agation. Here we used the fact that the RHS of the scheme is additive, still more
complex functions can be inserted. The prerequisite is that the contribution of
different cells can be applied one by one in any order.

It should be noted that the presented code has some deficiencies. The algo-
rithm could be further decomposed on the z axis. By doing so, the number of
cells would be no longer limited by the number of CUDA threads and FArSh
data size. The data exchange for multi-GPU parallelism can be decreased in the
same way. For this, one may use the CandyTorre [9] LRnLA algorithm.

Other optimizations may be applied to increase the performance. At the same
time, we find the code implemented for this study to be relatively easy to work
with. For this reason, we published it in the open repository [16]. The highest
recorded performance is 49.74 GLU/s for a single precision wave equation, and
23.78 GLU/s for a double precision wave one.

Acknowledgment. The work was supported by the Russian Science Foundation
(grant № 18-71-10004).

References

1. Endo, T.: Applying recursive temporal blocking for stencil computations to deeper
memory hierarchy. In: 2018 IEEE 7th Non-Volatile Memory Systems and Applica-
tions Symposium (NVMSA), pp. 19–24. IEEE (2018)

2. Feautrier, P.: Some efficient solutions to the affine scheduling problem: part i. one-
dimensional time. Int. J. Parallel Program. 21(5), 313–348 (1992). https://doi.org/
10.1007/BF01407835.

3. Geier, M., Schönherr, M.: Esoteric twist: an efficient in-place streaming algorithms
for the lattice Boltzmann method on massively parallel hardware. Computation
5(2), 19 (2017). https://doi.org/10.3390/computation5020019

4. Levchenko, V.D., Perepelkina, A.Y.: Locally recursive non-locally asynchronous
algorithms for stencil computation. Lobachevskii J. Math. 39(4), 552–561 (2018).
https://doi.org/10.1134/S1995080218040108

5. Levchenko, V., Perepelkina, A., Zakirov, A.: DiamondTorre algorithm for high-
performance wave modeling. Computation 4(3), 29 (2016). https://doi.org/10.
3390/computation4030029

6. Matsumura, K., Zohouri, H.R., Wahib, M., Endo, T., Matsuoka, S.: AN5D: auto-
mated stencil framework for high-degree temporal blocking on GPUs. In: Proceed-
ings of the 18th ACM/IEEE International Symposium on Code Generation and
Optimization, pp. 199–211 (2020)

7. Minzoni, A., Smyth, N.F., Worthy, A.L.: Evolution of two-dimensional standing
and travelling breather solutions for the Sine-Gordon equation. Phys. D: Nonlinear
Phenom. 189(3–4), 167–187 (2004)

https://doi.org/10.1007/BF01407835.
https://doi.org/10.1007/BF01407835.
https://doi.org/10.3390/computation5020019
https://doi.org/10.1134/S1995080218040108
https://doi.org/10.3390/computation4030029
https://doi.org/10.3390/computation4030029

230 A. Zakirov and A. Perepelkina

8. Perepelkina, A., Levchenko, V.D.: Functionally arranged data for algorithms with
space-time wavefront. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2021. CCIS,
vol. 1437, pp. 134–148. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81691-9 10

9. Perepelkina, A., Levchenko, V., Khilkov, S.: The DiamondCandy LRnLA algo-
rithm: raising efficiency of the 3D cross-stencil schemes. J. Supercomput. 75(12),
7778–7789 (2018). https://doi.org/10.1007/s11227-018-2461-z

10. Rigge, P.: Numerical solutions to the Sine-Gordon equation. arXiv preprint
arXiv:1212.2716 (2012)

11. Succi, S.: The Lattice Boltzmann Equation: For Complex States of Flowing Matter.
Oxford University Press, Oxford (2018)

12. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT press, Cambridge (1987)

13. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

14. Wolfe, M.: Loops skewing: the wavefront method revisited. Int. J. Parallel Program.
15(4), 279–293 (1986)

15. Wonnacott, D.G., Strout, M.M.: On the scalability of loop tiling techniques.
IMPACT 2013, 3 (2013)

16. Zakirov, A.: CompactWave repository. https://github.com/zakirovandrey/
compactWave (2022)

17. Zakirov, A., Korneev, B., Perepelkina, A., Levchenko, V.: Compact LRnLA algo-
rithms for flux-based numerical schemes. In: Sokolinsky, L., Zymbler, M. (eds.)
PCT 2022. Communications in Computer and Information Science, vol. 1618, pp.
99–115. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-11623-0 8

18. Zakirov, A., Levchenko, V., Ivanov, A., Perepelkina, A., Levchenko, T., Rok, V.:
High-performance 3D modeling of a full-wave seismic field for seismic survey tasks.
Geoinformatika 3, 34–45 (2017)

19. Zakirov, A., Levchenko, V., Perepelkina, A., Zempo, Y.: High performance FDTD
algorithm for GPGPU supercomputers. J. Phys.: Conf. Ser. 759, 012100 (2016).
https://doi.org/10.1088/1742-6596/759/1/012100

20. Zakirov, A., Perepelkina, A., Levchenko, V., Khilkov, S.: Streaming techniques:
revealing the natural concurrency of the lattice Boltzmann method. J. Supercom-
put. 77(10), 11911–11929 (2021). https://doi.org/10.1007/s11227-021-03762-z

21. Zakirov, A.V., Korneev, B.A., Perepelkina, A.Y.: Compact update algorithm for
numerical schemes with cross stencil for data access locality. In: Proceedings of the
2022 6th High Performance Computing and Cluster Technologies Conference, pp.
51–58 (2022)

https://doi.org/10.1007/978-3-030-81691-9_10
https://doi.org/10.1007/978-3-030-81691-9_10
https://doi.org/10.1007/s11227-018-2461-z
http://arxiv.org/abs/1212.2716
https://github.com/zakirovandrey/compactWave
https://github.com/zakirovandrey/compactWave
https://doi.org/10.1007/978-3-031-11623-0_8
https://doi.org/10.1088/1742-6596/759/1/012100
https://doi.org/10.1007/s11227-021-03762-z

Quantum-Chemical Simulation
of High-Energy Azoxy Compounds

Vadim Volokhov1 , Ivan Akostelov2, Vladimir Parakhin3 ,
Elena Amosova1(B) , and David Lempert1

1 Federal Research Center of Problems of Chemical Physics and Medicinal
Chemistry, Chernogolovka, Russian Federation

{vvm,aes,lempert}@icp.ac.ru
2 Lomonosov Moscow State University, Moscow, Russian Federation

3 N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
parakhin@ioc.ac.ru

Abstract. The paper presents a study of the thermochemical properties
of a series of substances containing an azoxy group associated with a
trinitromethyl group and a furazan ring and promising for the creation
of new high-energy density materials. The enthalpies of formation in
the gaseous phase have been obtained by quantum chemical calculations
using the Gaussian program package (G4MP2 and G4 methods). We
compare the methods of atomization and of homodesmotic reactions in
terms of accuracy, efficiency, and computational requirements. Also, we
suggest an extension of the method of homodesmotic reactions which
makes it possible to reduce the requirements for computing resources.
We analyze the dependence of the enthalpy of formation on the structure
of the compounds.

Keywords: Quantum-chemical calculations · Homodesmotic
reactions · Enthalpy of formation · High-enthalpy compounds

1 Introduction

The paper considers high-energy density materials (HEDMs) capable of stor-
ing and releasing large amounts of chemical energy under controlled conditions.
These compounds are widely used in military affairs, mineral exploration, min-
ing, construction, metallurgy, and rocket and space technology. Compounds with
a high nitrogen content, which combine high energy intensity with resistance to
external influences, are promising as potential high-energy compounds.

The main parameter characterizing the prospects of a high-energy substance
is the enthalpy of formation ΔfH

◦ in the state of aggregation in which the sub-
stance under study will be used. Experimental calorimetric determination of the
enthalpy of formation of new substances faces some difficulties. Although modern
equipment makes it possible to measure with high accuracy the combustion of
the substance to water, nitrogen, and carbon dioxide, some nitrogen oxides can
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 231–243, 2023.
https://doi.org/10.1007/978-3-031-38864-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_16&domain=pdf
http://orcid.org/0000-0002-5586-9374
http://orcid.org/0000-0003-3258-4875
http://orcid.org/0000-0002-1790-9769
http://orcid.org/0000-0002-0219-1571
https://doi.org/10.1007/978-3-031-38864-4_16

232 V. Volokhov et al.

also be formed in the combustion process, and that, in turn, requires also their
quantitative determination. The measurement error usually decreases with an
increase in the mass of the test sample. However, when working with newly syn-
thesized materials, one has to operate with a substance amount of no more than
100 mg. Trace impurities in such a small test sample introduce an unpredictable
error in the measurement results.

It is very important to determine which compounds from the series under
consideration have the best characteristics and are the most promising for practi-
cal synthesis and subsequent application. Predicting the enthalpy of formation of
compounds that have not yet been synthesized helps to reduce the cost and speed
up the process of creating new materials. Computational chemistry methods are
widely used for such predictions. Existing quantitative structure-property rela-
tionship (QSPR) models [1–4] make it possible to reliably predict the enthalpy
of formation only for certain well-studied classes of substances. When it comes
to the prediction of the enthalpy of formation of compounds with high nitro-
gen content, quantum-chemical calculations based on ab initio approaches are
more promising for this purpose. Such calculations require high-performance
computing resources, and these requirements increase extremely rapidly as the
complexity of the compound under study increases. The promising solution to
this problem could be the approach considered in [5], in which quantum-chemical
methods are used in combination with formal thermochemical reactions (a.k.a.
homodesmotic reactions), composed in a special way to minimize possible errors.

Compounds containing an azoxy fragment are of great interest in the creation
of new HEDMs. The highly polar N→O fragment makes it possible to achieve
a high density of the resulting crystals and improve their detonation character-
istics, while simultaneously reducing their sensitivity to external influences [6].
Several azoxy compounds described in [7] combine high enthalpy of formation,
high density, and thermal stability. The introduction of a furazan fragment [8]
made it possible to obtain a substance that surpasses traditional HEDMs (hex-
ogen, octogen, CL-20) in specific impulse, which is an important characteristic
of rocket fuels.

In this work, we calculate the enthalpy of formation in the gaseous phase
of a series of structurally similar compounds (Table 1) containing an azoxy
group bonded to a trinitromethyl group and a furazane ring. We use compos-
ite quantum-chemical methods G4 and G4MP2 and functional density theory
(DFT) at the B3LYP level.

The paper is organized as follows. Section 2 describes the atomization reaction
method for calculating the enthalpy of formation in the gaseous phase. Section 3
contains the description and main requirements of the method of homodesmotic
reactions for calculating the enthalpy of formation in the gaseous phase. In
Sect. 4, we discuss the results of our calculations. Section 5 contains informa-
tion about computational details of our calculations. Conclusions summarize
the study and point directions for further work.

Azoxy Compounds 233

Table 1. Compounds under study

234 V. Volokhov et al.

2 Calculation of the Enthalpy of Formation
in the Gaseous Phase by the Atomization Reaction
Method

The atomization reaction method is based on the formation of a substance from
individual atoms and attracts researchers with its simplicity and generality. Nev-
ertheless, for its successful application, it is necessary to accurately take into
account the electron correlation effect due to the significant change in the elec-
tronic structure that occurs during the transition from atoms to a molecule.

The G4 method described in [9] makes it possible to calculate the enthalpy of
formation with an average deviation from the experimental data of 0.83 kcal/mol
(on a sample of 454 substances). There is also a modification of the method,
G4MP2 [10], which uses the theory of a lower order at one of the calculation
stages; this can significantly reduce the calculation time, while only slightly
reducing the accuracy (1.04 kcal/mol against 0.83 kcal/mol). In this work, we
use both modifications of the G4 method.

3 Method of Homodesmotic Reactions

According to Hess’s law, the enthalpy of a reaction does not depend on the
specific way of its occurrence, so it is possible to use for calculations any ther-
modynamic reaction that connects reagents with products. By definition of the
enthalpy of formation in the gas phase, the initial reagents should be simple sub-
stances (components of the target molecule) that are in stable standard states.
The main advantage of using an arbitrary thermodynamic reaction is the possi-
bility to choose one during which the electron environment of the atoms partic-
ipating in the reactions changes minimally. Therefore, the required accuracy of
calculations can be achieved without accurately taking into account the effects
of electron correlation.

When a certain thermodynamic reaction is used, calculations require not only
the values of the electron energy calculated by quantum chemical methods but
also experimental enthalpies of formation of the reagents. If the necessary data on
the reagents is not described in the literature, the enthalpy of formation can be
calculated by the atomization reaction method. As compared to the calculation
of the enthalpy of formation of the whole molecule under study, this approach
makes it possible to reduce significantly the overall computational complexity
of the problem since composite quantum chemical methods scale polynomially
depending on the size of the system under calculation.

In this paper, homodesmotic reactions are reactions in which:

1) the following homodesmotic requirements for carbon atoms are met: the
invariance of the number of carbon-carbon bonds between atoms of all degrees
of hybridization Csp3−Csp3 , Csp3−Csp2 , Csp2−Csp2 , Csp2−Csp, Csp−Csp,
Csp2=Csp2 , Csp2=Csp, Csp=Csp, Csp≡Csp, and the invariance of the num-
ber of carbon atoms of each degree of hybridization (sp3, sp2, sp) with 0, 1,
2, or 3 hydrogen atoms;

Azoxy Compounds 235

2) the number of O−C, O−N, O−O, N−C, and N−N bonds of all degrees of
hybridization is preserved, and

3) the number of oxygen and nitrogen atoms of each degree of hybridization
with 0, 1, 2, or 3 hydrogen atoms is preserved.

In this work, we used schemes of the homodesmotic reactions that meet the
above requirements (see Table 2).

4 Results and Discussion

4.1 Enthalpy of Formation

For calculations, we used quantum-chemical methods within the Gaussian-09
program package. The optimized geometry, as well as electronic energies and
zero-point energies, have been calculated by the composite quantum-chemical
G4MP2 method.

Table 3 presents the electron energies and enthalpies of formation calculated
by the atomization method of all reactants and products in accordance with the
scheme of homodesmotic reactions (Table 2). Table 4 contains the enthalpies of
formation obtained by the method of homodesmotic reactions using G4MP2 elec-
tronic energies and using DFT/B3LYP electronic energies in the 6-31G(2df,p)
basis.

If we use G4MP2 electronic energies in the calculations, the enthalpy of
formation of the substances under consideration, obtained by the method of
homodesmotic reactions, matches up to two decimal places with that calculated
by the atomization reaction method. The enthalpy of the reaction, which can
be calculated by the method of homodesmotic reactions, is only one part of the
equation for the enthalpy of formation, where the enthalpies of formation of
the reagents make a significant contribution. Thus, when using the enthalpies
of formation of reagents obtained by the atomization reaction method at a suf-
ficiently high level of calculation, the enthalpies of formation of the substance
obtained by the method of homodesmotic reactions differ only slightly from the
enthalpies of formation obtained by the atomization method, as it can be seen
in our calculation results.

If we use the DFT theory, the difference in the enthalpies of formation
obtained using the method of homodesmotic reactions and the method of atom-
ization is significant: the root mean square error (RMSE) is 3.94 kcal/mol, which
significantly exceeds the value of 0.5 kcal/mol given in [5] for a test set of hydro-
carbons only. The use of low-level theory methods for nitrogen- and oxygen-
containing compounds requires adjustments. The enthalpies of the reaction in
Table 4 are quite high, which indicates a significant difference in the electronic
structure of the reagents and products. The error is systematic and may indicate
that one of the reagents common to the most of homodesmotic reactions in the
scheme is not sufficiently well chosen.

There are two common fragments for all molecules under consideration,
namely, a furazane cycle and a trinitro-azoxy fragment. In this case, the largest

236 V. Volokhov et al.

Table 2. Schemes of homodesmotic reactions for the compounds under study

relative deviation (5.3%) was obtained for substance 1; it does not contain a
furazan ring but only a trinitro-azoxy fragment, which makes this fragment the
most likely source of error. The problem redistribution of electron density can

Azoxy Compounds 237

Table 3. Electronic energy with thermal correction, CPU computation time, and
enthalpy of formation by the atomization method for all reagents and products

№ G4MP2 DFT/B3LYP/6-31G(2df,p) G4MP2

H298, Hartree t, sec H298, Hartree t, sec ΔfH
◦
(298(g))

, kcal/mol

1 −877.012926 196801 −877.837966 37078 51.91

1-1 −782.500633 60798 −783.221605 19696 44.81

1-2 −264.114135 2685 −264.389484 1790 17.63

1-3 −169.590680 533 −169.757530 394 17.54

2 −1137.569669 564053 −1138.676128 27361 107.70

2-1 −302.143148 3261 −302.47059 1447 40.10

2-2 −430.149192 9945 −430.598307 3300 72.22

2-3 −207.620861 909 −207.840189 630 39.27

3 −1212.704727 861368 −1213.877501 67968 82.58

3-1 −192.822798 1010 −193.038338 623 −23.05

3-2 −117.683511 2444 −117.834064 1613 4.71

4 −1153.617485 484812 −1154.727716 84678 118.87

4-1 −133.731401 2646 −133.884435 1885 14.14

5 −1261.735381 1404714 −1262.960837 76533 203.50

5-1 −241.862692 1326 −242.13437 762 92.06

6 −1302.613288 1221768 −1303.860518 116456 135.21

6-1 −282.764932 1485 −283.050500 872 8.51

7 −1397.136810 2181467 −1398.485923 135874 135.26

7-1 −377.267136 8092 −377.663277 2857 21.93

8 −1695.955143 8507230 −1697.594818 294233 149.74

8-1 −676.084480 92916 −676.769862 28182 37.03

9 −1934.903865 21231201 −1936.734719 258679 192.56

TNAV −915.043216 184095 −915.919989 40990 73.57

be caused by the introduction of a methyl radical thrice substituted by nitro
groups to the nitrogen of the azoxy group. Furthermore, the formal preservation
of the hybridization of the nitrogen atom as a result of the reaction (sp2 in the
N=O fragment of reagent 1-1 and sp2 in the azoxy group of product 1) is not
enough to compensate for the error introduced by inaccurate consideration of
electron correlation.

The fragment described could be a result of the formal interaction of reagents
1-1 and 1-2 (or 2-1). To reduce the error, the new scheme of homodesmotic
reactions has been introduced with the whole trinitroazoxy fragment within the
trinitroazoxyvinyl (TNAV) molecule (Fig. 1) instead of two reagents, and the
enthalpy of formation was recalculated for all molecules. The results of these
calculations are shown in Table 5.

The RMSE of the enthalpy of formation when using the TNAV molecule
in calculations has decreased to 1.57 kcal/mol, which can be considered quite

238 V. Volokhov et al.

Table 4. Enthalpy of formation of the studied substances (kcal/mol) calculated by the
method of homodesmotic reactions

№ G4MP2 DFT/B3LYP/6-31G(2df,p)

ΔrH
◦
(298(g))

a ΔfH
◦
(298(g)) Calculation errorb ΔrH

◦
(298(g))

a ΔfH
◦
(298(g)) Calculation errorb

1 7.00 51.91 0.00 9.78 54.68 2.78

2 7.38 107.70 0.00 10.45 110.76 3.06

3 10.04 82.58 0.00 12.27 84.82 2.24

4 7.43 117.17 0.00 9.69 119.43 2.26

5 15.83 203.50 0.00 20.24 207.90 4.40

6 31.10 135.21 0.00 30.56 134.66 −0.54

7 17.73 135.26 0.00 22.64 140.16 4.91

8 17.10 149.74 0.00 21.19 153.81 4.08

9 29.59 192.56 0.00 36.81 199.78 7.22
a Enthalpy of the homodesmotic reaction
b Calculation error of the enthalpy of formation by homodesmotic reaction method in comparison

to the enthalpy of formation by atomization method

Fig. 1. Trinitroazoxyvinyl

Table 5. Enthalpy of formation of the studied substances (kcal/mol) calculated by the
method of homodesmotic reactions

№ The reaction scheme ΔrH
◦
(298(g)) ΔfH

◦
(298(g)) Da

1 TNAV + 1-3 → 1 + 2-3 −0.40 51.44 −0.47

2 TNAV + 2-2 → 2 + 2-3 1.24 107.76 0.06

3 TNAV + 2-2 + 3-1 → 3 + 2-3 + 3-2 3.06 81.81 −0.77

4 TNAV + 2-2 + 4-1 → 4 + 2-3 + 3-2 0.48 116.43 −0.75

5 TNAV + 2-2 + 5-1 → 5 + 2-3 + 3-2 11.03 204.89 1.40

6 TNAV + 2-2 + 6-1 → 6 + 2-3 + 3-2 21.35 131.66 −3.55

7 TNAV + 2-2 + 7-1 → 7 + 2-3 + 3-2 13.43 137.16 1.90

8 TNAV + 2-2 + 8-1 → 8 + 2-3 + 3-2 11.98 150.81 1.08

9 2 TNAV + 2-2 → 9 + 2-3 + 3-2 18.39 193.77 1.21
a Deviation from the atomization enthalpy by G4MP2

acceptable. As it has been mentioned earlier, the G4MP2 method uses the theory
of a lower order at one of the calculation stages which results in some calculation
error. So it might be interesting to use enthalpies of formation of reagents cal-
culated by the G4 method in the new schemes of homodesmotic reactions and
compare the results with the enthalpies of formation calculated by the atom-

Azoxy Compounds 239

ization reaction method using the G4 method. Unfortunately, the G4 method
requires high computational costs, so it has been possible to use the atomization
reaction method only for six substances out of nine. The calculation results and
their comparison are shown in Table 6.

Table 6. Comparison of the enthalpy of formation calculated by the G4 method, the
atomization method, and the method of homodesmotic reactions

№ G4 Homodesmotic Deviation

1 45.13 46.88 −1.25

2 100.46 99.23 −1.23

3 74.80 73.38 −1.42

4 110.24 108.26 −1.98

5 195.36 195.82 0.46

6 123.75 123.30 −0.45

7 — 127.69 —

8 — 140.22 —

7 — 177.82 —

The RMSE in the calculation of the enthalpy of formation decreases to
1.25 kcal/mol. To reduce this error, a more detailed account of the correlation
effect and a more thorough study of the criteria for homodesmotic reactions for
nitrogen- and oxygen-containing compounds are required, which in turn requires
a large amount of research work, but it is a promising prospect for further study
since it can accelerate the development of new high-energy materials.

Table 7 shows the time costs for enthalpy calculations by various methods.
The last column contains the cumulative time spent on the calculation of all
reagents from the reaction schemes in Table 5.

The time for calculating the energy of the studied substances by the G4
method significantly exceeds the time required for calculations by other methods.
The time for calculating the energy of the studied substances by the B3LYP
method and of the reagents by the G4MP2 and G4 method in all cases (except
the first one) turns out to be less than in the case of calculating the energy of
the studied substances by the corresponding methods.

If we exclude the time costs for calculations of the energy of the reagents
reused in many reactions (specifically: TNAV, 2-2, 2-3, and 3-2, which in total
account for 197 393 s for the G4MP2 method and 1 016 608 s for the G4 method),
then the time costs for each compound will be greatly reduced (Fig. 2). Thus, in
the case of studying a series of structurally similar molecules, we can reduce the
use of computing resources by a factor of more than 20 as compared with the
atomization method.

240 V. Volokhov et al.

Table 7. CPU time to calculate the electronic energy of substances (sec)

№ Calculation of the whole compound Calculation of reagents

G4 G4MP2 DFT/B3LYP G4 G4MP2

1 878 680 196 800 37 078 984 271 185 537

2 6 725 371 564 052 27 361 1 014 478 194 949

3 12 861 161 861 368 67 968 1 021 810 198 404

4 9 580 979 484 812 84 678 1 019 361 200 039

5 26 897 475 1 404 714 76 533 1 027 069 198 720

6 27 745 456 1 221 768 116 456 1 024 584 198 878

7 — 2 181 467 135 874 1 039 338 205 484

8 — 8 507 230 294 233 1 214 287 290 309

9 — 21 231 201 258 679 1 016 608 197 393

4.2 Dependence of the Enthalpy on the Structure

To rationalize the design of new-generation substances, it is necessary to under-
stand how structural features affect the observed physicochemical properties.
Let us start the analysis with compound 1, which contains only the trinitroa-
zoxy fragment and may serve as a starting point for further comparison. The
following regularities can be observed.

When the furazan fragment is added (compound 2), the enthalpy of formation
in the gaseous phase increases significantly (by 56 kcal/mol). The double bond
between nitrogen and carbon, being the closest to the azoxy fragment, becomes
stretched. It can be seen by comparison of the geometry of the furazan ring
in the free form and in compound 2. Coupling is observed between the azoxy
group and the furazan ring. Bond stretching is caused by the strong negative
inductive and mesomeric effect of the trinitroazoxy fragment, which destabilizes
the furazan aromatic system.

The substitution of one methyl radical in the furazan ring for a methoxy
group (compound 3) leads to a decrease in the enthalpy of formation. This
effect is quite expected—oxygen, owing to the mesomeric effect, stabilizes the
previously destabilized aromatic system.

The introduction of nitrogen groups in compounds 4 and 6 leads to a slight
increase in the enthalpy of formation. The amino group (compound 4) partially
stabilizes the ring in a similar way as the methoxy group.

The introduction of an azido group (compound 5) significantly increases the
enthalpy of formation; such an effect of a sharp (∼ 80 kcal/mol) increase in the
enthalpy of formation upon the introduction of an azido group into aliphatic
compounds is described in [11]. However, it would not lead to an increase in the
enthalpy of combustion since the environment of the atoms of the azido group
undergoes only slight changes during combustion.

Small changes in the enthalpy of formation in compounds 7 and 8 are asso-
ciated with the introduction of isolated systems R2N−NO2 into the molecule.

Azoxy Compounds 241

Fig. 2. Time costs for computing the enthalpy of formation by homodesmotic reactions
without and with reuse of the molecule energies

When the second trinitroazoxy group is introduced into the furazan cycle,
the enthalpy of formation drastically increases. The enthalpy of formation of
compound 9 is higher by 32.95 kcal/mol than the expected sum of the enthalpies
of formation of compound 1 and compound 2 (159.61 kcal/mol). This effect can
be explained by an even greater destabilization of the furazan cycle.

Thus we can conclude that the most promising systems for further research
are compounds with isolated R2N−NO2 systems and aromatic rings destabilized
by strong acceptors.

5 Computational Details

Calculations were performed using the equipment of the Supercomputer Mul-
tiuser Center at Lomonosov Moscow State University [12,13] (projects Enthalpy-
2065 and Enthalpy-2219) and computational resources of FRC PCP MC RAS.
Composite quantum-chemical methods G4 and G4MP2 and functional density
theory (DFT) within the Gaussian program package were used for calculations.
The parallelization within the Gaussian package is implemented by its own Linda
software, which is not always quite efficient. When increasing the number of com-
puting cores, the speedup effect is noticeable only up to eight cores and further it
diminishes, thus making it rational to use eight cores per task in the calculations.

6 Conclusions

The enthalpy of formation in the gaseous phase of a series of previously unde-
scribed azoxy compounds was calculated with high precision by composite G4
and G4MP2 methods within the Gaussian program package.

242 V. Volokhov et al.

We showed that using homodesmotic reactions for the calculation of the
enthalpy of formation results in acceptable accuracy with significant savings
in computational time costs. However, the generalization of this method to
nitrogen- and oxygen-containing compounds requires some additions and refine-
ments since the generalization of the criteria used for hydrocarbon compounds
is not enough.

We explained the observed dependence of enthalpy of formation on the elec-
tronic structure of the compounds and proposed a family of compounds promis-
ing for further study.

Acknowledgments. The research was performed under State assignments № AAAA-
A19-119120690042-9 (V. Volokhov and E. Amosova) and № AAAA-A19-119101690058-
9 (D. Lempert).

References

1. Redz̆epović I., Marković S., Furtula B.: On structural dependence of enthalpy of
formation of catacondensed benzenoid hydrocarbons. MATCH Commun. Math.
Comput. Chem. 82, 663–678 (2019)

2. Gharagheizi, F.: Prediction of the standard enthalpy of formation of pure com-
pounds using molecular structure. Aust. J. Chem. 62(4), 376–381 (2009). https://
doi.org/10.1071/CH08522

3. Vatani, A., Mehrpooya, M., Gharagheizi, F.: Prediction of standard enthalpy of
formation by a QSPR model. Int. J. Mol. Sci. 8(5), 407–432 (2007). https://doi.
org/10.3390/i8050407

4. Teixeira, A.L., Leal, J.P., Falcao, A.O.: Random forests for feature selection in
QSPR Models - an application for predicting standard enthalpy of formation of
hydrocarbons. J. Cheminform 5, 9 (2013). https://doi.org/10.1186/1758-2946-5-9

5. Wheeler, S.E.: Homodesmotic reactions for thermochemistry. WIREs Comput.
Mol. Sci. 2, 204–220 (2012). https://doi.org/10.1002/wcms.72

6. Yin, P., Zhang, Q., Shreeve, J.M.: Dancing with energetic nitrogen atoms: versatile
N-functionalization strategies for N-heterocyclic frameworks in high energy den-
sity materials. Acc. Chem. Res. 49(1), 4–16 (2016). https://doi.org/10.1021/acs.
accounts.5b00477

7. Anikin, O.V., Leonov, N.E., Klenov, M.S., et al.: An energetic (nitro-NNO-
azoxy)triazolo-1,2,4-triazine. Eur. J. Org. Chem. 26, 4189–4195 (2019). https://
doi.org/10.1002/ejoc.201900314

8. Leonov, N.E., Semenov, S.E., Klenov, M.S., et al.: Novel energetic aminofurazans
with a nitro-NNO-azoxy group. Mend. Comm. 31(6), 789–791 (2021). https://doi.
org/10.1016/j.mencom.2021.11.006

9. Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-4 theory. J. Chem. Phys.
126, 084108 (2007). https://doi.org/10.1063/1.2436888

10. Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-4 theory using reduced
order perturbation theory. J. Chem. Phys. 127, 124105 (2007). https://doi.org/
10.1063/1.2770701

11. Zhou, J., Zhang, J., Wang, B.: Recent synthetic efforts towards high energy density
materials: How to design high-performance energetic structures? FirePhysChem
2(2), 83–139 (2022). https://doi.org/10.1016/j.fpc.2021.09.005

https://doi.org/10.1071/CH08522
https://doi.org/10.1071/CH08522
https://doi.org/10.3390/i8050407
https://doi.org/10.3390/i8050407
https://doi.org/10.1186/1758-2946-5-9
https://doi.org/10.1002/wcms.72
https://doi.org/10.1021/acs.accounts.5b00477
https://doi.org/10.1021/acs.accounts.5b00477
https://doi.org/10.1002/ejoc.201900314
https://doi.org/10.1002/ejoc.201900314
https://doi.org/10.1016/j.mencom.2021.11.006
https://doi.org/10.1016/j.mencom.2021.11.006
https://doi.org/10.1063/1.2436888
https://doi.org/10.1063/1.2770701
https://doi.org/10.1063/1.2770701
https://doi.org/10.1016/j.fpc.2021.09.005

Azoxy Compounds 243

12. Voevodin, Vl.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer
Lomonosov-2: largescale, deep monitoring and fine analytics for the user com-
munity. Supercomput. Front. Innov. 6(2), 4–11 (2019). https://doi.org/10.14529/
jsfi190201

13. Nikitenko, D.A., Voevodin, V.V., Zhumatiy, S.A.: Deep analysis of job state
statistics on ”Lomonosov-2” supercomputer. Supercomput. Front. Innov. 5(2), 4–
10(2019). https://doi.org/10.14529/jsfi180201

https://doi.org/10.14529/jsfi190201
https://doi.org/10.14529/jsfi190201
https://doi.org/10.14529/jsfi180201

Parallel Algorithms for Simulation
of the Suspension Transport in Coastal
Systems Based on the Explicit-Implicit

and Splitting Schemes

A. I. Sukhinov1 , A. E. Chistyakov1 , V. V. Sidoryakina1(B) ,
I. Yu. Kuznetsova2 , A. M. Atayan1 , and M. V. Porksheyan1

1 Don State Technical University, Rostov-on-Don, Russian Federation
cvv9@mail.ru

2 Southern Federal University, Rostov-on-Don, Russian Federation

ikuznecova@sfedu.ru

Abstract. We consider two difference schemes that describe the
convective-diffusion transfer and settling of multifractional suspensions
in coastal systems. The first is based on an explicit-implicit scheme with
reduced cost of arithmetic operations. This difference scheme uses an
explicit approximation of the diffusion-convection operator (on the lower
time layer) along the horizontal directions and an implicit approximation
along the vertical direction. We determine the admissible values of the
time step for this scheme from the conditions of monotonicity, solvability,
and stability. We deem appropriate the use of this scheme, which natu-
rally leads to a parallel algorithm, on grids having a relatively moderate
number of nodes along each of the indicated horizontal directions, up to
several hundred. The admissible value of the time step in this case is in
the interval from 10−2 s to 1 s. The second is an additive scheme obtained
by splitting the original spatial three-dimensional problem into a chain of
two-dimensional ones in the horizontal directions and a one-dimensional
problem in the vertical direction of the task. In this case, the allowable
time step can be increased to several hundred seconds. We consider in
detail the parallel implementation, based on the decomposition of the
grid domain, of the set of two-dimensional diffusion-convection problems
included in the chain. The speedup of the algorithm was estimated on
the K60 computer cluster, installed at the Keldysh Institute of Applied
Mathematics (Russian Academy of Sciences).

Keywords: Suspension diffusion-convection models · Explicit-implicit
scheme · Splitting scheme · Parallel algorithms

The study was financially supported by the Russian Science Foundation (project № 22-
11-00295, https://rscf.ru/project/22-11-00295/).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 244–258, 2023.
https://doi.org/10.1007/978-3-031-38864-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_17&domain=pdf
http://orcid.org/0000-0002-5875-1523
http://orcid.org/0000-0002-8323-6005
http://orcid.org/0000-0001-7744-015X
http://orcid.org/0000-0003-1996-1605
http://orcid.org/0000-0003-4629-1002
http://orcid.org/0000-0001-6772-487X
https://rscf.ru/project/22-11-00295/
https://doi.org/10.1007/978-3-031-38864-4_17

Numerical Implementation of a 3D Model of Suspended Matter Transport 245

1 Introduction

The transport of suspended matter is the most significant factor that affects
the morpholithodynamic regime of coastal systems [1–4]. Under the influence of
waves and currents, the mass of alluvial material begins to move while under-
going chemical and mechanical changes. The processes that arise in this case
find their expression in both bottom and coastal formations that can reach sig-
nificant scales in size [5,6]. To solve this problem, we need scientifically based
mathematical models that remain reliable within a wide range of variation of
the spatial and temporal scales.

To date, more than one hundred models of suspended matter transport have
been created, and several hundred model computer programs are employed for
the study of various types of water bodies with different spatiotemporal scales
[7–9]. Each model, however, has its limitations. Models of suspended matter
transport need further study.

In this paper, we consider parallel algorithms for the numerical simulation
of spatial three-dimensional processes of transport of a multicomponent suspen-
sion based on schemes, namely, explicit-implicit and splitting schemes. In the
explicit-implicit scheme, the approximation of the diffusion-convection operator
along the horizontal coordinate directions is done on the lower layer, whereas
the one-dimensional diffusion-convection-deposition operator along the vertical
direction is applied on the upper time layer. In this case, the main computa-
tional costs are associated with the numerical solution by the tridiagonal matrix
algorithm the set of independent three-point boundary value problems on the
upper time layer [10,11]. The use of two-dimensional–one-dimensional additive
schemes is based on the sequential solution on each time layer of a chain of two
difference problems: two-dimensional convection-diffusion along the horizontal
coordinate directions and one-dimensional convection-diffusion-deposition along
the vertical coordinate direction [12,13]. We rely on implicit approximations for
both problems; the initial-final solutions of these problems are connected within
each time step. Under such a discretization method, the admissible time step
can be hundreds or even thousands of seconds. We consider in detail the parallel
implementation (based on the decomposition of the grid domain) of the set of
two-dimensional diffusion-convection problems included in the chain. Also, we
give the results of the corresponding numerical experiments.

2 Model of Multicomponent Suspension Transport

We use a rectangular Cartesian coordinate system Oxyz in which the axes Ox
and Oy lie on the surface of the undisturbed water surface and are directed to
the north and east, respectively, while the axis Oz is directed downward.

Let G ⊂ R
3 be the region where the process takes place. We assume that G

is a parallelepiped: G = {0 < x < Lx, 0 < y < Ly, 0 < z ≤ Lz}. Moreover,
we suppose that there are R types of suspension particles in the region G, and
the concentration of particles of the r-th type at the point (x, y, z) at time t

246 A. I. Sukhinov et al.

is cr = cr (x, y, z, t) (in units of mg/l), where t is the time variable (sec). The
fraction number r is determined by the density and size of its particles (settling
velocity of particles).

The system of equations describing the transfer of suspended particles can
be written as follows [14–16]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cr
∂t +∂(ucr)

∂x + ∂(vcr)
∂y + ∂((w+wg,r)cr)

∂z

= ∂
∂x

(
μhr

∂cr
∂x

)
+ ∂

∂y

(
μhr

∂cr
∂y

)
+ ∂

∂z

(
μvr

∂cr
∂z

)
+ Fr, r = 1, . . . , R,

F1 = (α2c2 − β1c1) + Φ1 (x, y, z, t) ,
. .

Fr = (βr−1cr−1 − αrcr) + (αr+1cr+1 − βrcr) + Φr (x, y, z, t) ,
r = 2, . . . , R − 1,

. .
FR = (βR−1cR−1 − αRcR) + ΦR (x, y, z, t) .

(1)

Here u, v, and w are the components of the fluid velocity vector U, given in units
of m/sec; wg,r is the settling velocity of particles of type r (m/sec); μhr and μvr

are, respectively, the horizontal and vertical diffusion coefficients of particles of
type r (m2/sec); αr and βr are the transformation rates of particles of type r
into particles of types (r − 1) and (r + 1), respectively, αr ≥ 0, βr ≥ 0 (m/sec);
Φr is the power of sources of particles of type r type, (kg/(m3s)).

The terms on the left-hand side of the first equation in system (1) (except for
the time derivative) describe the advective transport of particles: their motion
under the action of fluid flow and gravity. The terms on the right side describe
the diffusion of suspensions and their transformation from one type into another.

We assume that the settling velocity wg,r of particles in the aquatic envi-
ronment is constant when the forces of gravity and resistance are equal, i.e.,
wg,r ≡ const.

We search for a solution to system (1) in some given region QT = G × (0 <
t ≤ T]. The closure of QT is Q̄T = Ḡ × [0 ≤ t ≤ T].

Taking into account the features of coastal systems, we assume that the
coefficient μhr in a marine coastal system can be regarded as a constant (μhr =
const), e103 m2/s to 105 m2/s. The coefficient μvr essentially depends on the
spatial variables, primarily on the coordinate z, i.e., μvr = μvr(x, y, z). The
values of this coefficient are in the range from 10−1 m2/s to 1 m2/s.

We supplement Eq. (1) with initial conditions for t = 0:

cr(x, y, z, 0) = cr0(x, y, z), r = 1, . . . , R, (x, y, z) ∈ Ḡ, (2)

and boundary conditions:
– on the lateral surface of the parallelepiped G,

cr = c̃r, c̃r = const, r = 1, . . . , R, if (UG,n) ≤ 0, (3)
∂cr

∂n
= 0, r = 1, . . . , R, if (UG,n) ≥ 0, (4)

Numerical Implementation of a 3D Model of Suspended Matter Transport 247

where n is the outer normal vector to the boundary of the lateral surface of the
region Ḡ, UG is the fluid velocity vector at the boundary of the lateral surface,
and c̃r are known concentration values;

– on the lower face {0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, z = 0} of the parallelepiped G
(undisturbed free surface of the water body):

∂cr

∂z
= 0, r = 1, . . . , R; (5)

– on the upper face {0 < x < Lx, 0 < y < Ly, z = Lz} of the parallelepiped
G (bottom surface):

∂cr

∂n
= −wg,r

μvr
cr, r = 1, . . . , R. (6)

The conditions for the well-posedness of problem (1)–(6) are studied in [16]
under some smoothness conditions imposed upon the solution function, namely,

cr(x, y, z, t) ∈ C2(QT) ∩ C(QT), grad cr ∈ C(QT),

and the necessary smoothness of the domain boundary.

3 Construction of Schemes for the Suspension Transport
Problem: Explicit-Implicit and Splitting Schemes

We now consider the explicit-implicit scheme. Let us rewrite the first equation
in system (1) as

∂cr

∂t
= Acr + fr(x, y, z, t), (x, y, z) ∈ G, 0 < t ≤ T, (7)

where Acr is an elliptic differential operator in space variables with lower deriva-
tives for which the following representation holds:

Acr = (A12 + A3) cr,

A12cr = −1
2

(

u
∂cr

∂x
+ v

∂cr

∂y
+

∂ (ucr)
∂x

+
∂ (vcr)

∂y

)

+
∂

∂x

(

μhr
∂cr

∂x

)

+
∂

∂y

(

μhr
∂cr

∂y

)

,

A3cr = −1
2

(

(w + wg,r)
∂cr

∂z
+

∂

∂z
((w + wg,r) cr)

)

+
∂

∂z

(

μvr
∂cr

∂z

)

.

If the advective transport of suspended particles is described in the so-called
symmetric form [17,18], the operator can be expressed as

1
2

[

u
∂cn

r

∂x
+ v

∂cn
r

∂y
+ (w + wg,r)

∂cn
r

∂z
+

∂(ucn
r)

∂x
+

∂(vcn
r)

∂y
+

∂((w + wg,r)cn
r)

∂z

]

.

248 A. I. Sukhinov et al.

This expression allows constructing, as a result of discretization, a difference
operator of advective transfer that has the property of skew symmetry.

Let us build a uniform grid ωτ in the time interval 0 ≤ t ≤ T :

ωτ = {tn = nτ, n = 0, 1, . . . , N, Nτ = T}
We construct in the region G a connected grid ωh expressed as the Carte-

sian product of three one-dimensional grids along the coordinate directions
Ox,Oy,Oz:

ωh = ωx × ωy × ωz,

ωx = {xi : xi = ihx, i = 0, 1, . . . , Nx, Nxhx ≡ Lx},

ωy = {yj : yj = jhx, j = 0, 1, . . . , Ny, Nyhy ≡ Ly},

ωz = {zk : zk = khx, k = 0, 1, . . . , Nz, Nzhz ≡ Lz}.

We denote the sets of the internal grid nodes of ωh, ωx, ωy, and ωz by ωh,
ωx, ωy, and ωz, respectively.

Next, we consider an explicit-implicit approximation. On the spatial-
temporal grid ωτh = ωτ × ωh, we approximate problems (7) and (2)–(6) on
grids with an assignment at nodes shifted by half the grid step speeds and along
the corresponding coordinate direction.

After the discretization on the grid ωτh, we arrive at the system of three-point
difference equations

cn+1
r

τ
+ A3c

n+1
r =

cn
r

τ
− A12c

n
r + fr, n = 1, . . . , N. (8)

which can be implemented independently for a given value of the time layer and
all grid nodes ωx × ωy by sequential tridiagonal matrix algorithm [19,20].

Here and below, the dash over the function cn
r means that it belongs to the

class of grid functions, while the function cn
r is considered a sufficiently smooth

function of continuous variables.
To examine the restrictions imposed upon the constructed scheme (8) on the

upper time layer of the grid ωτh, we consider the canonical form [17] of the grid
equation, namely,

A(P)Y (P) =
∑

Qm∈ω′(P)
m=1,2

B(P,Qm)Y (Qm) + F (P), P ∈ ωτh,

P ≡ (xi, yj , zk), Y (P) ≡ cn
r (xi, yj , zk). (9)

The values of the coefficients A(P) and B(P,Qm), m = 1, 2, and the right-
most terms F (P) are generated separately for the internal and boundary nodes.
It should be noted that the values of the components (u, v, w+wg,r) determined
at half-integer grid nodes in the hydrodynamic block of the model are involved
in the construction of all coefficients of grid Eq. (9).

Equation (10) should be supplemented with boundary conditions formulated
for the grid function Y (P), P ∈ ωh\ωh, and consistent with conditions (3)–(6).

Numerical Implementation of a 3D Model of Suspended Matter Transport 249

Focusing on the difference scheme (10) for cn
r and taking into account the

relations for the internal nodes of the grid ωh, we can write the following rela-
tions:

A (P) =
1
τ

+
1
h2

z

(μhr (xi, yj , zk + 0.5hz) + μvr (xi, yj , zk − 0.5hz)) .

B (P,Q1) = −wn+1 (xi, yj , zk − 0.5hz) + wg,r

2hz
+

μvr (xi, yj , zk − 0.5hz)
h2

z

,

B (P,Q2) =
wn+1 (xi, yj , zk + 0.5hz) + wg,r

2hz
+

μvr (xi, yj , zk + 0.5hz)
h2

z

.

(10)

We require that the coefficients B (P,Q1) and B (P,Q2) in (10) be positive
with some “tolerance”. Thus we obtain the following sufficient conditions for the
positivity of the coefficients:

|wn (xi, yj , zk − 0.5hz) + wg,r| hz

μvr (xi, yj , zk − 0.5hz)
≤ 1, (11)

|wn (xi, yj , zk + 0.5hz) + wg,r| hz

μvr (xi, yj , zk + 0.5hz)
≤ 1. (12)

Conditions (11) and (12) imply a restriction upon the grid Péclet number,
which ensures the correctness of the application of the tridiagonal matrix method
[19], namely,

Pen+1
hz (x, y, z + 0.5hz) ≡ max

(x,y,z)∈ωh

=
|w′ n+1

r (x, y, z ± 0.5hz)|hz

μvr(x, y, z ± 0.5hz)
≤ 1. (13)

To study the stability and convergence of the difference scheme, we need to
estimate the coefficient

D(P) ≡ A(P) − B(P,Q1) − B(P,Q2), P ∈ ωh.

The estimate of the time step, which follows from the condition D (P) > 0
in the “worst” case, leads to the following inequality:

τ ≤ hz

|wn+1(xi, yj , zk − 0.5hz) + wg,r| , (xi, yj , zk) ∈ ωh. (14)

Inequality (14) expresses the Courant condition for the vertical component (w+
wg,r).

Let us estimate the admissible values of τ according to inequalities (13) and
(14) as applied to coastal systems.

The characteristic values of the studied parameters are as follows:

hz = (0.05–0.2) m,

μvr = (0.1–1) m2/s,

w + wg,r = (10−4–5 · 10−3) m/s.

250 A. I. Sukhinov et al.

If we plug these values into (13), we see that it holds “with some tolerance”. It
is clear that these values of τ are just approximative. However, it is worth noting
that in numerous computational experiments involving problems of suspension
transport dynamics, we could corroborate the verisimilitude of the obtained
estimates, including those for the time step τ .

Let us note some features of the discrete-model numerical implementation
that stem from the explicit approximation of the operator of convective-diffusion
transfer along the horizontal coordinate directions (that is, A12), in particular,
the stability conditions.

For the sake of simplicity, consider the scheme

cn+1
r − cn

r

τ
+ A12c

n
r = 0. (15)

From the sufficient condition for the stability of scheme (15), we obtain the
following constraint on the time step:

τ ≤ 1
‖A12‖ . (16)

The estimates (14)–(16) of the admissible step τ have the form 0.1 sec < τ ≤
1 sec, which means that the model can be used for grids with “moderate” num-
bers of nodes in the horizontal directions (from 102 to 103 nodes) for simulated
time intervals of several hours. We also consider an additive unconditionally sta-
ble splitting scheme, specifically, an implicit two-dimensional–one-dimensional
splitting scheme that can be expressed as

c
n+1/2
r − cn

r

0.5τ
= A12c

n
r + A3c

n+1/2
r + F 1

r , n = 0, 1, . . . , N − 1,

cn+1
r − c

n+1/2
r

0.5τ
= A12c

n+1
r + A3c

n+1/2
r + F 2

r , n = 1, . . . , N,

Fr ≡ F 1
r + F 2

r .

(17)

Similarly to the previous one, we can obtain estimates of the admissible time
step that can vary from several tens to several hundreds of seconds in coastal
systems. This means that the constructed scheme can be applied to real-life
problems.

4 Construction of Parallel Algorithms for Computing 2D
Problems

We now consider the organization of parallel computing when solving the original
problem based on scheme (17). The main computational costs are associated with
the solution of two-dimensional grid problems of diffusion-convection

cn+1
r − 0.5τA12c

n+1
r = cn+1/2

r + 0.5τA3c
n+1/2
r + F 2

r , n = 1, . . . , N. (18)

Numerical Implementation of a 3D Model of Suspended Matter Transport 251

Let us write the iterative formula of the Seidel method for two-dimensional
grid equations of diffusion-convection. To simplify the notations, we set

qi,j ≡ q(xi, yj) ≡ cn+1
r (xi, yj , zk) (19)

for fixed values of r, n, n + 1, and zk.
If we introduce the iteration number s, then the iterative formula of the

Seidel method for Eq. (18) bearing in mind the notation (19) can be written as

qs+1
i,j + 0.5τ

[
(
u(xi+1/2, yj)qs

i+1,j − u(xi−1/2, yj)qs+1
i−1,j

) 1
2hx

+
(
v(xi, yj+1/2)qs

i,j+1 − v(xi, yj−1/2)qs+1
i,j−1

) 1
2hy

− μh(qs
i+1,j − 2qs+1

i,j + qs+1
i−1,j)

1
h2

x

− μh(qs
i,j+1 − 2qs+1

i,j + qs+1
i,j−1)

1
h2

y

]

= F̃ 2
i,j , (20)

where

u(xi±1/2, yj) ≡ un+1(xi±1/2, yj , zk),

v(xi, yj±1/2) ≡ vn+1(xi, yj±1/2, zk),

F̃ 2
i,j = F 2

r (xi, yj , zk) + cn+1/2
r (xi, yj , zk)

+0.5τ [((wn+1/2 + wg,r)(xi, yj , zk+1/2)cn+1/2
r (xi, yj , zk+1)

−(wn+1/2 + wg,r)(xi, yj , zk−1/2)cn+1/2
r (xi, yj , zk−1))

1
2hz

+
1
hz

(
1
hz

(μv(xi, yj , zk+1/2)cn+1/2
r (xi, yj , zk+1) − cn+1/2

r (xi, yj , zk))

− 1
hz

(μv(xi, yj , zk−1/2)cn+1/2
r (xi, yj , zk) − cn+1/2

r (xi, yj , zk−1)))].

(21)

For the sake of simplicity, we consider boundary conditions of the first kind
for system (20), (21). After expressing qs+1

i,j from relation (20), we obtain the
calculation formula of the Seidel method.

If the time step is correctly chosen according to the condition

τ ≤ min(hx, hy)
max
ωh

∣
∣un+1

i±1/2,j,k

∣
∣ + max

ωh

∣
∣vn+1

i,j±1/2,k

∣
∣
,

then the Seidel method converges exponentially.
Let us consider the organization of calculations.
Decompose the two-dimensional computational domain on the grid ωx × ωy

with respect to spatial variables x, y.
Denote by σl the subdomain number l, 0 ≤ l ≤ p − 1, where p is the number

of subdomains into which the original domain has been decomposed.

252 A. I. Sukhinov et al.

At the internal nodes of the grid, the values of the grid concentrations qi,j

are determined for i ∈ 1, Nx − 2 and j ∈ 1, Ny − 2. The calculated nodes of
the region σl are the elements ql

i,j for i ∈ 1, Nx − 2 and j ∈ 1, Ns
2 − 2. When

splitting the original region, we pay attention to the fact that adjacent regions
σl and σl+1 intersect at two nodes in the direction perpendicular to the splitting
lines, and equalities ul

i,N l
2−2

= ul+1
i,0 , ul

i,N l
2−1

= ul+1
i,1 hold.

To represent a value q in the vector form, we associate a pair of indices i, j
with the value m which describes the ordinal number of the element of the vector
q, that is, m = i + jNx, where 0 ≤ m ≤ n − 1, and n is the length of vector
q = (q0, q1, . . . , qn−1)T.

We need to know two parameters for each subdomain σl, obtained by decom-
position of the computational domain, namely, the initial index j = N l

1 within
the initial computational domain and the width of the N l

2 subdomain. The index
number N l

1, from which the corresponding fragment of the computational domain
begins, can be calculated by the formula Ns

1 = 	l(Ny − 2)/p
, where 	x
 is the
floor function, which is defined as the greatest integer less than or equal to x.
Below we will also need the ceiling function �x�, defined as the least integer
greater than or equal to x. The width of the subregion σl along the axis Oy can
be calculated by the formula N l

2 = 	(l + 1)(Ny − 2)/p
 − N l
1 + 2.

We will use the following parameters for assessing the complexity of the
operations required to solve the systems: ta denotes the time of execution of
an arithmetic operation, tlat is the time of organization of data transmission
(latency), and tx is the time needed for the transmission of a unit of data.

Figure 1 shows the graph of the dependence of the transfer time versus
the volume of transmitted data between the nodes of the K60 computer sys-
tem, installed at the Keldysh Institute of Applied Mathematics of the Russian
Academy of Sciences (KIAM RAS). We see that the graph has a peak when the
amount of transmitted data is approximately 512 floating-point numbers. Let us
denote this value by Nmax = 512.

Fig. 1. The dependence of the data transmission time versus the volume of trans-
mitted data for different numbers of computing nodes of the K60 computer system
(KIAM RAS)

Numerical Implementation of a 3D Model of Suspended Matter Transport 253

The calculation of data on a multiprocessor computer system can significantly
reduce the computation time. Alas, we can not always expect high time efficiency
from a computing system. In this case, it is correct to conduct a theoretical
analysis of the computation time based on regression analysis.

Consider a multiple regression model. The vector tlat is the total operat-
ing time of the computing system (in seconds), and vectors n and p are the
explanatory factors, namely, the amount of transmitted data and the number of
computing nodes used. The formula for the latency is as follows:

tlat(p, n) =
{

5.21 × 10−6 + 1.53 × 10−7p if n ≤ 512,
6.733 × 10−6p if n > 512.

For the transmission time of a packet with a single element, we have tx =
3.3 × 10−9 s.

The time spent on one iteration in the case of the sequential version of the
algorithm is expressed as

t = 21ta (Nx − 2) (Ny − 2) .

When the parallel algorithm performs on a multiprocessor computer system, the
calculation time is

t = 21ta(Nx − 2)max
l

(N l
2 − 2) + 2(tlat(p,Nx − 2) + (Nx − 2)tx),

⌊
Ny − 2

p

⌋

≤ max
l

(N l
2 − 2) ≤

⌈
Ny − 2

p

⌉

, max
l

N l
2 ≈ Ny − 2

p
.

If the amount of transmitted data is greater than Nx − 2 > Nmax, then
k = Nx−2

Nmax
exchanges are performed, and the time spent by the parallel algorithm

is

t = 21ta
(Nx − 2) (Ny − 2)

p
+ 2

(

tlat

(

p,

⌈
Nx − 2

k

⌉)

k + (Nx − 2) tx

)

.

Thus the speedup of the parallel algorithm is expressed as

Sp =
21pta(Nx − 2)(Ny − 2)

21ta(Nx − 2)(Ny − 2) + 2p
(
tlat

(
p,

⌈
Nx−2

k

⌉)
k + (Nx − 2)tx

) .

Figure 2 shows the results of the parallel version of the algorithm for sev-
eral numbers of processors with a variable decomposition of the computational
domain. We see here two graphs: that of the speedup of the parallel version of
the algorithm with splitting into two-dimensional explicit and one-dimensional
implicit schemes based on MPI technology and that of the linear speedup ver-
sus the number of computers involved (taking into account various options for
the decomposition of the computational domain). The maximum number of cal-
culators used was 24, while the computational-grid size was 1000 × 1000 × 60
nodes.

254 A. I. Sukhinov et al.

Fig. 2. The results of the parallel version of the algorithm for several numbers of
processors with various decompositions of the computational domain

The efficiency of parallel programs on systems with distributed memory
essentially depends on the communication environment. A reasonably complete
communication environment is characterized by two parameters: the bandwidth,
which determines the number of bytes transmitted per unit of time, and the
latency. Communication operations are much slower than accessing local mem-
ory; therefore, the most efficient parallel programs are those with the minimum
number of exchanges.

5 Numerical Experiments for the Simulation
of Suspended Matter Transport

We consider the results of the software implementation of the mathematical
model of suspended matter transport in a river mouth or estuary.

The input data for the water region and the suspended matter are the fol-
lowing: the length of the water body is 50 m; its width is 50 m; its depth is
2 m; the flow velocity is 0.2 m/s; the suspension sedimentation rate (according
to Stokes) is 2.042 mm/s; the density of fresh water under normal conditions
is 1000 kg kg/m3; the suspended matter density is 2700 kg kg/m3; the volume
fraction of the suspended matter is 1/17.

The computational domain parameters are the following: the step along the
horizontal spatial coordinates is 0.5 m; the step along the vertical spatial coor-
dinate is 0.1 m; the calculation interval is 15 min; the time step is 0.25 s.

Figure 3 shows the geometry of the computational domain as a depth map.
Figures 4 and 5 depict the simulation results for the process of suspended

matter transfer by mixing and flow of the water in the mouth of a river assuming
a significant density gradient of the aquatic environment. The graph in Fig. 4
describes the average concentration versus depth. The graphs in Fig. 5 show the
density in the section cut by the plane parallel to Oxz that passes through the
center of the computational domain (at y = 25 m). In these figures, to the right

Numerical Implementation of a 3D Model of Suspended Matter Transport 255

Fig. 3. Depth map of the computational domain

of the vertical cut, we can see the change in concentration of suspended matter
in the stratified layers of the aquatic environment as the density changes with
time.

Fig. 4. The concentration of suspended matter in the aquatic environment: a) after
1 min of the estimated time; b) after 15 min of the estimated time

The developed software package can be used to calculate the transfer for both
heavy particles and particles lighter than water.

256 A. I. Sukhinov et al.

Fig. 5. The density field of the aquatic environment: a) after 1 min of the estimated
time; b) after 15 min of the estimated time

6 Conclusions

We considered two difference schemes to approximate the initial-boundary
problem of multicomponent suspension transport in coastal systems. Also, we
described the corresponding parallel algorithms: an explicit-implicit scheme and
a two-dimensional–one-dimensional splitting scheme. The first scheme relies
on an implicit approximation for the one-dimensional operator of convective-
diffusion transport and settling along the vertical coordinate and an explicit
approximation for the two-dimensional operator of convective-diffusion trans-
port along the horizontal coordinates. The algorithm for the numerical imple-
mentation of the explicit-implicit scheme is based on the sequential solution of
a set of independent three-point (one-dimensional) difference problems in the
vertical direction. This scheme leads to an algorithm with natural parallelism.
However, the admissible time step—for both the explicit scheme approximat-
ing the two-dimensional convection-diffusion problem and real-life problems in
coastal systems—is of the order of hundredths of a second. This limits the scope
of the scheme for grids with “moderate” numbers of nodes in the horizontal
directions for simulated time intervals of several tens of minutes.

Also, we considered another scheme, a two-dimensional–one-dimensional
additive splitting scheme, which made it possible to replace the original problem
with a chain of implicit two-dimensional horizontal and implicit vertical one-
dimensional tasks. This allowed us to increase the admissible time step up to
several hundred seconds and, at the same time, reduce interprocessor exchanges,
which, for “classical” one-dimensional splitting schemes, become predominant
compared to the execution time of computational operations (for example, in
the numerical implementation of three-point difference equations by the sweep
method on fractional time layers).

Numerical Implementation of a 3D Model of Suspended Matter Transport 257

We also present the results of numerical experiments involving the con-
structed algorithms, implemented as a complex of parallel programs for the K60
computer system at the KIAM RAS. The experiments yielded acceptable values
of speedup and efficiency (more than 70%) on a relatively moderate number of
computers (up to 24). This supports the application of the constructed program
package for the operational forecast of pollution in coastal systems.

References

1. Yan, H., et al.: Numerical investigation of particles’ transport, deposition and resus-
pension under unsteady conditions in constructed stormwater ponds. Environ. Sci.
Eur. 32(1), 1–17 (2020). https://doi.org/10.1186/s12302-020-00349-y

2. Shams, M., Ahmadi, G., Smith, D.H.: Computational modeling of flow and sedi-
ment transport and deposition in meandering rivers. Adv. Water Resour. 25(6),
689–699 (2002). https://doi.org/10.1016/S0309-1708(02)00034-9

3. Battisacco, E., Franca, M.J., Schleiss, A.J.: Sediment replenishment: influence of
the geometrical configuration on the morphological evolution of channel-bed. Wat.
Resour. Res. 52(11), 8879–8894 (2016). https://doi.org/10.1002/2016WR019157

4. Liu, X., Qi, S., Huang, Y., Chen, Yu., Du, P.: Predictive modeling in sediment
transportation across multiple spatial scales in the Jialing river Basin of China.
Int. J. Sedim. Res. 30(3), 250–255 (2015). https://doi.org/10.1016/j.ijsrc.2015.03.
013

5. Cao, L., et al.: Factors controlling discharge-suspended sediment hysteresis in karst
basins, southwest China: implications for sediment management. J. Hydrol. 594,
125792 (2021). https://doi.org/10.1016/j.jhydrol.2020.125792

6. Serra, T., Soler, M., Barcelona, A., Colomer, J.: Suspended sediment transport
and deposition in sediment-replenished artificial floods in Mediterranean rivers. J.
Hydrol. 609, 127756 (2022). https://doi.org/10.1016/j.jhydrol.2022.127756

7. Haddadchi, A., Hicks, M.: Interpreting event-based suspended sediment concen-
tration and flow hysteresis patterns. J. Soils Sed. 21(1), 592–612 (2020). https://
doi.org/10.1007/s11368-020-02777-y

8. Jirka, G.H.: Large scale flow structures and mixing processes in shallow flows. J.
Hydr. Res. 39(6), 567–573 (2001). https://doi.org/10.1080/00221686.2001.9628285

9. Lin, B., Falconer, R.A.: Numerical modelling of three-dimensional suspended sed-
iment for estuarine and coastal waters. J. Hydraul. Res. 34(4), 435–456 (1996).
https://doi.org/10.1080/00221689609498470

10. Murillo, J., Burguete, J., Brufau, P., Garćıa-Navarro, P.: Coupling between shallow
water and solute flow equations: analysis and management of source terms in 2D.
Int. J. Numer. Meth. Fluids 49(3), 267–299 (2005). https://doi.org/10.1002/fld.
992

11. Thomé, V., Vasudeva, Murthy, A. S.: An explicit-implicit splitting method for
a convection-diffusion problem. Comput. Methods Appl. Math. 19(2), 283–293
(2019). https://doi.org/10.1515/cmam-2018-0018

12. Ngondiep, E., Tedjani, A.H.: Unconditional stability and fourth-order convergence
of a two-step time split explicit/implicit scheme for two-dimensional nonlinear
unsteady convection diffusion-reaction equation with variable coefficients. Mathe-
matics 8, 1034 (2020). https://doi.org/10.21203/rs.3.rs-2380601/v1

13. Vabishchevich, P.N.: Additive Schemes (splitting Schemes) for Systems of Partial
Derivative Equations. Numer. Methods Program. (Vychislitel’nye Metody i Pro-
grammirovanie), 11, 1–6 (2009)

https://doi.org/10.1186/s12302-020-00349-y
https://doi.org/10.1016/S0309-1708(02)00034-9
https://doi.org/10.1002/2016WR019157
https://doi.org/10.1016/j.ijsrc.2015.03.013
https://doi.org/10.1016/j.ijsrc.2015.03.013
https://doi.org/10.1016/j.jhydrol.2020.125792
https://doi.org/10.1016/j.jhydrol.2022.127756
https://doi.org/10.1007/s11368-020-02777-y
https://doi.org/10.1007/s11368-020-02777-y
https://doi.org/10.1080/00221686.2001.9628285
https://doi.org/10.1080/00221689609498470
https://doi.org/10.1002/fld.992
https://doi.org/10.1002/fld.992
https://doi.org/10.1515/cmam-2018-0018
https://doi.org/10.21203/rs.3.rs-2380601/v1

258 A. I. Sukhinov et al.

14. Sukhinov, A.I., Chistyakov, A.E., Protsenko, E.A., Sidoryakina, V.V., Protsenko,
S.V.: Parallel algorithms for solving the problem of coastal bottom relief dynamics.
Numer. Methods Program. 21(3), 196–206 (2020)

15. Sidoryakina, V.V., Sukhinov, A.I.: Well-posedness analysis and numerical imple-
mentation of a linearized two-dimensional bottom sediment transport problem.
Comput. Math. Math. Phys. 57(6), 978–994 (2017). https://doi.org/10.1134/
S0965542517060124

16. Sukhinov, A.I., Sukhinov, A.A., Sidoryakina, V.V.: Uniqueness of solving the prob-
lem of transport and sedimentation of multicomponent suspensions in coastal sys-
tems structures. In: IOP Conference Series: Journal of Physics: Conference Series,
vol. 1479, no. 1, p. 012081 (2020)

17. Samarskii, A.A., Vabishchevich, P.N.: Numerical Methods for Solving Convection-
Diffusion Problems. M.: Editorial (2004)

18. Vabishchevich, P.N.: Additive Operator-Difference Schemes (Splitting Schemes).
De Gruyter, Berlin, Germany (2013)

19. Samarskii, A.A.: The Theory of Difference Schemes. Basel, Marcel Dekker Inc,
New York (2001)

20. Samarskii, A.A., Gulin, A.V.: Numerical Methods in Mathematical Physics. Nauch-
nyimir, Moscow (2003)

https://doi.org/10.1134/S0965542517060124
https://doi.org/10.1134/S0965542517060124

Parallel Numerical Implementation
of Three-Dimensional Mathematical
Models of Hydrodynamics Taking

into Account Vertical Turbulent Exchange

Elena A. Protsenko1 , Alexander I. Sukhinov2 ,
and Sofya V. Protsenko1(B)

1 A. P. Chekhov Taganrog Institute (Branch of Rostov State University
of Economics), Taganrog, Russian Federation

{eapros,rab55555}@rambler.ru
2 Don State Technical University, Rostov-on-Don, Russian Federation

Abstract. The article is devoted to the development, research, and par-
allel numerical implementation of three-dimensional mathematical mod-
els of hydrodynamics. The model is improved by adding a new method for
computing the turbulent exchange coefficient in the vertical direction for
shallow water bodies, refined as a result of a significant amount of expedi-
tion data records. The 3D mathematical model of wave processes is based
on the Navier–Stokes equations of motion in regions with dynamically
changing geometry of the computational domain. The three main indica-
tors for evaluating computational efficiency are: speedup ratio, parallel
efficiency and time saving ratio. The most important parameter is scal-
ability, which is evaluated using the other three parameters as metrics.
This study evaluates the comparative analysis of 28 threads compared
to sequential computations with a single thread, which demonstrates the
scalability of SWAN depending on the number of computational threads.
Also, we consider the parallel implementation of three-dimensional math-
ematical models of hydrodynamics.

Keywords: 3D mathematical models of hydrodynamics · Turbulent
exchange coefficient · Numerical simulation · Parallel numerical
implementation

1 Introduction

In the modern world, there is a noticeable trend toward the integration of
the mathematical apparatus with cutting-edge computing technologies to mini-
mize time and computational costs when solving problems from various spheres
associated with the human impact upon the environment, be it natural or

The study was financially supported by the Russian Science Foundation (Project № 23-
21-00210, https://rscf.ru/project/23-21-00210/).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 259–268, 2023.
https://doi.org/10.1007/978-3-031-38864-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_18&domain=pdf
http://orcid.org/0000-0001-7911-3558
http://orcid.org/0000-0002-5875-1523
http://orcid.org/0000-0001-9656-8466
https://rscf.ru/project/23-21-00210/
https://doi.org/10.1007/978-3-031-38864-4_18

260 E. A. Protsenko et al.

technological. The key point in this process is the combination of this factor
into a holistic computational process capable of large-scale physical modeling.
The development of mathematical modeling methods currently requires a wide
range of field experiments for verification. Yet, when modeling hydrodynamic
processes, difficulties arise with the choice of the acceptable level of description
for their dynamics and forecasts [1,2]. The solution to this issue can be the
development and improvement of technologies for conducting model and field
studies, taking into account the multiscale effect.

Major scientific schools around the world are currently engaged in the mod-
eling of hydrodynamic wave processes. Many researchers have used numerical
models based on CFD (Computational Fluid Dynamics) to study several types
of nondestructive and destructive waves [3]. Below we dwell upon some advan-
tages and disadvantages of modern wind-wave models.

Wind-wave models of the third generation, such as WAM, SWAN, and Wave-
Watch, give realistic forecasts consistent with data obtained through analytical,
numerical, and experimental approaches. Nevertheless, they also have several
significant drawbacks. For instance, they require high-resolution bathymetry,
and inaccurate bathymetry can lead to imprecise refraction calculations, whose
results can extend to areas where refraction as such is insignificant.

SWAN (Simulation Waves Nearshore) is a hydrodynamic model designed to
predict waves in coastal waters. Since the model takes into account the inter-
action of waves with water currents, the main SWAN equation is the balance
equation of spectral action. It is formulated in Cartesian and spherical coordi-
nates to account for small and large calculations. Computations with SWAN can
range from complex cases requiring a complete, time-dependent, two-dimensional
equation of conservation of the momentum of motion in spherical coordinates to
simple one-dimensional cases requiring only a stationary, one-dimensional equa-
tion of conservation of energy. SWAN provides transmission through obstacles,
such as breakwaters and rocks, and reflection from them. The spatial-filtered
Navier–Stokes (SFNS) model is designed to simulate the interaction of waves
with complex coastal structures [4].

The model of coastal spectral waves based on the equation of the balance of
wave action with the effect of diffraction (WANTED) is employed to simulate
changes in the dynamics of random waves in complex bathymetry. The simulated
wave field without taking into account coastal currents differs from experimen-
tal data, whereas the results of the model taking into account currents clearly
reproduce the amplification of the wave height in front of concave coastlines [5].

Due to the situation today in the world, foreign research may not be available
to Russian scientists. This is why the development of their own approaches to
modeling is becoming more and more urgent. Despite the significant amount
of research devoted to modern approaches to turbulence modeling at various
scales (LES, hybrid RANS/LES, DES, SAS), their transformation into a global
and comprehensive structure is required. It is necessary to study not only their
theoretical features but also the possibility of practical implementation [6].

Parallel Numerical Implementation of 3D Models of Hydrodynamics 261

We describe in this paper the study and parallel numerical implementation
of a 3D hydrodynamic model aimed at predicting the development and ecolog-
ical design of coastal systems taking into account the impact of mechanisms of
multiscale turbulent mixing. This model provides reliable and timely forecasts.

The problems considered in this paper are characterized by incomplete data,
hence the issue of calibration and verification of the corresponding mathematical
models. Our solution to this relies on incorporating data from field studies.

The paper is organized as follows. The introduction describes the existing
models of hydrodynamics and substantiates the relevance of the study. Section 2
is devoted to the spatially inhomogeneous 3D model of wave hydrodynamics.
In Sect. 3 is devoted to the parameterization of the vertical turbulent exchange,
we use in this research the LES approach. Section 4 contains parallel implemen-
tation of wind-wave models of the third generation. Section 5 contains parallel
implementation of 3D model of wave hydrodynamics. Section 6 is devoted to the
numerical implementation of 3D model of wave hydrodynamics and the predic-
tion of the aquatic environment motion. Conclusion summarizes the study and
points directions for further work.

2 Spatially Inhomogeneous 3D Model of Wave
Hydrodynamics in a Shallow Water Body

The spatially inhomogeneous 3D model of wave hydrodynamics includes the
following parts:

– the Navier–Stokes equations of motion,

u′
t + uu′

x + vu′
y + wu′

z = −1
ρ
P ′

x + (μu′
x)

′

x +
(
μu′

y

)′

y
+ (νu′

z)
′

z ,

v′
t + uv′

x + vv′
y + wv′

z = −1
ρ
P ′

y + (μv′
x)

′

x +
(
μv′

y

)′

y
+ (νv′

z)
′

z , (1)

w′
t + uw′

x + vw′
y + ww′

z = −1
ρ
P ′

z + (μw′
x)

′

x +
(
μw′

y

)′

y
+ (νw′

z)
′

z + g;

– and the continuity equation,

ρ
′
t + (ρu)

′

x + (ρv)
′

y + (ρw)
′

z = 0, (2)

where V = {u, v, w} is the velocity vector of the water current in a shallow
water body; ρ is the aquatic environment density; P is the hydrodynamic
pressure; g is the gravitational acceleration; μ and ν are the coefficients of
turbulent exchange in the horizontal and vertical directions, respectively; n is
the normal vector to the surface describing the computational domain bound-
ary [10–12];

262 E. A. Protsenko et al.

– and also the boundary conditions

V = V0, P ′
n = 0,

ρμ (Vτ)
′

n = −τ , Vn = 0, P ′
n = 0,

(Vτ)
′

n = 0, Vn = 0, P ′
n = 0,

ρμ (Vτ)
′

n = −τ , w = −ω − P ′
t/(ρg), P ′

n = 0,

ρμ (Vτ)
′

n = −τ , w = 0, P ′
n = 0,

where ω is the liquid evaporation intensity; V n, V τ are the normal and
tangential components of the velocity vector; τ = {τx, τy, τz} is the tangential
stress vector.

A raster model of the computational domain is built on the basis of obser-
vations at individual points in space. Operational territorial units (OUT) serve
as a base for representing spatial information in a raster data model [8]. The
territory of the objects is completely covered by a regular grid. Figure 1 shows a
raster model of the computational domain. The data for the raster model were
the measurements provided by the cadastral survey at points with known coor-
dinates. We understand the contour of the image as a spatially extended gap,
a drop in level, or an abrupt change in brightness values. Currently, there are
many algorithms, and only some are widely used thanks to their versatility [9].

Fig. 1. The geometry of the calculated area

3 Parameterization of the Vertical Turbulent Exchange

We use in this research the LES approach, in which modern algebraic subgrid
models are employed [8]. Also, the experimental evidence given here allows us to
determine the vertical coefficient of turbulent exchange using parameterizations
proposed by Belotserkovsky, Boussinesq, and Smagorinsky (Fig. 2).

Parallel Numerical Implementation of 3D Models of Hydrodynamics 263

Fig. 2. Vertical turbulent exchange coefficient calculated based on various types of
approximations for the parameterization of vertical turbulent mixing (horizontal values
are given in m2/s)

Based on the approaches described above to the computation of the coeffi-
cient of vertical turbulent exchange, we obtained distributions that are vertically
inhomogeneous at all measurement points. The analysis showed that the param-
eterization results for all approaches were close in order of magnitude and also
in the location of the peaks on the graphs. Based on the statistical analysis, we
found that the coefficients obtained by Smagorinsky parameterization show the
smallest standard deviation; moreover, under this parameterization, the hypoth-
esis of the normality of the distribution is fulfilled in most cases.

4 Parallel Implementation of Wind-Wave Models
of the Third Generation

For WAM, SWAN, and WaveWatch, the processes occurring in the aquatic envi-
ronment are a black box. That is not the case for a three-dimensional model
of hydrodynamics. We describe in this paper the study and parallel numeri-
cal implementation of a spatially inhomogeneous three-dimensional mathemati-
cal model aimed at predicting the development and ecological design of coastal
systems taking into account the impact of mechanisms of multiscale turbulent
mixing. It ensures the reliability and timeline of the corresponding forecasts [7].

The SWAN model is a third-generation wave prediction model developed
at the Delft University of Technology. Since its initial release, this model has
become a widely used and reliable tool for offshore and nearshore wave predic-
tions. The parallel implementation of the SWAN software package is available in
two versions (OpenMP and MPI). SWAN includes OpenMP compiler directives
that tell the compiler how to generate multithreaded code on a computer with

264 E. A. Protsenko et al.

shared memory; in addition, the use of MPI technology provides communication
between independent processors. SWAN can be run on a cluster of PC nodes as
it is based on an independent processor that does not use shared memory but is
connected via an interconnected network.

Fig. 3. The parallel computational efficiency of SWAN

All computations were performed on Intel Xeon E5-2670 computing nodes
with a frequency of 2.3 GHz. Twenty-eight threads were employed. The main
goal was to evaluate the scalability of the algorithm.

Figure 3 shows the scalability of SWAN, the MPI version is more efficient
for all sizes of the computing area; this version is superior to the OMP version.
Almost linear speedup is observed for small numbers of computational threads.
The same results were obtained when using the time-saving factor. There is a
clear and uniform alignment with numbers of flows exceeding approximately six.

5 Parallel Implementation of 3D Mathematical Models
of Hydrodynamics

We carried out the parallel implementation of the algorithm based on the decom-
position of the computational domain in two spatial directions using MPI. It
allowed us to conduct a series of experiments on a multiprocessor computing
system built on the basis of the OpenHPC open application stack and having
1440 processor cores at a frequency of 2.3 GHz and 10.24 TB of RAM.

Parallel Numerical Implementation of 3D Models of Hydrodynamics 265

The algorithm for distributing spatial propagation across individual proces-
sors provides load balance (for each time step) but does not guarantee that the
communication is synchronized since not every computation on each processor
requires the same effort. To avoid load imbalance, we employed nonblocking com-
munication and added an array dimension, which provides an actively managed
buffer space (Fig. 4).

Fig. 4. The parallel computational efficiency of the 3D model of wave hydrodynamics

The following indicators were considered: speedup, parallel efficiency, and
time savings on 128 nodes. The maximum speedup of 43.668 was attained on
128 processors. A drop in speedup was observed on 256 calculators. Figure 5
displays the indicators for evaluating the parallel computational efficiency of the
3D model of wave hydrodynamics depending on the number of processors. Thus
the parallel implementation of the ATM algorithm can be efficiently used to
solve problems of hydrodynamics on large numbers of nodes.

6 Results of the Numerical Experiments

The developed software package was used for the numerical implementation of
the considered three-dimensional model of wave hydrodynamics and the predic-
tion of the aquatic environment motion.

266 E. A. Protsenko et al.

Fig. 5. The basic program elements and data flow

Figure 5 presents the results of numerical experiments modeling the propa-
gation of wave hydrodynamic processes based on a 3D model of the motion of
an aqueous medium considering the inhomogeneity of turbulent mixing in the
vertical direction at various points in time. Figure 5 clearly shows the changes
in the hydrodynamic wave process in the coastal zone and the formation of
vortex structures. The developed software tools allow setting the parameters of
the source of vibrations, as well as the bathymetry of the water body. Figure 6
provides a means to analyze the dynamics of the bottom relief.

Fig. 6. Three-dimensional model of the aqueous medium motion

To verify the adequacy of the three-dimensional model, the computational
results were compared with numerical and experimental data known to the
authors of this study. We noted a good agreement with the results obtained
on the main stages of propagation and collapse of the surface wave.

Parallel Numerical Implementation of 3D Models of Hydrodynamics 267

7 Conclusions

The paper presents the results of the mathematical modeling of three-
dimensional wave processes in shallow water bodies taking into account the
features of turbulent exchange. The optimal parameterization of the vertical
turbulent exchange coefficient for the LES approach was used in the model. The
initial modeling conditions were set based on the processing of remote sensing
data converted into a raster model.

The main three indicators for evaluating the computational efficiency were
speedup, time savings, and efficiency coefficients. The scalability was evaluated
using the other three parameters as metrics. We carried out the parallel imple-
mentation of the 3D mathematical model of hydrodynamics. It can be efficiently
used to solve problems of hydrodynamics on large numbers of calculators.

Also, we evaluated the performance on a single node against sequential com-
putations using a single thread. This demonstrated the scalability of SWAN with
respect to the number of computational threads. We found a clear and uniform
alignment with numbers of flows exceeding approximately six.

References

1. Gushchin, V.A., Sukhinov, A.I., Nikitina, A.V., Chistyakov, A.E., Semenyakina,
A.A.: A model of transport and transformation of biogenic elements in the coastal
system and its numerical implementation. Comput. Math. Math. Phys. 58(8),
1316–1333 (2018). https://doi.org/10.1134/S0965542518080092

2. Gushchin, V.A., Kostomarov, A.V., Matyushin, P.V., Pavlyukova, E.R.: Direct
numerical simulation of the transitional separated fluid flows around a sphere and
a circular cylinder. J. Wind Eng. Ind. Aerodyn. 90(4–5), 341–358 (2002). https://
doi.org/10.1016/S0167-6105(01)00196-9

3. Sukhinov, A.I., Chistyakov, A.E., Shishenya, A.V., Timofeeva, E.F.: Predictive
modeling of coastal hydrophysical processes in multiple-processor systems based
on explicit schemes. Math. Models Comput. Simul. 10(5), 648–658 (2018). https://
doi.org/10.1134/S2070048218050125

4. Protsenko, S., Sukhinova, T.: Mathematical modeling of wave processes and trans-
port of bottom materials in coastal water areas taking into account coastal struc-
tures. In: MATEC Web of Conferences, vol. 132, p. 04002 (2017)

5. Alekseenko, E., Roux, B., et al.: Coastal hydrodynamics in a windy lagoon.
Nonlinear Processes Geophys. 20(2), 189–198 (2013). https://doi.org/10.1016/j.
compfluid.2013.02.003

6. Alekseenko, E., Roux, B., et al.: Nonlinear hydrodynamics in a mediterranean
lagoon. Comput. Math. Math. Phys. 57(6), 978–994 (2017). https://doi.org/10.
5194/npg-20-189-2013

7. Favorskaya, A.V., Petrov, I.B.: Numerical modeling of dynamic wave effects
in rock masses. Dokl. Math. 95(3), 287–290 (2017). https://doi.org/10.1134/
S1064562417030139

8. Belotserkovskii, O.M., Gushchin, V.A., Shchennikov, V.V.: Decomposition method
applied to the solution of problems of viscous incompressible fluid dynamics. Com-
put. Math. Math. Phys. 15, 197–207 (1975)

https://doi.org/10.1134/S0965542518080092
https://doi.org/10.1016/S0167-6105(01)00196-9
https://doi.org/10.1016/S0167-6105(01)00196-9
https://doi.org/10.1134/S2070048218050125
https://doi.org/10.1134/S2070048218050125
https://doi.org/10.1016/j.compfluid.2013.02.003
https://doi.org/10.1016/j.compfluid.2013.02.003
https://doi.org/10.5194/npg-20-189-2013
https://doi.org/10.5194/npg-20-189-2013
https://doi.org/10.1134/S1064562417030139
https://doi.org/10.1134/S1064562417030139

268 E. A. Protsenko et al.

9. Kvasov, I.E., Leviant, V.B., Petrov, I.B.: Numerical study of wave propagation in
porous media with the use of the grid-characteristic method. Comput. Math. Math.
Phys. 56(9), 1620–1630 (2016). https://doi.org/10.1134/S0965542516090116

10. Sukhinov, A.I., Khachunts, D.S., Chistyakov, A.E.: A mathematical model of pol-
lutant propagation in near-ground atmospheric layer of a coastal region and its
software implementation. Comput. Math. Math. Phys. 55(7), 1216–1231 (2015).
https://doi.org/10.1134/S096554251507012X

11. Chetverushkin, B.N., Shilnikov, E.V.: Software package for 3D viscous gas flow sim-
ulation on multiprocessor computer systems. Comput. Math. Math. Phys. 48(2),
295–305 (2008). https://doi.org/10.1007/s11470-008-2012-4

12. Davydov, A.A., Chetverushkin, B.N., Shil’nikov, E.V.: Simulating flows of incom-
pressible and weakly compressible fluids on multicore hybrid computer systems.
Comput. Math. Math. Phys. 50(12), 2157–2165 (2010). https://doi.org/10.1134/
S096554251012016X

13. Sukhinov, A.I., Nikitina, A.V., Semenyakina, A.A., Chistyakov, A.E.: Complex of
models, explicit regularized schemes of high-order of accuracy and applications
for predictive modeling of after-math of emergency oil spill. In: CEUR Workshop
Proceedings, vol. 1576, pp. 308–319 (2016)

https://doi.org/10.1134/S0965542516090116
https://doi.org/10.1134/S096554251507012X
https://doi.org/10.1007/s11470-008-2012-4
https://doi.org/10.1134/S096554251012016X
https://doi.org/10.1134/S096554251012016X

Comparison of Two Methods
for Modeling the Dynamics of Gas Flows

in a Protoplanetary Disk

Vitaliy Grigoryev(B) and Tatiana Demidova

Crimean Astrophysical Observatory RAS, Crimea, Russian Federation
vitaliygrigoryev@crao.ru, proxima1@list.ru

Abstract. During the birth of a planetary system from a protoplanetary
disk surrounding a young star, events such as collisions of formed dense
gas and dust clumps, or the fall of such clumps of matter onto the disk
from outside can occur in the disk itself. As a result of such events,
a local increase in the density of matter is formed in the disk, which
has a different velocity relative to the star than the surrounding matter.
In this paper, we describe the numeric simulation of the evolution of a
protoplanetary disk with the described heterogeneity, using for this two
different approaches: the finite-volume method (PLUTO package) and
the SPH method (Gadget-2 package). The computations were carried
out in parallel mode. Based on the results obtained, we estimate the
efficiency of parallelization at different stages of clump decay.

Keywords: T Tauri stars · Protoplanetary disks · Gas dynamics ·
Godunov methods · SPH

1 Introduction

T Tauri stars are classified as a separate class of variable stars [25] since they all
have similar observational features. In addition to irregular brightness changes,
emission lines are observed in the spectrum, and the stars are associated with
dark gas and dust clouds. These features are related to the fact that these young
stars are surrounded by gas-dust protoplanetary disks. It is assumed that most
stars of less than 2 solar masses (M�) pass through the T Tauri stage. A detailed
description of this class of stars is given in the reviews [5,18,33]. The particular
interest in this class of stars is associated with the fact that the Sun, at an early
stage of its evolution, was a T Tauri type star, from the protoplanetary disk of
which the Solar System was formed.

Studies of protoplanetary disks play an important role in the development of
the theory of the formation of planetary systems. The substance of the proto-
planetary disk at the beginning of its evolution contains mainly a gas component
with a small admixture of dust (∼1%). The dust and gas component of the pro-
toplanetary disk acts as a building material for the planets, their satellites, and
small bodies.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 269–284, 2023.
https://doi.org/10.1007/978-3-031-38864-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_19&domain=pdf
http://orcid.org/0000-0002-4021-6936
http://orcid.org/0000-0001-7035-7062
https://doi.org/10.1007/978-3-031-38864-4_19

270 V. Grigoryev and T. Demidova

Direct observations of protoplanetary disks have shown the presence of inho-
mogeneities on their surfaces, which are vortex-like structures, tightly wound
spirals, two-armed spirals, and ring-like structures [6,21,22,32]. The discovery of
asymmetries in protoplanetary disks has stimulated the development of a large
number of models. In particular, their presence is associated with the motion
of the unresolved planet [11–13,23,34,40], as well as the development of various
kinds of instabilities [1,2,4,15,24,31,39,42] or global vertical magnetic fields [38].

However, there is a simpler mechanism for the formation of these types of
structures associated with the rotation of the disk. For the first time, the assump-
tion about the decay of a clump of matter in the gaseous rotating medium of
a protoplanetary disk was proposed in [9], where it was assumed that a large
amount of fine dust is released during a catastrophic asteroid collision. In addi-
tion, it was shown in [30] that a significant amount of fine dust can be ejected
into the disk in the event of tidal disruption of the planet. However, in order to
observe these processes, the mass of fine dust must be at least half the mass of
the Moon.

In [10], the mechanism of cloudy accretion [19] was considered as a source
of a massive clump of matter. The authors of the paper assumed that clumps
of matter could fall onto the disk from the remnants of a protostellar cloud and
studied the disintegration process of such a gas clump in the substance of a
rotating disk. Calculations have shown that this mechanism makes it possible
to explain all the observed features in the images of the protoplanetary disk
within the framework of one model. In different phases of evolution, the clump
is stretched into a vortex-like structure, which then twists into a spiral. Then,
depending on the energy regime, a ring or a two-armed spiral is formed.

The fall of matter clumps onto a protoplanetary disk is a natural consequence
of the formation of disks from a protostellar cloud. In [3,41], another mechanism
for the formation of clumps wandering in space and capable of falling onto proto-
planetary disks is described. The calculations of the authors showed that massive
disks, as a result of gravitational instability, can throw out clumps of matter of
a considerable mass. The invasion of such clumps into the protoplanetary disk
significantly affects the dynamics of matter in the disk and can lead to the for-
mation of new planets, as well as catastrophic events of destruction and ejection
of planets from the system. However, the simulation of this process has currently
been performed by only one method [10]. To verify the results, calculations by
other methods are required.

The aim of this paper is to compare two approaches (implemented in two
different packages) of hydrodynamical calculations. We solve the problem of the
clump dissociation in the protoplanetary disk by two methods: the finite-volume
(Godunov) scheme (PLUTO package [27]) and smoothed-particle hydrodynam-
ics (SPH, Gadget-2 package [36,37]). The computation resolution was chosen
similarly in both methods: 0.9×106 cells and 1×106 SPH particles. Both schemes
can be used in parallel, which significantly speeds up the calculations and anal-
ysis of simulation results.

Disk Clump 271

To start, we describe the mathematical model of the protoplanetary disk with
the clump (equations, initial and boundary conditions) and give some essential
commentaries on implementing this model in the packages. Then we describe
the results of the simulations and compare them. Subsequently, we measure the
efficiency of parallel computations in both packages and analyze the differences
in simulation results and in efficiency measurements.

2 Model and Methods

The paper considers a model of a young solar-type star surrounded by an
extended gaseous disk. At the initial moment, we placed a density perturba-
tion in the disk; the value of the perturbation significantly exceeded the local
value in the disk.

2.1 Basic Equations

We solved equations of nonstationary gas dynamics using two packages: PLUTO1

[27] and Gadget-22 [36,37]. The packages were specially modified to calculate the
hydrodynamics of protoplanetary disks3 [8].

We calculated the time evolution of the density ρ, the velocity v, and the
pressure p by solving the equations of gas dynamics. To this end, we wrote the
mass conservation equation as

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

and the Navier–Stokes equation

∂(ρv)
∂t

+ ∇ · (
ρv · v − pÎ

)T = −ρ∇Φ + ∇ · Π(ν), (2)

where Î is the identity matrix, Φ = −GM∗/R is the gravitational potential on
the star (G is the gravitational constant, M∗ is the stellar mass, and R is the
distance to the star), and Π(ν) is the viscous-stress tensor.

We used PLUTO to solve the energy conservation equation

∂(εt + ρΦ)
∂t

+ ∇ · [(εt + p + ρΦ)v] = ∇ · (v · Π(ν)). (3)

Here the total energy density εt = ρε + ρv2/2 depends on the specific internal
energy ε. We employed the ideal-gas approximation p = ρε(γ − 1) with γ = 5/3
for PLUTO and 7/5 for Gadget-2. As calculations confirmed, the best quali-
tative agreement of the density distribution is achieved with this choice of the
parameter γ.
1 http://plutocode.ph.unito.it/.
2 https://wwwmpa.mpa-garching.mpg.de/gadget/.
3 https://github.com/Proxima84/DUSTGADGET.

http://plutocode.ph.unito.it/
https://wwwmpa.mpa-garching.mpg.de/gadget/
https://github.com/Proxima84/DUSTGADGET

272 V. Grigoryev and T. Demidova

The entropy equation

∂S

∂t
=

1
2

γ − 1
ργ−1

∇ · (v · Π(ν)), (4)

where S = p/ργ is the entropy, was solved with Gadget-2.
The viscous stress tensor is defined as

Π(ν) = ν1
[∇v + (∇v)T

]
+

(
ν2 − 2

3
ν1

)
(∇ · v)Î , (5)

where ν1 is the kinematic viscosity coefficient, ν2 is the second viscosity (equal
to 0); ν1 is defined differently in PLUTO and Gadget-2.

We neglected any radiation and cooling effects on the gas. In the outer regions
of protoplanetary disks (1 au and farther), the gas and dust temperatures are
lower than 300 K, which means that the blackbody radiation is insufficient for
the energy balance during the time considered. Also, we do not take into account
the effects associated with thermal conductivity.

PLUTO. We solved Eqs. (1)–(3) in conservative form by the Godunov app-
roach using the PLUTO package [27]. The domain was given in 3D spherical
coordinates (R, θ, ϕ). The grid contains 195 × 18 × 256 cells in the domain
[0.4; 47.94] × [77.34◦; 102.66◦] × [0; 2π]. We chose an R-grid defined with a loga-
rithmic distribution of the cell sizes and a uniform grid along θ and ϕ, so each
cell was a cube: ΔR ≈ RΔθ = RΔϕ.

We use the HLLC solver for the Riemann problem. Time integration is carried
out with the second-order TVD Runge–Kutta method. A piecewise TVD linear
reconstruction is applied to primitive variables.

The viscosity coefficient ν1 is implemented with standard α-parametrisation
of [35]:

ν1 = α
ρc2s
Ω

; α = 0.03. (6)

Here cs is the local speed of sound, and Ω is the Keplerian frequency (see Eq. (9)).
The parabolic viscosity term was integrated with an explicit multistage time-
stepping scheme based on Legendre polynomials.

Gadget-2. This package solves Eqs. (1), (2), and (4) using the smoothed-
particle hydrodynamics method [17,26] with variable smoothing length. The
method introduces an interpolation kernel W (r, h) that determines the influ-
ence of a neighboring particle on the physical value of the considered particle
depending on the distance r between them. In the paper, a kernel in the form of
a cubic spline was used, by analogy with [28]. The h parameter is the smoothing
length. It determines the radius of the sphere, particles trapped inside which
affect the value of the physical quantity in the center of the sphere. The smooth-
ing length is determined by the required number of particles N located in the
sphere of radius h. We set the value N = 30 ± 2.

Disk Clump 273

Dissipative processes in the disk are described using the concept of numerical
viscosity, which is related to kinematic viscosity (6). The standard form for
representing the numerical viscosity in SPH was taken from [29].

We used the Leapfrog integrator to solve the equations of gas dynamics. The
integrator ensures the preservation of the physical invariants of the system in
the absence of dissipation and gives a fourth-order accuracy O(Δt4). Also, we
used a variable integration time step limited by the Courant–Friedrichs–Lewy
criterion, described in [20].

The calculations were performed in a Cartesian coordinate system with the
origin at the star center. The calculations involved 106 SPH particles, initially
distributed in the domain according to the given density distribution (see Sub-
sect. 2.2).

Dimensionalization. Equations (1), (2), (3), and (4) were solved in a dimen-
sionless form. The units of dimensionalization were chosen identically in PLUTO
and in Gadget-2. They are listed in Table 1.

Table 1. Units of dimensionalization (M� = 2 × 1033 g is the solar mass, 1 au =
1.5 × 1013 cm (au—astronomical unit))

Parameter Notation Value CGS Units Commentary

Unit of mass M0 5.06 × 1031 g M�/(4π2)

Unit of length L0 1.50 × 1013 cm 1 au

Unit of time t0 3.15 × 107 s 1 year

Unit of density ρ0 1.51 × 10−8 g cm−3 M0/L3
0

Unit of velocity v0 4.75 × 105 cm s−1 2πL0/t0

2.2 Initial Conditions

The Disk. The initial density distribution ρ on the unperturbed disk is defined
by the following formulas (see [10] for details):

ρ(r, z) =
Σ0√

2πH(r)
rin
r

e
− z2

2H2(r) , Σ0 =
Mdisk

2πrin(rout − rin)
. (7)

Here r = R sin(θ) is the cylindrical radius (R is the spherical radius), z =
R cos(θ) is the height above the equatorial plane, H(r) is the characteristic half
thickness of the disk at radius r, rin is the disk inner radius, Σ0 is the average
surface density of the disk, Mdisk is the total mass of the protoplanetary disk,
and rout is the disk outer radius.

274 V. Grigoryev and T. Demidova

The half thickness of the disk depends on the absolute temperature Tmid in
the equatorial plane:

H(r) =

√
kBTmid(r)r3

GM∗μmH
; Tmid(r) = 4

√
Γ

4

√
R∗
r

T∗, (8)

where kB is the Boltzmann constant; G is the gravitational constant; M∗, R∗,
and T∗ are the mass, radius, and surface temperature of the star, respectively;
μ = 2.35 is the mean molecular weight; mH is the proton mass, and Γ = 0.05
[7,14,16].

The initial velocity distribution of the unperturbed disk is defined in a Kep-
lerian approximation:

v = (vR, vθ, vϕ) = (0, 0,−Ωr); Ω =

√
GM∗
r3

. (9)

The Clump. We place the clump at the distance rclump with azimuth position
ϕ = 90◦. The density of the clump is defined as ρclump = 10.0ρ, and its velocity
vclump = Lv when r ∈ [rclump − Δrclump; rclump + Δrclump] and ϕ ∈ [75◦; 105◦],
0 < L < 1. In fact, the edges of the grid cells do not match the exact values of
the borders of the clump defined here, therefore the real borders of the clump
were used to simulate the clump in PLUTO and Gadget-2.

The density distribution in the vicinity of the clump location is shown in
Fig. 1.

Input Parameters. The model parameters used are listed in Table 2.

Table 2. Parameters of the disk and the clump (M� = 2 × 1033 g is the solar mass,
R� = 7 × 105 km is the solar radius, 1 au = 1.5 × 1013 cm (au—astronomical unit))

Parameter Value Units

M∗ 1 M�
R∗ 2 R�
T∗ 10000 K

Mdisk 0.01 M�
rin 1 R∗
rout 100 au

rclump 10 au

Δrclump 0.5 au

L 0.8

The parameters of the clump give a total mass of about 2 × 1030 g, which is
equivalent to Jupiter’s mass.

Disk Clump 275

Fig. 1. The initial density distribution in the vicinity of the clump in the equatorial
plane (θ = 0◦) along ϕ = 90◦. The red line is the distribution in PLUTO cells; the
blue line is the SPH-interpolated density calculated by Gadget-2; the green lines are
the initial density according to the formulas. The interpolation of SPH was carried out
in ParaView with constant smoothing length h = 0.1 au and divided by the Shepard
summation.

2.3 Boundary Conditions

PLUTO. On the leftmost boundary on R (with index “b”), we assume an
analog of sink cell (see below): the density and pressure in ghost cells are set to
a fictitious zero (10−12, that is, the smallest value in code units), the velocity
components are extrapolated in a sub-Keplerian approximation from the nearest
computational cells (values without index):

pb = 10−12p0; ρb = 10−12ρ0; vb = v
√

r

rb
, (10)

with the constraint vRb ≤ 0. Here p0 is the code unit of pressure, defined through
the corresponding values from Table 1.

On the rightmost boundary on R, we set an outflow boundary condition by
applying the Keplerian approximation vϕ = −Ωr in the ghost cells (see (9)).

Also, we set a periodic boundary condition on ϕ. An outflow (zero-gradient
for all values) condition was used on the θ direction.

Gadget-2. The sink cell was implemented to model the inner region of the disk:
all SPH particles approaching closer than 0.4 au to the star were removed from
calculations. Also, all particles beyond 100 au were considered to have left the
system and they were also removed from calculations.

276 V. Grigoryev and T. Demidova

3 Results

The classical mechanics approximation shows that a material point located in
the place of the clump with the same initial velocity but without the interaction
with the disk makes one revolution around the model star in an elliptical orbit
with a semi-major axis equal to 7.36 au in a time �20 years. Thus, this is the
estimated time of clump dissipation or spreading into the ring structure.

We ran the computations during 100t0. We expected the formation of unsta-
ble spiral structures and clump dissipation.

3.1 Calculation Results

Calculations with PLUTO and Gadget-2 show the dissipation of the clump dur-
ing ∼24 years. One orbital period is 18.5 years. After one revolution, the largest
distance of the clump matter from the star is ∼7.2 au (it is less than the start
position of 10 au). During the first 11.5 years, it moves like a separate dense
body, then it starts interacting with the regions of the disk of the same density.

Figure 2 depicts the density distributions in the equatorial plane obtained
with both packages at the computation moment 20.0t0 (20 years). Note that the
clump is stretched into a spiral with morphologically similar two-arm structures
in both PLUTO and Gadget-2 simulations.

Also, the influence of clump matter in inner regions of the disk (<3 au) is
clearly seen: a complex spiral structure surrounds the inner border in the case
of PLUTO; in the case of Gadget-2, a spiral structure can also be discerned,
although it is smoother.

To control the convergence of the results, calculations were also performed
on a high-resolution grid (390 × 36 × 512) in PLUTO and with 2×106 particles
in Gadget-2. The calculation results at 20.0t0 are shown in Fig. 3. We can see
that the spiralization in inner regions is less pronounced, but two-armed spi-
rals in outer regions are the same. Also, the position of the clump remnants is
approximately the same, as well as the orbital period (∼18.8t0) and the time of
dissipation (∼25t0).

The density distributions in the equatorial plane at computation time 82t0 are
shown in Fig. 4. PLUTO calculations show complex spirals (it is very likely that
they are the result of the development of the so-called Vertical Shear Instability,
but this issue should be investigated in more detail at a later time). Gadget-
2 calculations present much smoother spiral structures, qualitatively similar to
those shown in PLUTO’s results. However, the region close to the star (R <
2.5 au) seems to contain a rarefied matter. Thus, the difference in the definition
of the boundary condition near the star in the methods under consideration
probably has an effect.

3.2 Parallelization

Computations were performed on a system equipped with a 12th Gen Intel®
Core™ i9-12900K × 16 processor (16 cores, 24 threads) and 32 GB RAM. The pro-
cessor has eight Performance-cores (with Intel® Hyper-Threading Technology

Disk Clump 277

Fig. 2. The logarithm of the density distribution (in g cm−3) in the equatorial plane
after 20t0 of calculations, visualized with ParaView (on the left, PLUTO simulation;
on the right, Gadget-2 simulation). The star is shown as a yellow sphere, not to scale.
Distances along the axes are given in astronomical units. The rotation is clockwise.

and up to 5.20 GHz frequency) and eight Efficient-cores (no Hyper-Threading,
up to 3.90 GHz frequency)4. The distribution of MPI threads among cores during
runs was automatically determined.

In short, Godunov schemes assume the solution of a Riemann problem on
each border between two cells. As a result of such a solution, we obtain the
signal velocity with which perturbation propagates along the cell. The greater
the value of that velocity and the smaller the size of the cell, the smaller the
global integration time step. Gadget-2 code uses an individual time step for each
particle, which is chosen taking into account the acceleration of the particle. In
this case, the minimum time step is set as a problem parameter, based on which
the size of the inner disk boundary is determined. The individual integration
step for each particle is synchronized with the total running time of the system.
This approach makes it possible to noticeably speed up the calculations. This
explains PLUTO’s longer computation time in Fig. 5, as compared with that of
Gadget-2.

Gas relaxation occurs during the calculations, therefore we can expect a
reduction in the calculation time of every integration step. Figure 5 confirms
this assumption. Furthermore, the total count of particles in Gadget-2 decreases
with time: some particles move further than 100 au, and those approaching closer
than 0.4 au to the star are removed from the domain, which has a positive effect
on the speed of calculations (but a negative effect on the resolution).

4 https://www.intel.co.uk/content...

https://www.intel.co.uk/content/www/uk/en/products/sku/134599/intel-core-i912900k-processor-30m-cache-up-to-5-20-ghz/specifications.html

278 V. Grigoryev and T. Demidova

Fig. 3. The same as in Fig. 2 but on a high-resolution grid (390 × 36 × 512) in PLUTO
and with 2 × 106 particles in Gadget-2

Parallel calculations in PLUTO are carried out by splitting the computational
domain into disjoint boxes (of equal size if possible) surrounded with ghost cells
that provide data exchange or realize border conditions. Thus, while the total
volume of ghost layers is much less than the total volume of the computational
zones, the speedup is linear (or sublinear), as can be seen in Fig. 6 up to six MPI
threads for 81.0t0–82.0t0. In the case of the run from 0.0t0 to 1.0t0, the change
in the growth rate can be explained by the use of one or two Efficient-cores
(slow ones) instead of Perfomance-cores (fast ones). The peak at 22 threads
with speedup 8.36 in the case of PLUTO is explained by the dissimilarity of
boxes in threads: one thread can get a 98 × 18 × 24 box (with a nonsmooth
distribution of parameters of the gas close to the star), while another one gets
a 97 × 18 × 23 one (with a smooth distribution of parameters far away of the
star). If the slow core gets the smaller box, we achieve a balancing effect.

In Gadget-2, the computational domain is filled with the Peano–Hilbert
curve, so that three-dimensional space is described by a one-dimensional curve.
Then the curve is cut into segments of the same length; the number of these
segments is equal to the number of MPI threads. An important feature of the
Peano–Hilbert curve is that points that are close along the curve are also close in
3D space. In addition, this approach allows one to establish a one-to-one corre-
spondence between the segments of the Peano–Hilbert curve and the hierarchical
octree that is used to find neighbors in the SPH method. In addition, the tree
contains information about pseudoparticles that are not computed in the local
thread. This information is used to evaluate the need to exchange data between
threads.

Disk Clump 279

Fig. 4. The same as in Fig. 2 but for 82t0

Parallel calculations in Gadget-2 are organized in such a way that the best
performance is achieved when the number of MPI threads is a power of 2. The
principal model of communication in force calculations follows the hypercube
strategy. If the number of processors is a power of 2, say 2p, then a full cycle of
all-to-all communications can be realized in 2p − 1 cycles, where there are 2p − 1
disjoint pairs of processors that exchange messages in each cycle. If the number of
processors is not a power of 2, this scheme can still be used, but processors must
be embedded in a hypercube circuit corresponding to the next higher power of 2.
As a result, some processors will be unpaired in the communication subfraction
cycle, which somewhat reduces the overall efficiency. That is why we see the
minima of the estimated time in Fig. 5 near the number of MPI threads that is
a power of two, namely, 4, 8, and 16.

The lower values of speedup in the case of 81.0t0–82.0t0 are explained by the
lower calculation time on one MPI thread.

280 V. Grigoryev and T. Demidova

Fig. 5. The estimated time from 0.0t0 to 1.0t0 (solid graphs) and from 81.0t0 to 82.0t0
(dashed graphs) versus the count of MPI threads, with PLUTO (red graphs) and
Gadget-2 (blue graphs) (Color figure online)

Fig. 6. The computation speedup from 0.0t0 to 1.0t0 (solid graphs) and from 81.0t0 to
82.0t0 (dashed graphs) versus the number of MPI threads, with PLUTO (red graphs)
and Gadget-2 (blue graphs) (Color figure online)

Disk Clump 281

4 Conclusions

The simulation of the interaction of the clump with the protoplanetary disk
was done in two ideologically different ways: by the finite-volume method in
the PLUTO package, and by the SPH method in the Gadget-2 package. Both
packages showed qualitatively similar results of clump dissociation in the pro-
toplanetary disk near T Tau-like stars after about one period of rotation. This
produces complex spiral structures after interaction and global relaxation.

The differences in detail can be explained by the use of different viscosity
models and the lowest R-boundary conditions. In fact, the relaxation occurs in
the disk, so different waves could appear at the first moments of calculations.

Moreover, the impact of vertical borders (θ direction) in PLUTO is sufficient:
we can not model the disk “swelling” if it takes place when the θ-borders are
close to the equatorial plane. Nonetheless, wide borders on θ cause calculation
problems: because of the exponential density distribution in the z direction, very
small density values in the cells are expected. However, the exact model of the
corona of the disk is a separate problem. Since the disk is modeled by particles
in SPH, the disk is also limited in the z direction, usually particles cannot be
located at heights greater than 3H(r) (8).

Also, we measured the efficiency of parallelization. The maximum speedup for
PLUTO was 8.36 with 22 MPI threads; for Gadget-2, the maximum speedup was
4.8 with 24 MPI threads. For both packages, the speedup varied in the course of
computations. Thus, computations with PLUTO were slower than with Gadget-
2 for small numbers of MPI threads, yet data exchange between MPI threads in
the case of PLUTO was less intense than in Gadget-2.

Acknowledgments. The computations were performed on equipment provided by
the Russian Science Foundation (grant № 19-72-10063).

References

1. Bai, X.N., Stone, J.M.: Magnetic flux concentration and zonal flows in magnetoro-
tational instability turbulence. ApJ 796(1), 31 (2014). https://doi.org/10.1088/
0004-637X/796/1/31

2. Banzatti, A., Pinilla, P., Ricci, L., Pontoppidan, K.M., Birnstiel, T., Ciesla, F.:
Direct imaging of the water snow line at the time of planet formation using two
ALMA continuum bands. ApJL 815(1), L15 (2015). https://doi.org/10.1088/2041-
8205/815/1/L15

3. Basu, S., Vorobyov, E.I.: A hybrid scenario for the formation of brown dwarfs and
very low mass stars. ApJ 750(1), 30 (2012). https://doi.org/10.1088/0004-637X/
750/1/30

4. Birnstiel, T., Andrews, S.M., Pinilla, P., Kama, M.: Dust evolution can produce
scattered light gaps in protoplanetary disks. ApJL 813(1), L14 (2015). https://
doi.org/10.1088/2041-8205/813/1/L14

https://doi.org/10.1088/0004-637X/796/1/31
https://doi.org/10.1088/0004-637X/796/1/31
https://doi.org/10.1088/2041-8205/815/1/L15
https://doi.org/10.1088/2041-8205/815/1/L15
https://doi.org/10.1088/0004-637X/750/1/30
https://doi.org/10.1088/0004-637X/750/1/30
https://doi.org/10.1088/2041-8205/813/1/L14
https://doi.org/10.1088/2041-8205/813/1/L14

282 V. Grigoryev and T. Demidova

5. Bouvier, J., Alencar, S.H.P., Harries, T.J., Johns-Krull, C.M., Romanova, M.M.:
Magnetospheric accretion in classical T Tauri stars. In: Reipurth, B., Jewitt, D.,
Keil, K. (eds.) Protostars and Planets V, p. 479 (2007). https://doi.org/10.48550/
arXiv.astro-ph/0603498

6. Cazzoletti, P., et al.: Evidence for a massive dust-trapping vortex connected to
spirals. Multi-wavelength analysis of the HD 135344B protoplanetary disk. Astron.
Astrophys. 619, A161 (2018). https://doi.org/10.1051/0004-6361/201834006

7. Chiang, E.I., Goldreich, P.: Spectral energy distributions of T Tauri stars with
passive circumstellar disks. Astrophys. J. 490, 368–376 (1997). https://doi.org/
10.1086/304869

8. Demidova, T.V.: Modelling the gas dynamics of protoplanetary disks by the SPH
method. Astrophysics 59(4), 449–460 (2016). https://doi.org/10.1007/s10511-016-
9448-3

9. Demidova, T.V., Grinin, V.P.: Catastrophic events in protoplanetary disks and
their observational manifestations. ApJL 887(1), L15 (2019). https://doi.org/10.
3847/2041-8213/ab59e0

10. Demidova, T.V., Grinin, V.P.: Clumpy accretion in pre-main-sequence stars as a
source of perturbations in circumstellar disks. Astrophys. J. 930(2), 111 (2022).
https://doi.org/10.3847/1538-4357/ac53a6

11. Demidova, T.V., Shevchenko, I.I.: Three-lane and multilane signatures of planets
in planetesimal discs. MNRAS 463(1), L22–L25 (2016). https://doi.org/10.1093/
mnrasl/slw150

12. Dong, R., Li, S., Chiang, E., Li, H.: Multiple disk gaps and rings generated by a
single super-earth. II. Spacings, depths, and number of gaps, with application to
real systems. ApJ 866(2), 110 (2018). https://doi.org/10.3847/1538-4357/aadadd

13. Dong, R., Zhu, Z., Whitney, B.: Observational signatures of planets in protoplan-
etary disks I. Gaps opened by single and multiple young planets in disks. ApJ
809(1), 93 (2015). https://doi.org/10.1088/0004-637X/809/1/93

14. Dullemond, C.P., Dominik, C.: The effect of dust settling on the appearance of
protoplanetary disks. Astron. Astrophys. 421, 1075–1086 (2004). https://doi.org/
10.1051/0004-6361:20040284

15. Dullemond, C.P., Penzlin, A.B.T.: Dust-driven viscous ring-instability in proto-
planetary disks. Astron. Astrophys. 609, A50 (2018). https://doi.org/10.1051/
0004-6361/201731878

16. Dutrey, A., Guilloteau, S., Simon, M.: Images of the GG Tauri rotating ring.
Astron. Astrophys. 286, 149–159 (1994)

17. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and
application to non-spherical stars. MNRAS 181, 375–389 (1977). https://doi.org/
10.1093/mnras/181.3.375

18. Hartmann, L., Herczeg, G., Calvet, N.: Accretion onto pre-main-sequence stars.
ARA&A 54, 135–180 (2016). https://doi.org/10.1146/annurev-astro-081915-
023347

19. Hartmann, L., Kenyon, S.J.: The FU Orionis phenomenon. ARA&A 34, 207–240
(1996). https://doi.org/10.1146/annurev.astro.34.1.207

20. Hernquist, L., Katz, N.: TREESPH: a unification of SPH with the hierarchical tree
method. ApJS 70, 419 (1989). https://doi.org/10.1086/191344

21. Huang, J., et al.: The disk substructures at high angular resolution project
(DSHARP). II. Characteristics of annular substructures. ApJL 869(2), L42 (2018).
https://doi.org/10.3847/2041-8213/aaf740

https://doi.org/10.48550/arXiv.astro-ph/0603498
https://doi.org/10.48550/arXiv.astro-ph/0603498
https://doi.org/10.1051/0004-6361/201834006
https://doi.org/10.1086/304869
https://doi.org/10.1086/304869
https://doi.org/10.1007/s10511-016-9448-3
https://doi.org/10.1007/s10511-016-9448-3
https://doi.org/10.3847/2041-8213/ab59e0
https://doi.org/10.3847/2041-8213/ab59e0
https://doi.org/10.3847/1538-4357/ac53a6
https://doi.org/10.1093/mnrasl/slw150
https://doi.org/10.1093/mnrasl/slw150
https://doi.org/10.3847/1538-4357/aadadd
https://doi.org/10.1088/0004-637X/809/1/93
https://doi.org/10.1051/0004-6361:20040284
https://doi.org/10.1051/0004-6361:20040284
https://doi.org/10.1051/0004-6361/201731878
https://doi.org/10.1051/0004-6361/201731878
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1146/annurev-astro-081915-023347
https://doi.org/10.1146/annurev-astro-081915-023347
https://doi.org/10.1146/annurev.astro.34.1.207
https://doi.org/10.1086/191344
https://doi.org/10.3847/2041-8213/aaf740

Disk Clump 283

22. Huang, J., et al.: The disk substructures at high angular resolution project
(DSHARP). III. Spiral structures in the millimeter continuum of the Elias 27,
IM Lup, and WaOph 6 Disks. Astrophys. J. Lett. 869(2), L43 (2018). https://doi.
org/10.3847/2041-8213/aaf7a0

23. Jin, S., Li, S., Isella, A., Li, H., Ji, J.: Modeling dust emission of HL tau disk based
on planet-disk interactions. ApJ 818(1), 76 (2016). https://doi.org/10.3847/0004-
637X/818/1/76

24. Johansen, A., Youdin, A., Klahr, H.: Zonal flows and long-lived axisymmetric
pressure bumps in magnetorotational turbulence. ApJ 697(2), 1269–1289 (2009).
https://doi.org/10.1088/0004-637X/697/2/1269

25. Joy, A.H.: T Tauri variable stars. ApJ 102, 168 (1945). https://doi.org/10.1086/
144749

26. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. AJ 82,
1013–1024 (1977). https://doi.org/10.1086/112164

27. Mignone, A., et al.: PLUTO: a numerical code for computational astrophysics.
ApJS 170(1), 228–242 (2007). https://doi.org/10.1086/513316

28. Monaghan, J.J.: Extrapolating B. Splines for interpolation. J. Comput. Phys.
60(2), 253–262 (1985). https://doi.org/10.1016/0021-9991(85)90006-3

29. Monaghan, J.J.: Smoothed particle hydrodynamics. ARA&A 30, 543–574 (1992).
https://doi.org/10.1146/annurev.aa.30.090192.002551

30. Nayakshin, S., et al.: TW Hya: an old protoplanetary disc revived by its planet.
MNRAS 495(1), 285–304 (2020). https://doi.org/10.1093/mnras/staa1132

31. Okuzumi, S., Momose, M., Sirono, S.i., Kobayashi, H., Tanaka, H.: Sintering-
induced dust ring formation in protoplanetary disks: application to the HL tau
disk. ApJ 821(2), 82 (2016). https://doi.org/10.3847/0004-637X/821/2/82

32. Pérez, L.M., et al.: The disk substructures at high angular resolution project
(DSHARP). X. Multiple rings, a misaligned inner disk, and a bright arc in the
disk around the T Tauri star HD 143006. Astrophys. J. Lett. 869(2), L50 (2018).
https://doi.org/10.3847/2041-8213/aaf745

33. Petrov, P.P.: T Tauri stars. Astrophysics 46(4), 506–529 (2003). https://doi.org/
10.1023/B:ASYS.0000003267.35552.f7

34. Ruge, J.P., Wolf, S., Uribe, A.L., Klahr, H.H.: Tracing large-scale structures in
circumstellar disks with ALMA. A&A 549, A97 (2013). https://doi.org/10.1051/
0004-6361/201220390

35. Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appear-
ance. A&A 24, 337–355 (1973)

36. Springel, V.: The cosmological simulation code GADGET-2. MNRAS 364(4),
1105–1134 (2005). https://doi.org/10.1111/j.1365-2966.2005.09655.x

37. Springel, V., Yoshida, N., White, S.D.M.: GADGET: a code for collisionless and
gasdynamical cosmological simulations. New Astron. 6(2), 79–117 (2001). https://
doi.org/10.1016/S1384-1076(01)00042-2

38. Suriano, S.S., Li, Z.Y., Krasnopolsky, R., Shang, H.: The formation of rings and
gaps in magnetically coupled disc-wind systems: ambipolar diffusion and reconnec-
tion. MNRAS 477(1), 1239–1257 (2018). https://doi.org/10.1093/mnras/sty717

39. Takahashi, S.Z., Inutsuka, S.J.: Two-component secular gravitational instability in
a protoplanetary disk: a possible mechanism for creating ring-like structures. ApJ
794(1), 55 (2014). https://doi.org/10.1088/0004-637X/794/1/55

40. van der Marel, N., van Dishoeck, E.F., Bruderer, S., Pérez, L., Isella, A.: Gas den-
sity drops inside dust cavities of transitional disks around young stars observed with
ALMA. A&A 579, A106 (2015). https://doi.org/10.1051/0004-6361/201525658

https://doi.org/10.3847/2041-8213/aaf7a0
https://doi.org/10.3847/2041-8213/aaf7a0
https://doi.org/10.3847/0004-637X/818/1/76
https://doi.org/10.3847/0004-637X/818/1/76
https://doi.org/10.1088/0004-637X/697/2/1269
https://doi.org/10.1086/144749
https://doi.org/10.1086/144749
https://doi.org/10.1086/112164
https://doi.org/10.1086/513316
https://doi.org/10.1016/0021-9991(85)90006-3
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1093/mnras/staa1132
https://doi.org/10.3847/0004-637X/821/2/82
https://doi.org/10.3847/2041-8213/aaf745
https://doi.org/10.1023/B:ASYS.0000003267.35552.f7
https://doi.org/10.1023/B:ASYS.0000003267.35552.f7
https://doi.org/10.1051/0004-6361/201220390
https://doi.org/10.1051/0004-6361/201220390
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1016/S1384-1076(01)00042-2
https://doi.org/10.1016/S1384-1076(01)00042-2
https://doi.org/10.1093/mnras/sty717
https://doi.org/10.1088/0004-637X/794/1/55
https://doi.org/10.1051/0004-6361/201525658

284 V. Grigoryev and T. Demidova

41. Vorobyov, E.I., Steinrueck, M.E., Elbakyan, V., Guedel, M.: Formation of freely
floating sub-stellar objects via close encounters. A&A 608, A107 (2017). https://
doi.org/10.1051/0004-6361/201731565

42. Zhang, K., Blake, G.A., Bergin, E.A.: Evidence of fast pebble growth near conden-
sation fronts in the HL tau protoplanetary disk. ApJL 806(1), L7 (2015). https://
doi.org/10.1088/2041-8205/806/1/L7

https://doi.org/10.1051/0004-6361/201731565
https://doi.org/10.1051/0004-6361/201731565
https://doi.org/10.1088/2041-8205/806/1/L7
https://doi.org/10.1088/2041-8205/806/1/L7

Computer Modeling of Metal
Nanoclusters and Substrate Interaction

at Mesoscopic Level

Nikita Tarasov1(B) , Viktoriia Podryga1,2(B) , Sergey Polyakov1(B) ,
and Vladimir Usachev1,2(B)

1 Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences,
Moscow, Russian Federation

{nikita tarasov,polyakov}@imamod.ru, pvictoria@list.ru
2 Moscow Automobile and Road Construction, State Technical University (MADI),

Moscow, Russian Federation
v.usachev99@list.ru

Abstract. The paper is devoted to the development and computer
implementation of a numerical method for modeling the interaction of
metal nanoclusters with a substrate at the mesoscopic level. This research
as a whole is relevant in connection with the development of nanotech-
nologies for obtaining extremely thin metal coatings by various spraying
methods. From a practical point of view, its relevance is determined by
the lack of adequate mathematical models at the mesoscopic level to
describe processes in the submicron size range. This work presents the
mathematical model of a metallic medium consisting of spherical nan-
oclusters and a parallel numerical algorithm for its implementation. The
model includes Maxwell’s equations of electrodynamics to describe the
evolution of the electromagnetic field, as well as the averaged equations
of Newtonian dynamics to describe the motion of individual nanoclus-
ters and the electron gas surrounding them. The numerical algorithm
is based on the method of grids and the integration of the equations of
motion of the particles. The algorithm is parallelized with respect to both
space and particles. We devised a set of parallel programs and carried
out preliminary model calculations. Nickel is used as the material for the
nanoclusters and the substrate. The conducted numerical experiments
show the efficiency of the proposed computer model.

Keywords: Mathematical modeling in spraying problems · Mesoscale
approach · Maxwell’s equations · Electrodynamics of smoothed
particles · Parallel algorithms

1 Introduction

We consider the problem of computer modeling the process of spraying [1–12]
nanoparticles on substrates. The relevance of the problem is associated with the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 285–298, 2023.
https://doi.org/10.1007/978-3-031-38864-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_20&domain=pdf
http://orcid.org/0000-0002-2342-1292
http://orcid.org/0000-0001-7874-6978
http://orcid.org/0000-0003-1859-9034
http://orcid.org/0000-0003-4120-9751
https://doi.org/10.1007/978-3-031-38864-4_20

286 N. Tarasov et al.

development of new technologies for manufacturing ultrathin coatings in micro-
electronics, medical equipment, and other industries. Among spraying technolo-
gies, supersonic cold gas dynamic spraying [1–3], plasma spraying [4–7], and
magnetron spraying [8–12] are the most frequently requested for practical pur-
poses. One of the major concerns presented by these technologies is the non-
linearity and the spatiotemporal instability of spraying processes when manu-
facturing coatings with a thickness of about 100 nm or less. To deal with these
issues, a detailed multiscale analysis of sorption processes is required, namely,
one taking into account the relief and surface structure. A complete picture of the
interaction of sprayed nanoparticles with the surface of a particular material or
composite can be obtained through atomistic models supplemented with quan-
tum effects. However, such an analysis encounters two fundamental difficulties:
first, the lack of reliable data on the interaction potentials over a wide range
of thermodynamic parameters for the atoms and molecules of the substances
composing the nanoparticles and the substrate, and second, the ultra-high com-
putational capacity required by direct atomic-molecular quantum modeling. At
present, the way out of this situation is the use of highly simplified interaction
models (including those that do not consider the quantum mechanical properties
of substances) and averaging over small scales.

We suggest in this paper an approach based on an average over atomic scales.
In the literature, it is sometimes called the mesoscopic approach [13]. Within the
framework of this approach, we operate not with individual atoms and molecules
but with their larger agglomerations, i.e., nanoclusters or nanoparticles of sizes
in the range of 1–100 nm. This approach is used by many researchers (see, for
example, [14,15]). In the case under consideration, we assume that the interac-
tion of nanoparticles with the substrate occurs at a temperature near the melting
point of the materials that compose these objects. Therefore the approximation
of a quasiliquid medium is valid. This approximation consists of weakly bound
(by an electromagnetic field) nanoparticles having the shape of spheroids (here-
inafter referred to as nanospheroids). The evolution of a system of nanospheroids
under the conditions of the spraying problem is the subject of our research.

Let us refine the physical formulation of the spraying problem, limiting our-
selves to metal systems and the analysis of the nanoparticle-substrate contact
zone, in which the significance of computing the state of the environment sur-
rounding the particle (e.g., a gas, plasma, or vacuum) is inferior in importance
to the study of the interaction of individual nanoclusters with the substrate.
In this case, the average velocities and temperature of nanoclusters, the tem-
perature and pressure of the medium (in the case of a gas or plasma), and
the temperature of the substrate are, indeed, taken into account. The meso-
scopic level of detail we have chosen assumes that we consider the structure of
nanoclusters and that of the substrate from a unified standpoint. Within this
framework, all metal objects (the nanoparticles and the substrate) are consid-
ered systems formed by separate positively charged nanospheroids with sizes
of about 10 nm, surrounded by an electron gas of negatively charged particles

Computer Modeling of Metal Nanoclusters 287

(electron clouds). Such a description corresponds to a quasineutral low-
temperature metallic plasma [16].

To describe the considered metallic mesomedium, we will use the equations
of Newtonian dynamics written for individual positively and negatively charged
nanospheroids. In this case, we will take into account the action exerted on them
by the Lorentz force and pressure forces from the environment. When describ-
ing individual nanospheroids, we assume that they have a single center of mass
(moving with a certain translational velocity), a nonzero effective radius, a tem-
perature (a measure of their kinetic energy), and a charge (a product of a cer-
tain number of electrons). As the model of an individual nanospheroid, we use a
Gaussian profile with a given effective radius. We represent the sprayed particles
and the substrate material as ensembles of nanospheroids whose configurations
are set at the initial moment and then evolve in accordance with the equations
of motion. In the future, we plan to consider also the processes of recharge of
nanospheroids (the complete annihilation is possible for electron clouds) and the
formation of neutral nanospheroids based on positively charged single crystals
(in the case of a complete filling of their outer shells with electrons).

The motivation for the proposed model of sprayed particles and a substrate
is the following. As a result of the interaction with the substrate, the incident
particle may reflect from it, stick to it, or embed in it. In all three cases, the shape
of the particle can significantly deviate from the original. Coalescing or splitting
of particles, chipping of the substrate, and healing of cracks and discontinuities
in it may also occur. All these phenomena can be successfully tracked down by
changing the geometric configuration of the whole system of nanospheroids.

As a result, the implementation of the model of a metallic mesoenvironment
consists in applying the smoothed particle method [17] in the contact zone of the
spraying installation. The electrodynamics of the mesomedium is described by
Maxwell’s equations [18], split into quasistatic and dynamic parts. The motion
of individual metal particles and the evolution of the substrate are described by
the equations of dynamics for the general system of nanospheroids. Calculations
are made from the system’s initial state until it reaches some quasiequilibrium,
determined by a given criterion. The overall goal of the proposed computational
experiment is to determine the conditions for the so-called “soft” gluing (the
adiabatic fusion of the nanocluster and substrate surfaces) of sprayed particles
to the substrate surface.

For the numerical implementation of the electrodynamic part of the model,
we employed the finite volume method [19] on Cartesian grids and the finite-
difference time-domain (FDTD) method [20]. To implement the equations of
dynamics of the nanospheroids, we resorted to a time-symmetric finite-difference
scheme [21]. The general algorithm is based on the method of splitting by phys-
ical processes and involves the alternation of mesh and mesh-free calculations.
Particular attention is paid to the implementation of the parallel version of the
algorithm, for which we applied both the domain decomposition method [22,23]
and load-balancing algorithms [24,25].

288 N. Tarasov et al.

The approbation of the developed computer model was carried out on the
problem of the interaction of nickel nanoclusters with a substrate of the same
material. As part of this study, we conducted an analysis of the efficiency of the
parallel implementation for several spatial configurations of the whole system of
nanospheroids. In the numerical experiments, we showed that the spatial division
of the region when solving the equations of electrodynamics can be geometrically
homogeneous and does not consider the location of the particles. The distribution
of the particles among the calculators is best done independently in accordance
with their total number.

Regarding the physical adequacy of the numerical experiments, we noted that
if the materials of the nanoclusters and the substrate have the same hardness
and the translational velocity of the nanoclusters is sufficiently high, then the
substrate material, instead of soft gluing, is destroyed starting from its rear
surface.

The paper is organized as follows. Section 2 describes the problem of the
interaction of nanoclusters with a substrate. Section 3 presents the mathematical
models for the analysis of the problem, including Maxwell’s equations and New-
tonian dynamics. Section 4 is devoted to the general computational algorithm
based on the FDTD method and the symmetric scheme for ordinary differential
equations. Section 5 discusses the features of the parallel implementation of the
developed algorithm. Section 6 presents the speedup and efficiency of the paral-
lel implementation and discusses the results of the computational experiments
series. Conclusion summarizes the study.

2 The Problem Formulation

Let us consider the problem of the interaction of metal nanoclusters with a
substrate surface made of the same material. When testing the proposed meso-
model, we assume that the medium exerts a weak influence on the nanoclusters
and the substrate, which happens, for example, under technical vacuum condi-
tions. In this situation, a description of the medium evolution is not required. At
the initial moment, a certain number of nanoclusters, their location relative to
the substrate, their translational velocities, their temperature, and that of the
substrate are specified.

Figure 1 shows the model geometry of the problem under consideration. We
do not take into account edge effects in the calculations. To do this, we select a
fragment of the substrate with specific dimensions Lx and Ly and a volume of
height LV located above it. The total height Lz consists of the height LV of the
volume and the thickness LS of the substrate. Next, we consider NK nanoclusters
placed randomly in the volume above the substrate. To simplify the problem,
we assume that the clusters have a cubic shape with edge length lK . The initial
orientation of the clusters is set in such a way that their local coordinate system
coincides with that of the substrate. According to the approach adopted above,
each nanocluster consists of a system of nanospheroids of the same size with an
effective radius RK (see Fig. 2). In general, the radii of nanospheroids differ: pos-
itively charged nanospheroids (ionic-type nanospheroids) have a smaller radius

Computer Modeling of Metal Nanoclusters 289

Fig. 1. Model geometry of the problem

than neutral (neutral-type nanospheroids) and negatively charged ones (electron
clouds). Since the nanoclusters and the substrate are of the same material, the
difference in the radii of the nanospheroids can be neglected in a first approxima-
tion. At the initial moment, the electron shells of nanospheroids form a common
ordered structure that ensures the neutrality of the entire particle configuration.

3 Basic Equations

We describe the evolution of the electromagnetic field under the conditions of
mesomedium dynamics using the system of Maxwell’s equations [18] written in
dimensionless variables:

divB = 0, div(εaE) = ρ; (1)

∂B
∂t

= − rotE,
∂

∂t
(εaE) = rot

(
1
μa

B
)

− j. (2)

Here B is the magnetic induction vector, E is the electric field strength vector,
ρ = ρe + ρi is the volume charge density divided into positively and negatively
charged components, j is the current density vector created by the system of
particles, and εa and μa are the absolute dielectric and magnetic permeabilities
of the medium.

Equations (1) and (2) are considered in the entire computational domain
and are supplemented with the necessary boundary and initial conditions. In
particular, we assume that there is no magnetic field at the initial moment, and
the electric field is induced only by a stationary system of charges and is equal to

290 N. Tarasov et al.

Fig. 2. Nanocluster structure

zero at the boundaries. To ensure this condition, we setting up the translational
velocities of nanoclusters as follows:

vK = vmax

(
1 − exp(t − t/τν)

)
. (3)

Equation (3) implies the existence of a small time interval τv in which the mod-
ulus of nanoclusters velocity vK attains its maximum value.

As noted above, the nanoclusters and the substrate consist of a set of pos-
itively and negatively charged nanospheroids with different effective radii. The
radii of positively charged nanospheroids correspond to the sizes of the corre-
sponding single crystals, taking into account the number of their constituent
atoms. The radii of negatively charged nanospheroids correspond to the electron
cloud model. To simplify the subsequent numerical analysis, we leave out the
binding of electron clouds with positively charged nanospheroids to form neu-
tral nanospheroids. Also, we do not consider the process of ionization of neutral
nanospheroids. Under these conditions, we describe the motion of nanospheroids
and their field interaction with each other by means of the following system
of equations of Newtonian dynamics, in which the Lorentz force is taken into
account:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

drα,k

dt
= vα,k,

dpα,k

dt
= qα,k (E + [vα,k × B]) ,

pα,k = mα,kvα,k, k = 1, . . . , Nα, α = +,−;

ρα =
Nα∑
k=1

qα,kδ(r − rα,k), jα =
Ne∑
k=1

qα,kδ(r − rα,k)vα,k.

(4)

Here mα,k, qα,k, rα,k, vα,k, pα,k, and Nα are the masses, charges, radius vectors,
velocity vectors, momentum vectors, numbers of nanospheroids of species α;
δ(r− rα,k) is the modified Dirac delta function describing the charge density of

Computer Modeling of Metal Nanoclusters 291

the k-th nanospheroid of species α; ρα and jα are the partial densities of charge
and current, respectively.

As the particle model, we employ the Gaussian profile

δ(r − rα,k) ≈ Ck(t) exp
[−|r − rα,k|2/R2

α,k

]
, (5)

which ensures the normalization condition for the δ-function at each moment
through the parameter Ck(t). Here Rα,k ≡ RK are the effective particle radii.
The mass mα,k ≡ mα and the charge qα,k ≡ qα have units of electron mass
and charge, respectively, and depend on the actual number of ions and electrons
that make up the nanospheroid. To simplify the analysis, we assume that each
nanospheroid contains Na atoms with nuclear charge Za each. Thus the total
number of electrons in a neutral spheroid is N0

e = NaZa. A significant part
of electrons in metals is located in the conduction band on the nanospheroid
surface. We assume that this number is of the order of Ne =

(
3
√

3N0
e

)2 (in
agreement with the ratio of the volume of the ball to the surface area of the
sphere that limits the ball). Thus q+ = +Ne, q− = −Ne, m+ = Nama/me, and
m− = Ne.

4 The Numerical Algorithm

For the numerical study of the above-described mathematical model, we designed
a general integration method of Eqs. (1), (2) and (4) based on splitting by
physical processes and alternating mesh and mesh-free computations. We used
structured Cartesian grids in this research. We solved both the two-dimensional
and three-dimensional formulations of the problem.

Maxwell’s equations of electrodynamics were solved by the finite volume
method [19,21]. Within the framework of this approach, we used the splitting
scheme described below. The electric field was represented as the sum of two
terms responsible for wave processes and processes associated with the evolution
of the system of particles:

E = E(w) + E(p) (6)

For these terms, Eqs. (1)–(2) imply the following system of equations:

div
(
εaE(w)

)
= 0, div

(
εaE(p)

)
= ρ, (7)

∂

∂t

(
εaE(w)

)
= rot

(
1
μa

B
)

− j − ∂

∂t

(
εaE(p)

)
. (8)

With such a splitting, it turns out that it is possible to solve the second equation
in (7) by introducing a quasistatic potential ϕ that satisfies the Poisson equation
(see [18]), namely,

div
(
εa∇ϕ

)
= −ρ. (9)

The wave part of the electric field E(w) and the magnetic induction vector B
were calculated from Eqs. (8) and (2) using the explicit FDTD algorithm [20],

292 N. Tarasov et al.

which ensures the fulfillment of Eqs. (1) and (7) for these vectors when using
staggered Cartesian grids.

The integration of equations of motion (4) of the nanospheroids was based on
a well-known second-order symmetric scheme for ordinary differential equations
considered in [21].

Let us formulate the general numerical algorithm used for solving the prob-
lem.

At the initial stage of a calculation, the geometry of the computational
domain, including the free space containing the nanoclusters and the substrate,
is set. Then we construct a uniform Cartesian grid that does not necessarily
include the boundary points of nanoclusters and the substrate. Thus a complete
system of nanospheroids is generated. At the same time, we verify that the ini-
tial coordinates of the nanospheroids ensure the electrical neutrality of the final
mesomedium. Then the general time loop starts, within which the correspond-
ing systems of Maxwell’s Eqs. (1)–(2) and (8)–(9), as well as the equations of
dynamics of the particle (4), are solved.

Let us clarify the details of the algorithm.
Firstly, when integrating Maxwell’s equations, the spatial step h (which is

chosen to be the same in all directions) and the time step τ determine the basic
calculation accuracy, which is of the order of O(h2 +τ2). In this case, the spatial
step must be consistent with the size of the nanoclusters (i.e., it must be of the
order of their size or less). The time step is determined by the conditions of
spatial and temporal stability, that is, the Courant condition and the stability
condition imposed upon the right-side terms in Eqs. (2) and (8).

Secondly, when integrating Eq. (4), it may be necessary to reduce also the
time step to meet the stability conditions. In this case, Eqs. (4) are solved n
times with a smaller step τn = τ/n.

Thirdly, the final accuracy of calculations also depends on the parameters
of the nanospheroids. Here we need to bear in mind that the effective radius
of the nanospheroids RK should not be much larger than the grid step h. In
preliminary calculations, we set RK = n · h, where n = 1, . . . , 5. In the end, we
settled RK = 2 h. The values of the δ-function were truncated at a precision
level of 10−15.

5 The Parallel Implementation

We adapted the numerical algorithm to calculations on computing clusters with
shared memory, using for this the OpenMP standard. The program code was
written in C++. The parallelization methodology is based on two main methods:
the decomposition of the computational domain into compact domains [22,23]
and the load balancing of computers [24,25].

To solve Maxwell’s equations by an explicit scheme, we decomposed the com-
putational domain. To do this, the entire domain was divided into regions so that
a topological structure similar to a Cartesian computational grid was mapped
onto the computational space. In fact, a two-dimensional (three-dimensional)

Computer Modeling of Metal Nanoclusters 293

lattice of calculators was constructed. In the three-dimensional case, the lattice
satisfies the following conditions:

p = p1 · p2 · p3,
p1
p2

≈ N1

N2
,

p1
p3

≈ N1

N3
,

p2
p3

≈ N2

N3
, (10)

where p is the total number of parallel processes, while pj and Nj are, respec-
tively, the number of calculators and the grid size along the coordinate xj ,
j = 1, 2, 3.

The use of shared memory when solving the problem as a whole turned out to
be efficient in terms of the implementation of the second part of the calculations,
related to the motion of particles. However, storing the vectors E(w), E(p), and
B and assembling the vector j and the scalar function ρ at the integration step
require that their data be converted into four-dimensional arrays (three spatial
dimensions and one streaming) and a mechanism be implemented for allocating
memory by each parallel thread independently from the others.

To compute the dynamics of nanospheroids, we resorted to the load balancing
of the computers. To this end, the entire system of nanospheroids was initially
divided into ensembles of approximately the same volume. We relied on dynamic
balancing since subsequent versions of the code will include processes associated
with the formation of neutral spheroids and their splitting into positively and
negatively charged fragments. This involves the analysis of the computation time
of the integration step of Eqs. (4) and the redistribution of the nanospheroids
among parallel threads. In this case, a diffusion version of the algorithm is used
when the number of nanospheroids in each flow changes gradually.

The final load-balancing algorithm contains the following steps:

1. Solve Eqs. (4) by p threads.
2. Determine the time tk (k = 0, . . . , p − 1) that it took the k-th thread to

complete Step 1.
3. Compute the average execution time ts of Step 1 and the relative time dis-

persion σ:

ts =
1
p

p−1∑
k=0

tk, σ = max
k

|(tk − ts) /ts| · 100%. (11)

4. Redistribute the nanospheroids by threads according to the formulas

Nk = Nk + γN · qk

Q
, qk =

Nk

tk
, k = 0, . . . , p − 2;

Np−1 = N −
p−2∑
k=0

Nk, N = N+ + N−, Q =
p−2∑
k=0

qk, γ ∼ 0.05,
(12)

if the dispersion σ exceeds 3–5%. Here Nk is the number of particles processed
by the k-th parallel thread.

294 N. Tarasov et al.

6 Results of the Computational Experiments

Let us analyze the data of preliminary numerical experiments. To do this, we
considered the process of spraying individual nickel clusters on a nickel plate
fixed from below with a steel frame. For testing purposes, we limited ourselves
to one cubic nanocluster with edge size lx. We assumed that the substrate is a
nickel layer with a thickness three times that of the nanocluster and transverse
dimensions (x, y) five times those of it. The geometry of the problem is shown
in a central projection (y = 0.5lx) in Fig. 3.

Fig. 3. Central projection of the computational domain

Nickel has a face-centered crystal lattice. Under normal conditions (temper-
ature 273.15 K, pressure 1 atm), the length of the lattice edge (elementary cell
edge) is a ≈ 0.35314 nm [26]. If we consider a nickel nanocluster with 24 unit
cells in each direction, then its linear size is 8.475 nm. The lattice of this clus-
ter contains 58 825 atoms. With the given above dimensions of the substrate
(5lx × 5lx × 3lx), it contains 4 210 873 atoms.

Direct modeling of the total system of atoms by the method of molecular
dynamics [27] takes a significant amount of time even on a mid-range supercom-
puter. If we apply our new mesomodel, then the nanocluster can be replaced
by a system of much smaller nanospheroids. In our calculations, we consid-
ered nanospheroids of various linear sizes: 3a (1.06 nm), 4a (1.41 nm), and
5a (1.77 nm). The corresponding numbers of positively charged nanospheroids
in the nanocluster are 817, 161, and 89. In these cases, the numbers of posi-
tive nanospheroids in the substrate were 24 482, 11 537, and 6324, respectively.

Computer Modeling of Metal Nanoclusters 295

According to the above estimate, the numbers of negative nanospheroids were
87, 30, and 5 in the nanocluster and 838, 508, and 340 in the substrate. Regard-
ing the physical adequacy of the calculations, the first option turned out to be
more suitable; from the point of view of the minimum of computation, the last
one was the best. When analyzing larger systems, the geometric parameters of
the model can vary over a wider range.

To assess the efficiency of the parallel version of the numerical algorithm, we
chose the first option from the set of parameters. In this case, the total num-
ber of nanospheroids in the computation was equal to 25 386. The experiment
consisted in computing the quasiequilibrium of the system of nanospheroids,
which was attained in 20 000 time steps. Table 1 contains data concerning the
computation time, speedup, and efficiency of parallelization depending on the
number of parallel threads. The calculations were carried out on a node of the
K60 GPU computer cluster installed at the Supercomputer Multiuser Center of
the Keldysh Institute of Applied Mathematics (KIAM) of the Russian Academy
of Sciences. The node features two Intel Xeon Gold 6142 v4 processors, with 16
cores each.

Table 1. Time, speedup, and efficiency of computations for the selected system of
nanospheroids

Number of threads 1 2 4 8 16 32

Time, s 35 388 17 927 9274 4824 2694 1566

Speedup 1.0 1.974 3.816 7.336 13.136 22.592

Efficiency, % 100.0 98.7 95.4 91.7 82.1 70.6

An analysis of obtained data in terms of computation time, speedup, and
efficiency showed that the developed parallel toolkit provides high efficiency in
solving the considered class of problems. In the future, it is advisable to expand
the capabilities of the developed model to computer clusters with distributed
memory.

The analysis of the numerical results from the point of view of physical
correctness confirmed the qualitative agreement between the calculated data
and theoretical concepts. The numerical experiments showed, in particular, that
if the materials of the nanoclusters and the substrate have the same hardness and
the nanoclusters move with a supersonic translational velocity, then the substrate
material is destroyed starting from its rear surface. This effect is known in the
theory of strength of materials [28].

Regarding the limits of applicability of the nanospheroid model, it is worth
noting the following.

First, when the temperature of a metallic solid body approaches the melting
point as a result of adiabatic heating, large grains of the material gradually split
up into small ones due to the weakening and breaking of molecular bonds in the
so-called contact centers of the surfaces of neighboring grains. This process occurs

296 N. Tarasov et al.

together with the smoothing of the grain surface and the formation of micro- and
nanospheres, from which individual atoms are later separated. For each specific
material, it is possible to estimate the approximate value of the temperature
deviation from the melting temperature, at which the grain structure is close
to a system of nanospheroids. Specifically for nickel, the melting temperature of
the bulk material is 1728 K [29]. Above this temperature, nickel is completely in
the liquid phase. We are interested in the state of the softened solid phase. The
temperature of this phase can be substantially lower than the melting point.
In particular, the beginning of the structural rearrangement of solid metallic
materials is associated with the Curie point, which is 627 K for nickel [29].

Second, the range of temperatures and pressures within which the represen-
tation of nanospheroids is valid can be determined more accurately by analyzing
the phase diagrams and the dependence of various material properties on the
cluster size. Specifically, there is evidence that the grain structure of the metal is
determined either by the environment in which the natural material was formed
or by the technology of its production. High-pressure electrolytic vapor deposi-
tion produces a mostly fine-grained metal structure. The subgrain size of nickel
obtained by this method ranges from 40 to 60 nm [30,31]. If a nickel nanopow-
der is produced with particles in this size range, then their melting temperature
drops to approximately 800 K [32–34]. Thus it can be noted that, depending
on the method of obtaining the substrate and nanopowder particles, there is a
rather wide range of temperatures and sizes of nanoparticles in which the model
of nanospheroids is equally applicable both to individual nanoclusters and to the
surface they form.

The accuracy of direct computations in the framework of the combination of
the grid approach and the particle method is determined by matching the size of
the grid cells and the number of particles per cell (in the region of nanoclusters
and in the region of the substrate). In the numerical experiments, we used a ratio
of about 10 to 1 or even more. When this is violated, the numerical solutions
of Maxwell’s equations become less smooth, leading to a loss in the accuracy
of the general solution (the “electromagnetic field–particles” system becomes
rigid). Too large a ratio improves the accuracy up to a point but increases the
computational cost. In this case, the approximation accuracy in the macroscopic
equations remains fixed.

7 Conclusions

We considered the problem of modeling the interaction of metal nanoclusters
with a substrate. The problem is relevant for obtaining thin metal coatings in
the context of various spraying technologies. We suggest a new mathematical
model of a metallic medium with a mesoscopic resolution level. The model is
based on the representation of nanoparticles and the substrate by a system
of nanospheroids and includes Maxwell’s equations of electrodynamics and the
equations of Newtonian dynamics averaged over nanoscales taking into account
the Lorentz force. The numerical algorithm is based on mesh and particle meth-
ods. The algorithm is parallelized with respect to both space and particles. The

Computer Modeling of Metal Nanoclusters 297

preliminary model computations confirmed the efficiency and adequacy of the
proposed computer model.

Acknowledgments. The research was supported by the Russian Science Foundation
(project № 21-71-20054). The numerical experiments were performed on the hybrid
supercomputer K60 installed in the Supercomputer Centre of Collective Usage of KIAM
RAS.

References

1. Papyrin, A., Kosarev, V., Klinkov, S., Alkhimov, A., Fomin, V.: Cold Spray Tech-
nology. Elsevier Science, Amsterdam (2007)

2. Poza, P., Garrido-Maneiro, M.A.: Cold-sprayed coatings: microstructure, mechani-
cal properties, and wear behaviour. Prog. Mater. Sci. 123, 100839 (2022). https://
doi.org/10.1016/j.pmatsci.2021.100839

3. Vaz, R.F., Garfias, A., Albaladejo, V., Sanchez, J., Cano, I.G.: A review of advances
in cold spray additive manufacturing. Coatings 13(2), 267 (2023). https://doi.org/
10.3390/coatings13020267

4. Danilin, B.S.: Application of Low-Temperature Plasma to the Deposition of Thin
Films. Energoatomizdat, Moscow (1989). (in Russian)

5. Suryanarayanan, R.: Plasma Spraying: Theory and Applications. World Scientific
Pub Co Inc., Singapore (1993)

6. Heimann, R.B.: Plasma Spray Coating: Principles and Applications, 2nd ed. Wiley-
VCH, Weinheim (2008)

7. Nikiforov, A., Chen, Z.: Atmospheric Pressure Plasma - From Diagnostics to Appli-
cations. IntechOpen, London, UK (2019). https://doi.org/10.5772/intechopen.
75279

8. Danilin, B.S., Syrchin, V.K.: Magnetron Sputtering Systems. Radio i svyaz’ Publ.,
Moscow (1982). (in Russian)

9. Ivanovsky, G.F., Petrov, V.I.: Ion-Plasma Processing of Materials. Radio i svyaz’
Publ., Moscow (1986). (in Russian)

10. Behrisch, R., Eckstein, W.: Sputtering by Particle Bombardment: Experiments and
Computer Calculations from Threshold to MeV Energies. Springer, Berlin (2007).
https://doi.org/10.1007/978-3-540-44502-9

11. Kuzmichev, A.I.: Magnetron Sputtering Systems, Vol. 1: Introduction to the
Physics and Technology of Magnetron Sputtering. Avers, Kiev (2008). (in Rus-
sian)

12. Wang, F., Wu., J.: Modern Ion Plating Technology. Fundamentals and Applica-
tions. Elsevier, Amsterdam (2022)

13. Kos, Ž, Aplinc, J., Mur, U., Ravnik, M.: Mesoscopic approach to nematic fluids.
In: Toschi, F., Sega, M. (eds.) Flowing Matter. SBM, pp. 51–93. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23370-9 3

14. Ziman, J.M.: Electrons in metals: a short guide to the Fermi surface. Contemp.
Phys. 4(2), 81–99 (1962). https://doi.org/10.1080/00107516208205311

15. Klimov, V.V.: Nanoplasmonics. Physmatlit, Moscow (2009). (in Russian)
16. Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. McGraw-Hill Book

Company, New York (1973)
17. Monaghan, J.J.: Hydrodynamics and its diverse applications. Annu. Rev. Fluid

Mech. 44, 323–346 (2012). https://doi.org/10.1146/annurev-fluid-120710-101220

https://doi.org/10.1016/j.pmatsci.2021.100839
https://doi.org/10.1016/j.pmatsci.2021.100839
https://doi.org/10.3390/coatings13020267
https://doi.org/10.3390/coatings13020267
https://doi.org/10.5772/intechopen.75279
https://doi.org/10.5772/intechopen.75279
https://doi.org/10.1007/978-3-540-44502-9
https://doi.org/10.1007/978-3-030-23370-9_3
https://doi.org/10.1080/00107516208205311
https://doi.org/10.1146/annurev-fluid-120710-101220

298 N. Tarasov et al.

18. Landau, L.D., Lifshitz, E.M.: Course of Theoretical. Physics. Vol. 8: Electrody-
namics of Continuous Media, 2nd ed. Pergamon Press, Oxford (1984)

19. Eymard, R., Gallouet, T.R., Herbin. R.: The finite volume method. In: Ciar-
let, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 7, pp. 713–
1020. Elsevier, Amsterdam, North Holland (2000). https://doi.org/10.1016/S1570-
8659(00)07005-8

20. Taflove, A., Hagness, S.C.: Computational Electrodynamics. The Finite-Difference
Time-Domain Method, 3rd ed. Artech House, Boston (2005)

21. Samarskii, A.A.: The Theory of Difference Schemes, 1st ed. CRC Press, Boca Raton
(2001)

22. Smith, B.F.: Domain decomposition methods for partial differential equations. In:
Keyes, D.E., Sameh, A., Venkatakrishnan, V. (eds.) Parallel Numerical Algorithms.
ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol. 4, pp. 225–
243. Springer, Dordrecht (1997). https://doi.org/10.1007/978-94-011-5412-3 8

23. Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposition Meth-
ods: Algorithms, Theory and Parallel Implementation. SIAM, Philadelphia (2015)

24. Alakeel, A.: A guide to dynamic load balancing in distributed computer systems.
Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 10(6), 153–160 (2010)

25. Sanders, P., Mehlhorn, K., Dietzfelbinger, M., Dementiev, R.: Sequential and Par-
allel Algorithms and Data Structures: The Basic Toolbox. Springer-Verlag, Cham
(2019). https://doi.org/10.1007/978-3-030-25209-0

26. Podryga, V.O., Polyakov, S.V., Puzyrkov, D.V.: Supercomputer molecular model-
ing of thermodynamic equilibrium in gas-metal microsystems. Num. Meth. Prog.
16(1), 123–138 (2015). (in Russian)

27. Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University
Press, Cambridge (2004)

28. Ogorodnikov, V.A., Pushkov, V.A., Tyupanova, O.A.: Fundamentals of Physics of
Strength and Fracture Mechanics: A Textbook. RFNC-VNIIEF, Sarov (2007). (in
Russian)

29. Ripan, R., Chetyanu, I.: Inorganic Chemistry. Vol. 2: Chemistry of Metals. Mir,
Moscow (1972). (in Russian)

30. Kovenskii, I.M., Povetkin, V.V.: Metal Science of Coatings. SP Intermet Inzhinir-
ing, Moscow (1999). (in Russian)

31. Berezin, N.B., Berezina, T.N., Mezhevich, Zh.V., Sagdeev, K.A.: Structure and
solderability of nickel-phosphorus coverings. Bull. Kazan Technol. Univ. 17(5),
243–245 (2014). (in Russian)

32. Tyagunov, G.V., et al.: About nickel and chrome and their alloys. Int. J. Appl.
Fundam. Res. 8, 56–62 (2022). (in Russian)

33. Yuan, Z., Cheng, Z.: Properties of nickel in micro- and nanostructures. Int. Stud.
Sci. Bull. 3, 68 (2017). (in Russian)

34. Liu, W., Yan, S.: Investigation of nickel properties in macro and nanostructures.
Int. Stud. Sci. Bull. 1, 106 (2019). (in Russian)

https://doi.org/10.1016/S1570-8659(00)07005-8
https://doi.org/10.1016/S1570-8659(00)07005-8
https://doi.org/10.1007/978-94-011-5412-3_8
https://doi.org/10.1007/978-3-030-25209-0

Supercomputer Simulation of Plasma
Flow in the Diamagnetic Mode of Open

Magnetic Systems

A. Efimova(B) , M. Boronina , K. Vshivkov , and G. Dudnikova

Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
prospect Ak. Lavrentjeva, 6, Novosibirsk 630090, Russia

anna.an.efimova@gmail.com, {boronina,kovsh}@ssd.sscc.ru

Abstract. A new 2D numerical model of the diamagnetic regime of an
open plasma confinement trap is presented. A hybrid numerical model
based on the kinetic approximation for the ion components of the plasma
and the injected beam and the hydrodynamic approximation for elec-
trons (PIC-MHD) is considered. The particle-in-cell method is used to
solve the Vlasov kinetic equation. A new algorithm for solving the equa-
tions of motion of charged particles in the electromagnetic fields is used.
This algorithm takes into account the condition of immutability of the
electromagnetic fields at each time step. The parallel computing algo-
rithm is based on decomposition with respect to space and particles.
The basic principles of diamagnetic plasma confinement were verified,
and various options for beam injection were considered. The calculation
parameters were chosen close to the parameters of the experiments at
the CAT facility (BINP SB RAS).

Keywords: Numerical methods · Hybrid model · PIC-method · Boris
method · Gas-dynamic trap · High performance computing

1 Introduction

Currently, one of the most popular methods used in computational plasma
physics is the particle-in-cell (PIC) method [1–3]. The software systems used
to simulate processes in plasma are of great commercial value in the develop-
ment of technological plasma systems. One of the publicly available commercial
systems for numerical simulation is the COMSOL MULTIPHYSICS [4] package,
the latest version of which includes a module for modeling plasma dynamics in
a hydrodynamic approximation. To study the interaction of hot plasma with
the surface, the codes (Monte Carlo) EIRENE [5] and DEGAS2 [6] have been
developed. There are a number of 2- and 3-dimensional electromagnetic kinetic
PIC codes (KARAT, VORPAL, OOPIC, etc.), which are used, in particular, to
solve problems of the interaction of a laser pulse or an electron beam with a
plasma. But the wider use of the PIC method, especially when solving three-
dimensional problems of modeling plasma flows with very different spatial and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 299–310, 2023.
https://doi.org/10.1007/978-3-031-38864-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_21&domain=pdf
http://orcid.org/0000-0001-9223-8013
http://orcid.org/0000-0001-7090-4054
http://orcid.org/0000-0001-8264-2522
http://orcid.org/0000-0002-6786-129X
https://doi.org/10.1007/978-3-031-38864-4_21

300 A. Efimova et al.

temporal scales, are hindered by high requirements for memory and computer
speed. This is due to the significant difference in time and space scales for the
ionic and electronic components of the plasma. To overcome this shortcoming,
the model ratio of the ion mass to the electron mass [7,8] is often used. Another
way is to use hybrid models, in which for one of the plasma components the
kinetic approximation and the PIC method are used, and for the other one, the
hydrodynamic approximation, and the corresponding equations are solved by
finite difference methods [9,10]. Despite the obvious advantages of hybrid mod-
els, they need to be improved. In particular, the problem of using the hybrid
model in vacuum regions bordering on plasma ones has not been solved. In work
[11] it is shown that the hybrid model is unstable, and only the use of numerical
methods makes it possible to make it correct. Therefore, when solving specific
problems, it becomes necessary to develop new approaches that take into account
all the features of the simulated phenomenon. The shortcomings of various mod-
ifications of the particle method lead to the need to improve the method in one
way or another and adapt it to the solution of new problems. It should be noted
that work on improving the particle method continues at the present time, but
theoretical studies of the particle method are mainly carried out abroad. So in
the work of T. Umeda [12], an improved Boris algorithm for calculating parti-
cle velocities is proposed. The article by F. Li [13] describes a modification of
the particle method that suppresses the countable Cherenkov instability. New,
essentially parallel algorithms [14] are also being developed.

This paper presents numerical simulation of injection of charged particle
beams into an open magnetic trap. The results of computational experiments
are obtained using two-dimensional parallel code. The created two-dimensional
axially symmetric numerical model relies on the solution of the Vlasov kinetic
equation for the ion components of injected beam and background plasma by
the particle-in-cell (PIC) method. For the electron component of the plasma, the
magnetic hydrodynamics (MHD) approximation is used. The MHD equations
for the electrons and Maxwell’s equations are solved with the application of
finite-difference schemes of second-order accuracy. In the system of Maxwell’s
equations for a self-consistent electromagnetic field, the bias current is not taken
into account, the plasma quasi-neutrality condition is used, and the transfer
coefficient due to the finite conductivity of the plasma is considered as constant.
The model includes the possibility of continuous off-axis injection of two ion
beams at an arbitrary angle to the magnetic field. We used a new scheme for
calculating the trajectories of motion of charged particles, based on the analytical
solution to the momentum equation [15]. It is taken into account the condition
of immutability of the electromagnetic fields at each time step.

On the basis of computational experiments, the spatial and temporal charac-
teristics of the arising cavities of the magnetic field and background plasma are
investigated. With the created model, the concept of the diamagnetic regime of
plasma confinement in open magnetic traps, as applied to the laboratory exper-
iments on the CAT installation at the Budker Institute of Nuclear Physics SB
RAS, is clarified and investigated [16].

Diamagnetic Mode 301

The paper is organized as follows. Section 1 represents the introduction to
the numerical simulation of the diamagnetic mode in open traps. In Sect. 2 the
problem statement is presented. Section 3 is devoted to the parallel algorithm
description. The description of the numerical experiments and their results are
presented in Sect. 4. Section 5 gives a brief summary of the study.

2 Problem Statement

Let us consider formulation of the problem of creating the diamagnetic regime
in an open magnetic trap at injection of charged particle beams. At the initial
moment, the hydrogen background plasma of the density n0 = const is inside the
cylindrical chamber of the radius R0 and length L. The vacuum magnetic field
B = (Br, 0, Bz) is created by two coaxial coils with the same radii and currents
on the boundary r = R0. Two proton beams are introduced with a constant
velocity v = V0 at the point with the coordinates R = R1, z = L/2. The
beams are injected at the angle ± θ relative to the magnetic field and have the
temperature Ti. The stationary electron and ion components of the background
plasma are assumed to be cold: Te = 0 and Ti = 0. The hybrid numerical
model of the problem under consideration is based on a system of the Vlasov
equations for the ion components of the plasma and the injected beam, magnetic
hydrodynamics equations for the magnetized electron component of the plasma,
and Maxwell’s equations [3,17]:

∂fi
∂t

+ v
∂fi
∂r

+
Fi

mi

∂fi
∂v

= 0,

Fi = e

(
E +

1
c
v × B

)
+ Ri,

me
dve

dt
= −e

(
E +

1
c
ve × B

)
− ∇pe

ne
+ Re = 0,

ne

(
∂Te

∂t
+ (ve · ∇) Te

)
+ (γ − 1) pe∇ · ve = (γ − 1) Qe,

∇ × B =
4π

c
j,

∇ · B = 0.

Here fi is the ion distribution function, B and E are the magnetic and electric

fields, ve is the electron velocity, vi =
∫

fi (r,v, t)v dv/ni is the average ion

velocity, pe and Te are the electron pressure and temperature, and mi is the
proton mass. The force Ri = −Re takes into account the momentum exchange
between the electron and ion components of the plasma and beam; Re = me(vi−
ve)/τ, where τ is the characteristic time of ion-electron collision and me is the

302 A. Efimova et al.

mass of the electron. As for the dissipation mechanisms, the plasma conductivity
σ = τnee

2/me is taken into account. The heat generated by the electrons Qe =
j 2/σ, and the current j = ne(vi − ve). Here it is assumed that the collision
frequency is defined by the anomalous scattering processes on the fluctuations
of electromagnetic fields and does not depend on the plasma and magnetic field
parameters (τ = const) . In the calculations, the adiabatic exponent γ = 5/3.

The model uses the condition of plasma quasi-neutrality, i.e., equality of
the densities of the electron and ion components of the plasma, ne = ni = n
(the scales under consideration are larger than the Debye radius). In addition,
only low-frequency processes are considered and bias currents are not taken
into account. The electric field is determined from the motion equation of elec-
trons under the assumption of me = 0. In this approximation, the dispersion
effects associated with the electron component of the plasma, which determine
the structure of magnetosonic waves propagating across the magnetic field, are
ignored. The algorithm of the problem solution takes into account the large
difference in the magnitude of the magnetic field of the trap, the injection of
particles with non-linear density distribution in a cylindrical coordinate system,
and the escape of particles through the trap mirrors. The electron component
of the plasma and the magnetic field are calculated with the application of
finite-difference schemes on staggered grids [1–3]. When the Vlasov equations
are solved by the PIC method, transitions to Cartesian coordinates and back to
cylindrical coordinates are carried out [2]. The volume of each cell of the grid
is proportional to the distance to the axis of the cylinder; the mass and charge
of the model particles also depend on their position relative to the Z-axis. The
characteristic spatial size and time interval of the problem under consideration
are λ = c/ωpi and T = 1/ωiH , where ωpi =

(
4πnee

2/mi

)1/2
is the ion plasma

frequency and ωiH = eB0/ (mic) is the ion cyclotron frequency. The step of the
uniform spatial grid used in solving the problem is 0.05λ < h < 0.1λ, and the
time step is 10−6T < Δt < 10−5T.

The kinetic equation for the ion component is solved by the particle-in-cell
method, in which the ion component of the background plasma and injected
beams is replaced by a set of model particles. The equations of motion for model
particles with the index j correspond to the characteristics of the kinetic Vlasov
equation:

drj
dt

= vj ,

dvj

dt
=

qj
mj

(
E +

1
c
vj × B

)
+

1
mj

Rj .

The equations of ion motion are solved with the use of the new VD1 scheme,
presented in [15], which enables exact solution to the non-relativistic motion
equations of ions of background plasma and injected beams.

Diamagnetic Mode 303

3 Parallel Algorithm

Parallelization of the algorithm and creation of a parallel numerical code is a
prerequisite for speeding up the calculations, increasing the number of model
particles and reducing the spatial step. The parallel computing algorithm cre-
ated and implemented in our parallel code is based on the decomposition of
both the spatial grid (in the longitudinal direction) and the particle grid [18].
Each subdomain is assigned to a group of processor cores; the particles of the
subdomain are distributed among the cores of the group. At the initial stage,
the background particles and the particles of the injected beams are distributed
evenly between the cores of their group.

The calculation of the velocities and coordinates is one of two time-consuming
procedures of the algorithm and takes ∼60% of total time. In order to use auto-
vectorization of the loop through the particle index the particles must be sorted
by cell index. This also helps to avoid data dependencies and speed-up the second
time-consuming procedure of the charge and current densities determination,
which takes ∼35% of total time. When some particles leave their subdomain
their data are forwarded to one of the cores of the neighboring group, and since
the time step smallness is the distinctive characteristic of the hybrid model, the
number of particles is small (Jout � 1%) and overheads are low. After receiving
data from the neighboring group cores and boundary conditions applying the
data are inserted into the empty places in the corresponding particle cell array
if it is possible or added in to the end of the array. The result is arrays of the
particles sorted by cell index on every time step.

Successive data distribution also ensures balanced loading of processor cores
in the group. The algorithm calculates the average number pi of the particles
in a core assigned to subdomain i, on the basis of pi increases the number
of cores in group for the dense regions to even up pi, and then redistributes
the particles within their new group. It requires sending data of “superfluous”
particles to fill the “empty” cores up to pi particles and the further sorting
of the particles among the cells in each core. Figure 1 represents two examples
of particle distribution in the domain and the corresponding core distribution
among groups. The rebalance leads to high overheads in the worst case affecting
all cores, thus we apply the algorithm every T1 (∼105 time steps).

On every time step the master cores of each group are responsible for the
broadcasting, gathering grid information within the group and space grid com-
putations. First the master cores distribute the data for electromagnetic fields in
the group, and after performing of particle related procedures each core gathers
2D arrays of the mean charge and mean current densities. Then the master cores
of the groups calculate the new currents, electric field, magnetic field and tem-
perature with taking into account the exchanges of the adjacent boundary grid
data between the master cores of the neighboring groups. Below the algorithm
is presented.

304 A. Efimova et al.

Fig. 1. The load balancing: distribution of the cores and the particles at different time
steps.

Setinitialconditions;
for i = 1, 2, ..., Nexternal do

Rebalance;
for j = 1, 2, ..., Ninternal do

ifcorecontainsinjectionpointtheninjection;
ifcore = masterthenFieldsBCASTfrommasterstoslaves;
Newparticlecoordinates;
Boundaryconditionsforparticles;
Particleexchangeswithneighbors;
Particlesortingamongcellsinonecore;
Meanchargedensities;
Meancurrentdensities;
Reducemeandensitiesfromslavestomasters;
ifcore = masterthen

Meandensitiesexchangewithneighbors;
Boundaryconditions;
Currents;
Currentexchangewithneighbors;
Electricfield;
Electricfieldexchangewithneighbors;
Magneticfield;
Magneticfieldexchangewithneighbors;
Temperature;
Temperatureexchangewithneighbors.

Diamagnetic Mode 305

The authors code is written on Fortran 95 using MPI and compiled using
AVX2 optimization. The code allowed to reduce the calculation time by ten
folds compared with the monoprocessor algorithm due to the big number of
cores in regions with high density. Figure 2 demonstrates the computation times
(a), speed-up (b) and efficiency (c) of the code for different number of cores np
for the computational grid 40 × 120 and 104 particles entering the trap during
t = T. The small number of cores doesn’t allow performing the computations,
thus we calculate the speed-up and the efficiency with initial number of cores 30,
and it corresponds to linear decomposition (ng = 30, np = 30). The speed-up
was calculated as S(np) = Time30/T imenp, the efficiency Eff(np) = S(np) ∗
30/np, where Timei is computation time using i cores. The blue color denotes
computations until the moment t = 5, the red color denotes the computations
until t = 40.

One may observe the super-linear speed-up, which corresponds to the “addi-
tion” of cores in the groups of high-density subdomains around the injection
point [19]. However, on the early stages (t = 5) the speed-up and efficiency is
low for big np : the scanty particles are concentrated near the injection point and
the communication overheads inside groups with high number of cores increase
the computations times. For the later stages (t = 40) the algorithm yields high
efficiency.

Fig. 2. Dependence of the computation times (a), speedup (b) and efficiency (c) on
the number of cores np for t = 5 and t = 40.

The computation times non-linearly depend on the number cores np, because
these np cores may be distributed among different numbers of groups ng. Higher
ng leads to the thinner subdomains and smaller number of particles in the sub-
domains. Thus usually configurations with np/ng between 2 and 4 are used. The
spatial grid size Nz defines the maximal number of groups, which can not exceed
Nz/4 (2 nodes + 2 ghost nodes of the subdomain in Z-direction). On practice,
big number of cores (np > 300) is not used: the subdomain size remain the same
with proportional increasing of Nz and Ng, but the time step due to the severe
stability condition yields high number of time steps and consequent increase of
computation time. The requirement for the computations is to be performed in
few days, and the grid can not be increased significantly.

306 A. Efimova et al.

4 Results of Numerical Simulation

Let us consider some results of the numerical simulation of the interaction of
ion beams with plasma in an open magnetic trap with the radius R0 = 15 cm
and the length L = 60 cm. In the center of the system (R = 0 cm, z = 30 cm) ,
the magnetic field strength is B0 = 20 kGs, and the mirror ratio on the axis
is 2.0. The density of the cold (Te = 0) background plasma is n0 = 1014 cm−3.
Two ion beams are injected to the magnetic field of the trap from the point
with the coordinates R1 = 0.5 cm, z = 30 cm at the angle θ = ±60◦. The
temperature and velocity of the continuously injected ion beams are Ti = 10 eV,
and V0 = 4.4·107 cm/s. The applied characteristics of the background plasma and
injected beams correspond to the data of laboratory experiments [16]. Figures 3
and 4 show maps of magnetic field lines (a) and spatial distributions of ions of
injected beams (b) at the time moments t = 5 · 10−7 s and t = 5 · 10−6 s.

Fig. 3. Map of the magnetic field lines of the magnetic trap (a) and distribution of the
ions of injected beam (black) and the background plasma (b), t = 5 · 10−7 s.

From the graphs, it can be seen that continuous injection of beams results in
displacement of the magnetic field and formation of magnetic cavity (magnetic
bubble), in which the magnetic field pressure reaches only several percent of the
initial one (Fig. 3). The spatial distributions of the ions of the injected beams
and background plasma ions demonstrate the evolution of the structure of the
continuously injected beams and the displacement of background plasma ions
from the magnetic cavity region.

Diamagnetic Mode 307

Fig. 4. Map of the magnetic field lines of the magnetic trap (a) and distribution of the
ions of injected beam (black) and the background plasma (b), t = 5 · 10−6 s.

The isoline maps of the magnetic field pressure and plasma pressure of the
injected beams (see Fig. 5) show the accumulation and capture of the plasma in
the magnetic cavity region. The quasi-stationary diamagnetic regime is formed
by the time t = 4 · 10−6 s, from which the transverse size of the magnetic cavity
slightly changes.

The presented results of calculations performed on the basis of the created
parallel code demonstrate the possibility of forming a quasi-stationary diamag-
netic configuration of an open trap in the mode with continuous off-axis injection
of ion beams as applied to the conditions of laboratory experiments on the CAT
installation (BINP SB RAS). The calculation grid is 100 × 300 in size; the time
step Δt = 4 · 10−6 T; the number of background particles Jb = 1.2 · 105, 104

model particles are introduced per time unit t = T . For these parameters, the
operating time was 26 h up to the time t = 40T and 74 h up to t = 80T. The
calculations were carried out with 72 cores of Intel Xeon Phi 7290 processors of
the Siberian Supercomputer Center, ICM&MG SB RAS, Novosibirsk.

308 A. Efimova et al.

Fig. 5. Magnetic field pressure isolines (a) and plasma pressure isolines of the injected
proton beams (b) at t = 5 · 10−6 s.

5 Conclusion

The article presents a hybrid (PIC-MHD) numerical model, based on which the
problem of forming the diamagnetic plasma confinement regime in an open mag-
netic system with beam injection at an angle to the magnetic field is solved. The
motion equations of the ions of the background plasma and injected beams were
solved with the application of VD1 scheme, which takes into account the con-
dition of constant values of the Lorentz force at each time step. The parallel
computing algorithm created and implemented in our parallel code is based on
decomposition with respect to the space and the particles. The algorithm made
it possible to reduce the calculation time by ten folds compared with the mono-
processor algorithm. A series of computational experiments has shown that the
continuous injection of beams is accompanied by displacement of the magnetic
field and formation of a diamagnetic cavity, in which the magnetic field pres-
sure reaches several percent of the pressure of the initial magnetic field. The
results confirm the possibility of retaining high-temperature plasma in the dia-
magnetic regime of open magnetic traps as applied to the conditions of labora-
tory experiments at the BINP SB RAS. The created model adequately describes
non-stationary non-linear processes in the system under consideration and can
be used for further research on heating and plasma retention in the diamagnetic
regime of linear magnetic traps.

Diamagnetic Mode 309

This work was done within the framework of the Russian Science Founda-
tion project (19-71-20026) by using the resources of the Siberian Supercomputer
Center for Collective Use ICM&MG SB RAS.

References

1. Berezin, Y.A., Vshivkov, V.A.: Particle-in-cell method in rarefied plasma dynamics.
Nauka, Novosibirsk, Russia (1980)

2. Birdsall, C.K., Langdon, A.B.: Plasma Physics and Numerical Simulation. Ener-
goatomizdat, Moscow, Russia (1989)

3. Berezin, Y.A., Dudnikova, G.I., Liseikina, T.V., Fedoruk, M.P.: Fedoruk, M.P.:
Modeling of nonstationary plasma processes. Novosibirsk State University, Insti-
tute of Computational Technologies SB RAS, Novosibirsk, Russia (2018)

4. Dickinson, E., Ekström, H., Fontes, H.: COMSOL multiphysics: finite element soft-
ware for electrochemical analysis. A mini-review. J. Electrochem. Commun. 40,
71–74 (2014). https://doi.org/10.1016/j.elecom.2013.12.020

5. Feng, Y., et al.: Recent improvements in the EMC3-Eirene code. J. Contrib. Plasma
Phys. 54(4–6), 426–431 (2014). https://doi.org/10.1002/ctpp.201410092

6. Cao, B., Stotler, D.P., Zweben, S.J., Bell, M., Diallo, A., Leblanc B.: Comparison of
gas puff imaging data in NSTX with DEGAS 2 simulations. J. Fusion Sci. Technol.
64(1), 29–38 (2013). https://doi.org/10.13182/FST13-A17044

7. Stroman, T., Pohl, M., Niemiec, J.: Kinetic simulations of turbulent magnetic-
field growth by streaming cosmic rays. J. Astrophys. 706, 38–44 (2009). https://
doi.org/10.1088/0004-637X/706/1/38

8. Dieckmann, M.E., Murphy, G.C., Meli, A., Drury, L.O.C.: Particle-in-cell simula-
tion of a mildly relativistic collision of an electron-ion plasma carrying a quasi-
parallel magnetic field. Electron acceleration and magnetic field amplification at
supernova shocks. J. Astron. Astrophys. 509, A89 (2010). https://doi.org/10.1051/
0004-6361/200912643

9. Caprioli, D.: Hybrid simulations of particle acceleration at shocks. J. Nuclear Phys.
B (Proc. Suppl.) 256–257, 48–55 (2014). https://doi.org/10.1016/j.nuclphysbps.
2014.10.005

10. Weidl, M.S., Winske, D., Jenko, F., Niemann, C.: Hybrid simulations of a parallel
collisionless shock in the large plasma device. J. Phys. Plasmas 23(12), 122102
(2016). https://doi.org/10.1063/1.4971231

11. Vshivkova, L.V., Dudnikova., G.I.: Dispersion analysis of the hybrid plasma model.
J. Bull. Nov. Comp. Center Num. Anal. 16, 101–106 (2013)

12. Umeda, T.: A three-step Boris integrator for Lorentz force equation of charged
particles. J. Comput. Phys. Commun. 228, 1–4 (2018). https://doi.org/10.1016/j.
cpc.2018.03.019

13. Li, F., et al.: Controlling the numerical Cerenkov instability in PIC simulations
using a customized finite difference Maxwell solver and a local FFT based current
correction. J. Comput. Phys. Commun. 214, 6–17 (2017). https://doi.org/10.1016/
j.cpc.2017.01.001

14. Khaziev, R., Curreli, D.: hPIC: a scalable electrostatic particle-in-cell for plasma-
material interactions. J. Comput. Phys. Commun. 229, 87–98 (2018). https://doi.
org/10.1016/j.cpc.2018.03.028

15. Voropaeva, E., Vshivkov, K., Vshivkova, L., Dudnikova, G., Efimova, A.: New
motion algorithm in the particle-in-cell method. J. Phys. 2028(1), 012011 (2021).
https://doi.org/10.1088/1742-6596/2028/1/012011

https://doi.org/10.1016/j.elecom.2013.12.020
https://doi.org/10.1002/ctpp.201410092
https://doi.org/10.13182/FST13-A17044
https://doi.org/10.1088/0004-637X/706/1/38
https://doi.org/10.1088/0004-637X/706/1/38
https://doi.org/10.1051/0004-6361/200912643
https://doi.org/10.1051/0004-6361/200912643
https://doi.org/10.1016/j.nuclphysbps.2014.10.005
https://doi.org/10.1016/j.nuclphysbps.2014.10.005
https://doi.org/10.1063/1.4971231
https://doi.org/10.1016/j.cpc.2018.03.019
https://doi.org/10.1016/j.cpc.2018.03.019
https://doi.org/10.1016/j.cpc.2017.01.001
https://doi.org/10.1016/j.cpc.2017.01.001
https://doi.org/10.1016/j.cpc.2018.03.028
https://doi.org/10.1016/j.cpc.2018.03.028
https://doi.org/10.1088/1742-6596/2028/1/012011

310 A. Efimova et al.

16. Beklemishev, A.D.: Diamagnetic, bubble equilibria in linear traps. J. Phys. Plasmas
23, 082506 (2016). https://doi.org/10.1063/1.4

17. Boronina, M.A., Dudnikova, G.I., Efimova, A.A., Genrikh, E.A., Vshivkov, V.A.,
Chernoshtanov, I.S.: Numerical study of diamagnetic regime in open magnetic trap.
J. Phys. Conf. Ser. 1640(1), 012021 (2020). https://doi.org/10.1088/1742-6596/
1640/1/012021

18. Chernykh, I., et al.: High-performance simulation of high-beta plasmas using PIC
method. J. Commun. Comput. Inf. Sci. 1331, 207–215 (2020)

19. Boronina, M.A., Chernykh, I.G., Genrikh, E.A., Vshivkov, V.A.: Parallel realiza-
tion of the hybrid model code for numerical simulation of plasma dynamics. J.
Phys. Conf. Ser. 1336 (2019). https://doi.org/10.1088/1742-6596/1336/1/012017

https://doi.org/10.1063/1.4
https://doi.org/10.1088/1742-6596/1640/1/012021
https://doi.org/10.1088/1742-6596/1640/1/012021
https://doi.org/10.1088/1742-6596/1336/1/012017

Computer Simulation of the
Three-Dimensional Synthesis of Phase
Images of Nanometer Scale Objects

Gennady Levin1, Gennady Vishnyakov1, and Yaroslaw Ilyushin2,3(B)

1 The All-Russian Research Institute for Optical and Physical Measurements,
46 Ozernaya st., Moscow 119361, Russian Federation

vniiofi@vniiofi.ru
2 Moscow State University, Physical Faculty GSP-2, Moscow 119992,

Russian Federation
ilyushin@phys.msu.ru

3 Kotel’nikov Institute of Radio Engineering and Electronics,
Russian Academy of Sciences, Moscow 125009, Russian Federation

ire@cplire.ru

Abstract. The article is devoted to the analysis and further improve-
ment of the well-known Transfocal Scanning Optical Microscopy (TSOM)
method, previously proposed by other authors. We analyze this approach
step by step and simulate it thoroughly. Our simulation includes a rigor-
ous numerical solution of the Maxwell equations for the electromagnetic
field of light in an optical microscope using the Finite Difference in Time
Domain (FDTD) method and the synthesis of a TSOM image in strict
accordance with the original author’s instructions.

After that, we propose an approach to the synthetic formation of
three-dimensional phase images of nanometer scale objects with wave
field back projection. We also carefully simulate is step by step, similarly
to the previous one. Then we compare both the method newly proposed
by us and the old one, using several benchmark test objects. We demon-
strate the advantages of synthetic phase images over amplitude image
synthesis. Finally, we show how the synthetic phase images can be used
in pattern recognition algorithms for applied defectoscopic purposes.

Keywords: Optical microscopy · Nanotechnology · Pattern
recognition · Detection algorithms

1 Introduction

Precise measurements of the geometric parameters of microscale and nanoscale
objects, the control of manufacturing tolerances, and the detection of small dis-
placements of microscale parts in various technological processes are priority

The research is carried out using the equipment of the shared research facilities of HPC
computing resources at Lomonosov Moscow State University [1].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 311–322, 2023.
https://doi.org/10.1007/978-3-031-38864-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_22&domain=pdf
https://doi.org/10.1007/978-3-031-38864-4_22

312 G. Levin et al.

tasks of modern optical microscopy. In particular, the optical quality control
of photolithographic matrices and printed circuit boards (PCB) are among the
most important of them [2–5]. In some cases, the deviations of the positions
under control from their prescribed values are on the order of nanometers. This
is well exceeded by both the classical Rayleigh diffraction limit [6] and pixel
resolution of the matrix photodetectors [7] in the object space. All these reasons
create a need for new image processing techniques aimed at extracting valuable
information from optical microscopy images. One of the new directions in mod-
ern microscopy is related to the techniques for the measurement of the dimen-
sions of the simplest microscale objects from their wave diffraction patterns,
the so-called optical diffractometry [8,9]. However, these techniques require the
numerical solution of both direct and inverse optical problems of wave diffrac-
tion on the object under investigation. A simpler approach to the problem of
detection of nanoscale defects in the industrial production of optical images has
been developed by the National Institute of Standards and Technology (NIST),
USA [10–12]. This technique is essentially based on the recognition of nanometer
scale deviations of the objects from the reference on three-dimensional diffraction
patterns specially formed in the image space of the conventional optical micro-
scope. It is worth noting that the superresolution in the classical sense of the
term, i.e., the formation of an image overcoming the Rayleigh resolution limit,
is not the goal of this approach. Nevertheless, it has been shown in these and
other papers [4,13–15] that the nanoscale deviations of the geometrical param-
eters from the prescribed values produce characteristic signatures in the wave
diffraction patterns that appear to be detectable.

The technique suggested by the authors is called TSOM (Transfocal Scanning
Optical Microscopy). The method is basically based on the registration of a
series of two-dimensional images in transverse coordinates while the focus of the
microscope moves along its optical axis. Afterward, that stack of two-dimensional
images is sliced normally to the images’ planes. Thus a two-dimensional image
(TSOM-image in the author’s terminology) is formed [10,16].

It turned out that such representation of microscopic measurement data is
very suitable for comparative analysis of objects with very similar geometrical
parameters, e.g., objects differing by several nanometers. The comparison of
such TSOM images to the set of benchmark images allows the detection of these
deviations from the prescribed geometry.

The TSOM image is in fact a distribution of the optical intensity (the square
of the electromagnetic field amplitude), obtained by scanning the object with
a microscope that is gradually refocused. To improve its information capacity,
the resolution and scanning range are required. As a consequence, the amount
of time needed for the whole TSOM image registration grows up. One more
disadvantage of the TSOM technique is the neglect of the phase of the optical
field. This, we think, restricts its capabilities for discrimination of small changes
in the object under investigation.

However, the practice of interferometric optical microscopy shows that the
phase of the wave field is one of its most informative characteristics. Let us

Computer Simulation 313

call the two-dimensional distribution of the optical wave path difference, which
can be retrieved immediately from the interference patterns, the phase image
of the object. The analysis of such phase images significantly exceeds the accu-
racy of several very different measurement techniques based on the analysis of
amplitude images of immediate interference patterns. Thus, in the paper [17],
the authors suggest a method of analysis of the phase images obtained from the
Linnick interference microscope. It was shown there that this method can detect
nanometric movements of the objects without data inversion or superresolution
procedures, both theoretically and in real experiments.

The present paper aims to investigate the application of three-dimensional
phase diffraction images of nanometric objects for industrial detection of manu-
facturing defects. Also, we suggest the registration of the amplitude and phase
of the field for a unique position of the microscope focal plane. Other field dis-
tributions in other planes are computed numerically using the wave propagation
laws in free space instead of physically changing the focal plane position of the
microscope lens. Also, we present numerical results that simulate the formation
of the diffraction pattern as well as its amplitude and phase. Moreover, we study
and compare the detection of deviation of the objects from each other using
phase images and other techniques.

The paper is organized as follows. In the Sect. 1, a brief bibliographic review
is given and the motivation and objectives of the paper are formulated. The
Sect. 2 is devoted to a detailed description of the image synthesis algorithms,
investigated in this paper. In the Sect. 3, we give necessary information on the
method of numerical electrodynamics (FDTD), which we use in this study. A spe-
cial Subsect. 3.1 is devoted to the analysis of the efficiency of the parallelization
of the numerical algorithm in the computer code implemented by us. Section 4
contains analysis and discussion of the numerical results obtained in this study.
Conclusion (the Sect. 5) summarizes the study and points directions for further
work.

2 Algorithms for Image Synthesis

Consider the problem of the formation of some object images in the Linnick
interference microscope. Numerical techniques for the computer simulation of
such microscopic images have been discussed in detail (see, for example, [17,18]).

Let Ez(x, y, φ) be the distribution of the complex wave field amplitude in
the focal plane of the microscope [17], where x and z are the coordinates in
the image plane, y is the position of the focal plane of the microscopic lens,
and φ is the incidence angle of the coherent plane wave that illuminates the
object, with respect to the y axis (the optical axis of the microscope; see Fig. 1).
Following [10–12,16], we restrict our considerations to objects infinitely long in
the z direction. In this case, the field does not depend on the z coordinate. For
the simulation, the amplitude and phase distributions in the (x, y) plane are
independently calculated for a number of incidence directions φi. According to
[16], the most informative range of focal positions of the microscope is a certain

314 G. Levin et al.

Fig. 1. Computational domain geometry

range of several wavelengths above and beneath the object plane. We also assume
that the object is illuminated by a collimated wave incident in the direction φi

within the range of incidence angles determined by the optical system of the
particular microscope used. The TSOM image [10,16] is the distribution of the
radiation intensity ∑

i

|Ez(x, y, φi)|2, (1)

where N is the number of partial incidence directions φi. Thus the TSOM image
is the field intensity averaged over the whole range of partial incidence directions
allowed by the microscope optical system. In the present paper, we suggest using
phase images instead of TSOM images. According to the general idea of the
proposed approach, it can be expressed by the formula

∑

i

arg(Ez(x, y, φi)), (2)

where arg(·) denotes the argument of the complex value, e.g., the complex ampli-
tude of the partial wave field Ez(x, z, φi) or the phase of this partial field. We call

Computer Simulation 315

this phase distribution the FAMOR image, and the technique of its formation—
the backward propagation phase microscopy.

In contrast to the TSOM method, we suggest computing all the partial fields
that constitute the phase synthetic image (2), from a single amplitude and phase
distribution registered in an arbitrary plane of the image space close to the plane
of best image focusing in an interferometric or holographic microscope. Modern
techniques of digital interferometric or holographic microscopy allow retriev-
ing and digitizing the complex amplitude of the wave field from interferometric
images in an arbitrary plane at any distance y from the best-focusing plane,
above or below it. To this end, we use back-propagation algorithms.

Thus, the following operations are necessary for the synthetic formation of
the amplitude or phase image:

1. Illuminate the object with a plane monochromatic wave incident in the direc-
tion φi to the normal of the object plane.

2. Register the interference image of the object in the plane optically conjugated
to the object plane, for each incidence angle φi from a certain set of them.

3. Retrieve the amplitude and phase of the field from an interference image in
the plane y = 0 (the zero plane) using the Fourier transform procedure or by
phase steps.

4. Compute the amplitude and phase in other planes y = const for values of y
lying in some range of several wavelengths above and below the zero plane,
using for this some backpropagation procedure.

5. Average the phase or amplitude (TSOM) over the whole range of incidence
angles φi.

6. Localize separate objects in these synthetic amplitude (TSOM) or phase
images.

7. Compute the differences between pairs of amplitude (TSOM) or phase images
to detect deviations in the geometric parameters of the objects from each
other.

As a result of amplitude (TSOM) or phase image-processing procedures,
we obtain the distributions of the informative parameters of the wave field
(phase and amplitude) in a three-dimensional domain in the space of the object
images. The analysis of these distributions allows comparing the imaged objects
to each other. Nanometer-scale objects, not observable with traditional optical
microscopes due to the classical Rayleigh diffraction resolution limit [6], can be
detected in amplitude (TSOM) or phase images.

To investigate the discriminational capabilities of these two three-dimensional
imaging methods, we simulated all the stages of the formation and processing
of the interferometric microscopic images by numerically solving the Maxwell
equations for the vectorial electromagnetic field with respect to its polarization
and scattering on the object. We modeled the registration of the image using
the numerical approximation of a specially modernized Linnick interferometric
microscope, which is capable of registering the interferometric image with a high
degree of accuracy.

316 G. Levin et al.

3 Numerical Simulations of the Optical Wave Scattering
on an Object

In this study, we use the Finite-Difference in Time Domain (FDTD) numerical
technique for the calculation of the electromagnetic scattering of an optical wave
on an object. Proposed in 1966 [19], the method has become one of the basic
numerical techniques in electrodynamics and is widely used for simulations in
optical [17,18] and radiophysical [20,21] applications.

The numerical simulation of the electromagnetic wave scattering on an object
of constant cross-section profile and infinitely long in the z direction has been
performed by the FDTD method for an s-polarized incident wave [22] with
an electric wave field parallel to the z axis, i.e., E = (0, 0, Ez). The magnetic
permeability of the object was assumed to be 1, owing to the optical frequencies
of the field under consideration.

The Maxwell equations for the electric and magnetic vector components rel-
evant to the considered problem (Hx,Hy, Ez) [23],

∂Hx

∂t
= −∂Ez

∂y
, (3a)

∂Hy

∂t
=

∂Ez

∂x
, (3b)

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
, (3c)

are approximated by finite differences with the standard leap-frog scheme of the
FDTD technique [19,23]:

Hn+1/2
x (i, j + 1/2) = Hn−1/2

x (i, j + 1/2) +
δt

δy
[En

z (i, j) − En
z (i, j + 1)] , (4a)

Hn+1/2
y (i + 1/2, j) = Hn−1/2

x (i + 1/2, j) +
δt

δy
[En

z (i + 1, j) − En
z (i, j)] , (4b)

En+1
z (i, j) = En

z (i, j) +
δt

ε(i, j)δy

[
Hn+1/2

y (i + 1/2, j) − Hn+1/2
y (i − 1/2, j)

]

(4c)

+
δt

ε(i, j)δy

[
Hn+1/2

x (i, j − 1/2) − Hn+1/2
x (i, j + 1/2)

]
.

At the side walls of the solution domain, we impose a periodic wave bound-
ary condition corresponding to the wave incidence angle φ. The front and back
edges of the domain, which are parallel to the underlying surface of the object,
are implemented with the so-called perfectly matched layers (PML) [24], ensur-
ing the complete absorption of all the incident electromagnetic power with no
reflection, regardless of the incidence angle. The scattered field is registered at
some plane y′ that is parallel to the object surface and then propagated back

Computer Simulation 317

to the microscope focal plane y employing a specially implemented numerical
procedure [18],

Ez(x, y, φ) =
1
2π

Ξx∫

−Ξx

dκx

∫
dx′ exp(i

√
k2 − κ2

x(y−y′)+iκx(x−x′))Ez(x′, y′, φ),

(5)
where k = 2π/λ is the wave number of the illuminating wave and Ξx is the
maximal transverse wave number that can be registered with the microscope
thanks to its resolution capability. We assume that the microscope has an ideal
lens whose resolution fits the classical Rayleigh diffraction limit.

3.1 Parallelization of Computations and Developing Codes

Since the iterations of the discretized Maxwell Eq. (4) are independent, FDTD
calculations are essentially parallel and are easily implemented by OMP or MPI
computing standards. For relatively small domains, which fit into the shared
memory of a single computer, cyclic iterations over all the nodes of a one-, two-,
or three-dimensional finite-difference grid (Fig. 1) are immediately parallelized
with the #pragma omp parallel for directive. Larger domains requiring the
distributed memory of several computer nodes can be divided into several smaller
subdomains as shown by the vertical dashed lines in Fig. 1. Then electric (4c)
and magnetic (4a, 4b) rotor Maxwell equations are iterated independently in
each subdomain, and after each iteration cycle, the processes exchange their
new boundary values with their neighboring processes, which are responsible
for the adjacent subdomains. This data exchange can be implemented by the
Message Passing Interface (MPI).

Practically, most simulations in this study were performed on the Tshebysheff
and Lomonosov-1 parallel clusters at SRCC MSU computing facilities. Typically,
one computer node (two CPUs, i.e., 8–12 processing cores) was used for every
simulation with code using the Open MP standard. The parallelization efficiency
in this case practically reaches its theoretical limit (the speedup is proportional
to the number of cores).

For the MPI codes, the efficiency analysis is not as simple as for the Open MP
ones. However, the volume of data passed from one process to the neighboring
one is N ∝ L/h, where L is the length of the border and h is the cell size. On
the other hand, the computational load at each step of the FDTD scheme is
proportional to S/h2, where S is the area of the partial subdomain allocated
to the given process (see Fig. 1). Thus, the fraction of computing time used for
data exchange vanishes with the cell size as (L/h)/(S/h2) ∝ h. This means that
for large domains the parallelization efficiency of MPI codes can also approach
its theoretical values.

318 G. Levin et al.

Fig. 2. Amplitude synthetic (TSOM) image of the object

4 Simulation Results

The profile of a rectangular shape on the flat underlying surface, infinitely long
in the z direction, is used as the test object in the numerical simulation. The
values of its height and width (h = 105 nm and w = 38 nm, respectively) were
chosen following [25], as well as the illuminating wavelength λ = 546nm and the
material of the object (Si, dielectric permittivity ε = 5 [26]). The cell size of the
numerical grid in the FDTD scheme was chosen equal in both directions x, y
and small enough (1 nm) to explore the effects of the nanometric variations of
the object size, shape, and position. For the domain size of 3000 × 3000 nm (see
Figs. 2, 3, 4 and 5), this yields a grid size of 3000 × 3000 cells, correspondingly.

The set of illumination directions of object I spans the range (−12◦,+12◦)
with 1◦ step. Thus the effective numerical aperture of the illumination for this
range of illumination directions is approximately NA = sin(12◦) ≈ 0.2. Since the
object does not vary in the z direction, only (x, y) cross sections of the field are
computed and analyzed. The amplitude (TSOM) and phase (FAMOR) images
of the object are shown in Figs. 2 and 3. Obviously, the phase (FAMOR) image
has a simpler structure with a single maximum, corresponding to the object
location.

Computer Simulation 319

Fig. 3. Phase synthetic image of the object

Figures 4 and 5 show the difference images (difference between a pair of
images of two objects). The phase difference image also has a much simpler
structure than the amplitude (TSOM) one.

The two objects have different widths and heights (h1 = 105 nm and w1 =
38 nm; h2 = 95 nm, w2 = 42 nm) but equal cross-section areas (h1 × w1 =
h2 × w2 = 3990 nm2). The phase difference image is much simpler and more
interpretable, as well as more sensitive to the variations of the geometry of the
objects, even when the cross-section area remains constant.

320 G. Levin et al.

Fig. 4. Differential amplitude synthetic (TSOM) image of the object

Fig. 5. Differential phase synthetic image of the object

Computer Simulation 321

5 Conclusions

The theoretical investigation and numerical simulations of both techniques used
in synthetic image formation (amplitude or phase) for application to industrial
nanotechnology diagnostics show that making use of the wave field phase as
its informative characteristic is strongly preferable. We studied the potential
capabilities of the method used with real optical instruments having limited
physical parameters. The simulation results show the possibility of detection
of local defects in the nanometer scale samples on the three-dimensional phase
images. These results also clearly demonstrate the advantages of phase image
synthesis over its amplitude counterpart (TSOM).

We designed and investigated a new alternative processing technique appro-
priate for optical microscopic images. The technique is essentially based on the
processing of the phase of the optical wave registered by the interference micro-
scope. We performed numerical studies and comparative tests with the alterna-
tive technique based on the wave amplitude. We established the advantages of
the phase approach for industrial diagnostic purposes.

References

1. Sadovnichy, V., Tikhonravov, A., Voevodin, V., Opanasenko, V.: “Lomonosov”:
Supercomputing at moscow state university. In: Contemporary High Performance
Computing: From Petascale toward Exascale. Chapman & Hall/CRC Computa-
tional Science, Boca Raton, United States, Boca Raton, United States, pp. 283–307
(2013)

2. Alford, W.J., VanderNeut, R.D., Zaleckas, V.J.: Laser scanning microscopy. Proc.
IEEE 70(6), 641–651 (1982)

3. Wang, W., Chen, S., Chen, L., Chang, W.: A machine vision based automatic
optical inspection system for measuring drilling quality of printed circuit boards.
IEEE Access 5, 10817–10833 (2017)

4. Rau, H., Wu, C.H.: Automatic optical inspection for detecting defects on printed
circuit board inner layers. Int. J. Adv. Manuf. Technol. 25, 940–946 (2005)

5. Kaur, B., Kaur, G., Kaur, A.: Detection and classification of printed circuit boards
defects. Open Trans. Inf. Proc. 2014, 8–16 (2014)

6. Born, M., Wolf, E.: Principles of Optics. Pergamon Press, Oxford (1975)
7. Levin, G.G., Minaev, V.L., Ilyushin, Y.A., Oshlakov, V.G.: Calibration of matrix

photodetectors and precision positioning of objects according to raster images.
Meas. Tech. 60(6), 571–577 (2017)

8. Buhr, E., Michaelis, W., Diener, A., Mirandé, W.: Multi-wavelength VIS/UV opti-
cal diffractometer for high-accuracy calibration of Nano-scale pitch standards.
Meas. Sci. Technol. 18(3), 667–674 (2007)

9. Silver, R.M., Attota, R., Marx, E.: Model-based analysis of the limits of optical
metrology with experimental comparisons. In: Bosse, H., Bodermann, B., Silver,
R.M. (eds.) Modeling Aspects in Optical Metrology, vol. 6617, pp. 266–278. SPIE,
International Society for Optics and Photonics (2007)

10. Attota, R., Germer, T.A., Silver, R.M.: Through-focus scanning-optical-microscope
imaging method for nanoscale dimensional analysis. Opt. Lett. 33(17), 1990–1992
(2008)

322 G. Levin et al.

11. Attota, R.K., Weck, P., Kramar, J.A., Bunday, B., Vartanian, V.: Feasibility study
on 3-D shape analysis of high-aspect-ratio features using through-focus scanning
optical microscopy. Opt. Express 24(15), 16574–16585 (2016)

12. Attota, R.: Noise analysis for through-focus scanning optical microscopy. Opt. Lett.
41(4), 745–748 (2016)

13. Ryabko, M., Koptyaev, S., Shcherbakov, A., Lantsov, A., Oh, S.: Method for optical
inspection of nanoscale objects based upon analysis of their defocused images and
features of its practical implementation. Opt. Express 21(21), 24483–24489 (2013)

14. Ryabko, M., et al.: Through-focus scanning optical microscopy (TSOM) consid-
ering optical aberrations: practical implementation. Opt. Express 23(25), 32215–
32221 (2015)

15. Peng, R., Jiang, J., Hao, J., Qu, Y.: Lateral movement and angular illuminat-
ing non-uniformity corrected TSOM image using Fourier transform. Opt. Express
28(5), 6294–6305 (2020)

16. Attota, R., Silver, R.: Nanometrology using a through-focus scanning optical
microscopy method. Meas. Sci. Technol. 22(2), 024002 (2010)

17. Levin, G.G., Ilyushin, Y.A., Minaev, V.L., Moiseev, N.N.: Measurement of
nanomovements of an object from the optical phase image. Meas. Tech. 53(7),
782–788 (2010). https://doi.org/10.1007/s11018-010-9577-8

18. Levin, G.G., Ilyushin, Y.A., Zolotarevskii, Y.S., Kononogov, S.A.: Nanometrol-
ogy: Simulation of scattering processes of optical radiation by nanodimensional
structures. Meas. Tech. 52(12), 1289–1293 (2009)

19. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

20. Ilyushin, Y.A., Padokhin, A.M.: Reflectometric altimetry of the sea level using the
GPS satellite signals: errors caused by sea surface waves. In: 2019 Russian Open
Conference on Radio Wave Propagation (RWP), vol. 1, pp. 309–312 (2019)

21. Ilyushin, Y.A., Padokhin, A.M., Smolov, V.E.: Global navigational satellite system
phase altimetry of the sea level: systematic bias effect caused by sea surface waves.
In: 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-
Spring), pp. 1618–1627 (2019)

22. Totzeck, M., Tiziani, H.: Interference microscopy of sub-λ structures: a rigorous
computation method and measurements. Optics Commun. 136(1), 61–74 (1997)

23. Taflove, A., Brodwin, M.E.: Numerical solution of steady-state electromagnetic
scattering problems using the time-dependent Maxwell’s equations. IEEE Trans.
Microw. Theory Tech. 23(8), 623–630 (1975)

24. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic
waves. J. Comput. Phys. 114(2), 185–200 (1994)

25. Levin, G.G., Vishnyakov, G.N., Ilyushin, Y.A.: Synthesis of three-dimensional
phase images of nanoobjects: numerical simulation. Optics Spectrosc. (English
translation of Optika i Spektroskopiya), 115(6), 938–946 (2013)

26. Philipp, H.R., Taft, E.A.: Optical constants of silicon in the region 1 to 10 eV.
Phys. Rev. 120, 37–38 (1960)

https://doi.org/10.1007/s11018-010-9577-8

A Parallel Algorithm for a Two-Phase
Gas-Solid-Particle Model with Chemical

Reactions and Laser Radiation

Elizaveta Peskova(B)

National Research Mordovia State University, 68 Bolshevistskaya str.,
Saransk 430005, Russian Federation

e.e.peskova@math.mrsu.ru

Abstract. The article is devoted to the development of a parallel com-
putational algorithm for the model of a two-phase chemically active
medium with laser radiation. The model consists of a system of low-
Mach-number approximations of Navier–Stokes equations for multicom-
ponent reacting mixtures, supplemented by equations of chemical kinet-
ics, an equation for the radiation intensity, and equations for the solid
phase. The solid phase is described in terms of particle concentrations.
We describe them employing systems of convection-diffusion-reaction
equations supplemented with thermal terms from laser radiation and
reaction terms for compounds on the surface. The general solution algo-
rithm is based on the splitting scheme for physical processes: chemi-
cal reactions, convection-diffusion, and stationary process for pressure
correction. We use the WENO scheme to construct the computational
algorithm for approximating the convective terms in the Navier–Stokes
equations. Moreover, we use the RADAU5 plug-in module to calculate
the equations of chemical kinetics and the equations for the radiation
intensity and the temperature of the solid phase. The time derivatives
are approximated explicitly. This approach guarantees the efficiency of
using the suggested difference scheme for parallel implementation. The
parallel algorithm is based on the principles of geometric parallelism; the
MPI standard is used for interprocessor interaction. To obtain informa-
tion about the efficiency of the parallel algorithm, we performed calcu-
lations on a sequence of shredding grids with different numbers of com-
puting nodes. We applied the parallel code to compute the flow of a two-
phase gas-solid medium with chemical reactions of light hydrocarbons
in the gas phase and on the particle surface under the influence of laser
radiation.

Keywords: Two-phase media · Navier–Stokes equations ·
Computational fluid dynamics · Radical chain reactions · Parallel
algorithms

The reported study was funded by the Russian Science Foundation (project № 23-21-
00202).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 323–335, 2023.
https://doi.org/10.1007/978-3-031-38864-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-38864-4_23

324 E. Peskova

1 Introduction

Improving the efficiency of hydrocarbon processing under catalysts and external
energy supply is a nontrivial and urgent task of the modern chemical industry.
One of the perspective areas is laser catalysis which offers the advantage of con-
trolled exposure of laser radiation to a gas and/or a solid dispersed substance.
A test workbench is available at the Institute of Catalysis (Siberian branch of
the Russian Academy of Sciences) for the study of photochemical and thermal
effects of infrared laser radiation on a two-phase gas-dust medium of mixtures
of light hydrocarbons and catalytically active nanoparticles [1]. The comprehen-
sive study of the laser radiation effect on a two-phase medium requires that the
physicochemical processes occurring in such media be calculated and also exper-
imentally investigated. The importance of computational experiments resides
in the possibility to research in detail the influence of the material and size of
gas-dust particles, the composition of the gas mixture, the temperature of the
reactor walls and that of the starting materials, the power of the laser radiation
on the conversion of raw materials, and the yield of useful products.

In the present article, we present the results obtained with the software tools
we created to model the dynamics of multicomponent gases and solid ultradis-
perse particles, taking into account heterogeneous reactions and the absorption
of laser radiation by the gas components and particles. We previously created
a numerical model to study the two-phase flow of gas and particles in a one-
dimensional formulation with hydrocarbon conversion brutto reactions, heat
exchange between particles and gas, and heating of particles by laser radia-
tion [2]. Currently, it is necessary to expand the model by replacing the brutto
reactions with a more accurate kinetic scheme of radical chain reactions in gas
and on the surface of particles affected by laser radiation. This modification,
using an extended scheme of chemical reactions, will allow for the simulation of
a multitemperature medium of a reacting gas with ultra- and highly dispersed
particles, which is studied in experiments.

However, it becomes clear that regular calculations of the problem require
unacceptably large amounts of computer time, already at the stage of inclusion
of the simplest radical chain kinetic scheme reactions described by a stiff system
of up to a dozen of ODEs. The modification of the model using an extended
kinetic model of heterogeneous and homogeneous reactions with dozens of ODEs
determines the urgency of the task of parallelization of the calculations. We
plan to modify in the future the algorithm and the program and extend them
to 3D grids, introducing higher-order approximation schemes that require large
computational resources. In the meantime, We have decided to use a parallel
algorithm based on the principles of geometric parallelism. The nontriviality of
the task of creating a parallel code with geometric parallelism stems from the
presence of radiation transfer and the ellipticity of the gas-dynamics part of the
equations, which, in turn, is due to the subsonic flow of the gas-dust medium
[3]. The speed of such a flow is primarily influenced by the thermal effects of
chemical reactions, the absorption of laser radiation, and the heat exchange
between gas and particles. Laser exposure to a gaseous medium often causes

A Parallel Algorithm for a Two-Phase Gas-Solid-Particle Model 325

a nontrivial response of the medium. It leads to the emergence of nonlinear
multiscale effects described by stiff systems. The use of parallel technologies for
modeling laser radiation processes is an efficient method that allows avoiding
the computational difficulties associated with such tasks [4]

The purpose of this research is to extend the model developed previously
to account for complex kinetic schemes, modify the numerical algorithm to use
the WENO scheme for the reconstruction of polynomials, accomplish the par-
allel implementation of calculations using the MPI technology, and study the
efficiency of the parallelization on model problems.

The paper is organized as follows. Section 1 is devoted to the literature review
and topicality. In Sect. 2, we introduce the one-dimensional model of the subsonic
flow of gas and fine particles with laser radiation and intense heat exchange
between gas and particles. Section 3 contains description of the parallel algorithm
for studied model. Section 4 presents the result of the numerical experiment.
Conclusion summarizes the study and points directions for further work.

2 The Mathematical Model

Let us consider a one-dimensional model of the subsonic flow of gas and fine
particles with laser radiation and intense heat exchange between gas and particles
[2,5,6]:

∂U

∂t
+

∂F (U)
∂x

− ∂H(U)
∂x

= W. (1)

Here U is the vector of conservative variables, F (U) is the vector of convective
flows, H(U) is the vector of diffusion flows, and W is the vector of source terms:

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρgYm

ρi(
ρg +

∑
i

ρi

)
u

ρghg +
∑
i

ρihi

⎞
⎟⎟⎟⎟⎟⎟⎠

, F (U) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρguYm

ρiu(
ρg +

∑
i

ρi

)
u2 + pd

(
ρghg +

∑
i

ρihi

)
u

⎞
⎟⎟⎟⎟⎟⎟⎠

, H(U) =

⎛
⎜⎜⎝

Jm

0
0
q

⎞
⎟⎟⎠ ,

W =

⎛
⎜⎜⎜⎜⎝

Rm

0
0(

ngα +
∑
i

niαi

)
F −

∑
i

4πs2iniσ(T 4
i − T 4

g)

⎞
⎟⎟⎟⎟⎠

.

The system of Eq. (1) includes M equations for the transfer of the gas mixture
components, N equations for the dust fractions transfer, the motion equation of
the mixture of gas and particles, and the enthalpy equation for the gas and par-
ticles. Moreover, the system is supplemented by the ideal gas law, the equation
for the radiation intensity, and the temperature equation for the particles [7,8]:

326 E. Peskova

pg = ρgRTg

∑

m

Ym

Mwm
, (2)

∂F

∂x
+

(
ngα +

N∑

i=1

niαi

)
F = 0, (3)

dmiCDV Ti

dt
= πs2i F − 4πs2iσ

(
T 4
i − T 4

g

) − aπ
s2i
2

pgct
γ + 1
γ − 1

(
Ti

Tg
− 1

)
− QR.

(4)

Here ρg is the gas mixture density, Ym is the mass fraction of the m-th gas com-
ponent, M is the number of components in the gas mixture, Jm is the diffusion
flow of the m-th gas component, Rm is the rate of formation or flow of the m-th
component, u is the gas and particle flow velocity, ρi is the density of particles
of fraction i, N is the number of particle fractions, pd is the dynamic pressure
component, hg is the gas enthalpy, hi is the enthalpy of particles of fraction i,
q is the heat flux, ng is the concentration of absorbed gas molecules per unit
volume, ni are the concentrations of dust fraction particles, F is the radiation
intensity, α, αi are absorption coefficients, Tg is the gas temperature, Ti are the
dust fraction particle temperatures, si is the radius of particles of fraction i, σ is
the Stefan–Boltzmann constant, Mwm is the molecular weight of the m-th com-
ponent of the mixture, R is the universal gas constant, CDV is the heat capacity
of the particle substance at constant volume, ct is the average thermal velocity
of gas molecules, a is the coefficient of accommodation, γ is the adiabatic index
of the gas mixture, Q is the reaction thermal effect, and R is the number of
transformations per unit of time.

System (1) must be supplemented with initial and boundary conditions. The
fulfillment of these conditions is determined by the specific task being solved.
The conditions on the flow in and the flow out are required for the calculation
of a one-dimensional model. The composition of the gas mixture by Ym, ρi, the
temperatures Tg,in and Ti,in of gas and dust, the velocity uin, and the radiation
intensity Fin are given at the input. The output pressure is set to pout.

3 The Parallel Algorithm

3.1 Decomposition of the Computational Domain

A structured grid of segments is used in this study to extend the mathematical
model to account for radical kinetic schemes. We construct a partition of the
region into Δj , j = 1, . . . , ncells, where ncells is the number of cells. We set the
values of gas-dynamics parameters, concentrations of mixture components, and
particles in each grid cell.

We divide the computational domain into disjoint subdomains, and the ini-
tial problem is given as a set of boundary value problems in these subdomains to

A Parallel Algorithm for a Two-Phase Gas-Solid-Particle Model 327

organize parallel computations. The boundary conditions from the initial prob-
lem are set at the subdomain boundaries that coincide with the boundaries of
the initial computational domain. The internal boundaries contain information
obtained as a result of data exchange with neighboring subdomains.

3.2 The Numerical Scheme for the Solution of the Problem
in a Subdomain

To construct the computational algorithm, we resort to a splitting scheme by
physical processes. The use of a splitting scheme by physical processes for sys-
tem (1)–(4) determines the efficiency of its implementation on parallel computing
systems and allows carrying out computations with a significantly larger time
step in comparison with the direct solution of the complete system.

The numerical scheme can be divided into the set of blocks described below.

B1: According to the splitting method, we distinguish a system of equations
containing only source terms from the mass transfer equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ρY1

∂t
= R1,

∂ρY2

∂t
= R2,

.
∂ρYm

∂t
= Rm.

(5)

We use the RADAU5 plug-in [9] to solve the resulting system.
B2: The solution of Eq. (3) for the radiation transfer using the RADAU5 plug-in

module [9].
B3: The solution of the system of Eq. (1), leaving aside the source term Rm and

the dynamic pressure component pd, to find the gas density ρg, the particle
density ρi, the concentrations Ym of mixture components, the total enthalpy
of the gas and particles, and the preliminary velocity vector u (since the
pressure contribution is not taken into account when solving the system).
According to the finite volume method, we obtain the scheme

Un+1
j − Un

j

Δt
+

F̃j+1/2 − F̃j−1/2

h
− H̃j+1/2 − H̃j−1/2

h
− Wj = 0. (6)

Here Un+1
j is the desired vector of conservative variables. Convective flows

F̃j+1/2 = F̃
(
U r
j+1/2, U

l
j+1/2

)
are calculated according to the Rusanov–Lax–

Friedrichs scheme [10,11]; U r
j+1/2 and U l

j+1/2 are the values of the vector U of
variables to the right and the left of the boundary between cells j and j + 1.
We use a WENO scheme of the 5-th order of accuracy to find these values [12].
More exactly, we introduce a vector of variables f = f(U) = (ρYi, ρi, u, hg, hi)
using the WENO algorithm, calculate it by interpolation on six grid cells, and

328 E. Peskova

then recalculate the value of the desired vectors, namely, U r
j+1/2 = U(f r

j+1/2)
and U l

j+1/2 = U(f l
j+1/2).

Diffusion and heat flows at the boundaries between the cells H̃j+1/2 are
calculated according to a scheme with central differences.

B4: The solution of Eq. (4) for the particle temperature using the RADAU5
plug-in module [9].

B5: The computation of the gas temperature using the known values of the total
enthalpy of the mixture and the particle temperature.

B6: The computation of the dynamic pressure component pd and the velocity u:

Δpn+1
d =

ρng +
∑

i

ρni

Δt
(∇ · u∗ − S) , (7)

un+1 = u∗ − Δt

ρng +
∑

i

ρni
∇pn+1

d . (8)

The velocity u∗ calculated in the B3 block does not take into account the
contribution of the dynamic pressure component pn+1

d . In Eq. (7), S = ∇ ·
un+1 is the correction for the divergent restriction of the velocity vector. We
obtain it by converting the continuity equation into a nondivergent form, the
equation for the temperature of the gas mixture, and the equation of state
for the gas mixture (2). The correction S is calculated from the values at the
next time step found in the previous stages of the numerical scheme [6]:

S ≡ ∇ · u =
1

ρgCpTg

(
−

N∑

i=1

ρi
Cp(Tg − Ti)

ζi
+ ngαF

)
(9)

+
1

ρgCpTg

(
∇ · λ∇Tg +

∑

m

ρgDm,mix∇Ym∇hm

)

+
1
ρg

∑

m

Mw

Mwm

(∇ · ρDm,mix∇Ym

)
+

1
ρg

∑

m

(
Mw

Mwm
− hm

CpTg

)
Rm,

where Cp(Tg) is the heat capacity of the gas mixture at constant pressure,
ζi is the thermal relaxation time of the particle in the medium, λ(Tg) is
the thermal conductivity of the gas mixture, Dm,mix is the average diffusion
coefficient of the m-th component of the gas mixture, hm(Tg) is the enthalpy
of the m-th component, and Mw is the average molecular weight of the gas
mixture.
We use the Jacobi iterative method to solve the elliptic Eq. (7).

3.3 The Scheme of the Parallel Program

The parallel program is based on the MPI (Message Passing Interface) technology
for distributed memory systems. We use the MPICH library to implement the
interprocessor exchange mechanisms and the software package operation.

A Parallel Algorithm for a Two-Phase Gas-Solid-Particle Model 329

The program consists of several main modules, and each runs on a selected
number of processors:

1. The parallel computing initialization module.
The decomposition of the computational domain, the calculation of the grid
parameters, and the determination of the types of boundary cells (internal
subdomain or boundary) are in this module.

2. The module for generating the initial data.
The module reads from the initial data files, allocates the memory, and fills
the arrays of primitive and conservative variables.

3. The module for computing the boundary conditions.
4. The module for doing the B1 block calculation of chemical-kinetics equa-

tions.
5. The module for doing the B2 block calculation of the radiation intensity.

The distinguishing feature of parallel calculations in this block is the change
in the radiation intensity for the space variable. Therefore, the variable F is
exchanged using the functions MPI Send() and MPI Recv() in this block.

6. The module for doing the B3 block calculation of gas-dynamics characteris-
tics and concentrations at the next time step.
The three fictitious cells on the borders are allocated for each subdomain at
the first stage since the numerical algorithm uses a WENO scheme of the
fifth order of accuracy.

7. The module for doing the B4 block calculation of the particle temperature.
8. The module for doing the B5 block calculation of the gas temperature.
9. The module for interprocessor data exchange of the density, concentrations,

enthalpy, and preliminary velocity vector.
The exchange at this stage is enforced by the need to calculate the dynamic
pressure component based on data on the next time layer. The paired block-
ing functions MPI Send() and MPI Recv() are used to perform the exchange.
Their choice is determined by the fact that the exchange occurs only between
two processors.

10. The module for doing the B6 block calculation of the dynamic pressure com-
ponent and flow velocity.
It is necessary to determine the maximum pressure change at each itera-
tion since the dynamic pressure component is computed by solving an ellip-
tic equation with a given value for stopping the iterations. The function
MPI Allreduce() is used to perform this task. The paired blocking func-
tions MPI Send() and MPI Recv() are used at each iteration to perform the
exchange of the dynamic component.

11. The module for interprocessor data exchange of the pressure and flow veloc-
ity dynamic component.

12. The data saving module.

3.4 Efficiency Analysis of the Parallel Algorithm

The parallel version of the algorithm was programmed in C++. We studied the
algorithm performance by applying it to the task described in Sect. 4. The time

330 E. Peskova

required to perform a certain number of time steps was measured for different
numbers of processors and computational cells. The experiments were carried
out on a workstation featuring 32 computing nodes at the National Research
Mordovia State University. Table 1 contains the performance results obtained
during the experiments.

Table 1. Results of computational experiments

ncells nproc Time, sec Speedup, % Efficiency, %

6400 1 10.34 1 1

4 12.8 3.69 0.92

16 1.0 10.34 0.64

32 0.81 12.76 0.4

102 400 1 162.35 1 1

4 41.5 3.91 0.98

16 13.3 12.21 0.76

32 8.58 18.92 0.59

1 638 400 1 2604.16 1 1

4 664.1 3.92 0.99

16 180.2 14.45 0.90

32 92.5 28.15 0.88

The data presented in Table 1 demonstrates a decrease in algorithm efficiency
for any number of cells when the number of computing nodes increases. Most
probable, this is due to an increase in the number of interprocessor exchanges.
The drop in efficiency can also be associated with the integration of the chemical-
kinetics system at each time step in each cell. The integration step is adaptive
since the characteristic times of chemical transformations are significantly less
than the gas-dynamics time step in the RADAU5 module. Laser radiation is
absorbed in regions with high concentrations of solid particles and contributes
to a local increase in gas temperature, which has a direct effect on the integration
step. “Colder” subdomains require fewer substeps than “hotter” ones. The static
nature of the distribution of grid cells across processes in this case does not allow
balancing the load on processes. Using the OpenMP technology inside cluster
nodes can partially solve this problem.

Figures 1 and 2 show the graphs of the speedup and efficiency of the pro-
gram versus the size of the grid. We can see from the graphs that the speedup
approaches the number of computing nodes, and the efficiency reaches its max-
imum values when the size of the computational grid increases.

The obtained result demonstrates the high efficiency of the parallel algorithm
in comparison with the sequential one for grids of large size. This gives a reason
to assume that the efficiency will remain when moving from a one-dimensional
problem to a multidimensional one.

A Parallel Algorithm for a Two-Phase Gas-Solid-Particle Model 331

Fig. 1. Graph of the speedup versus the
number of computational cells

Fig. 2. Graph of the efficiency versus the
number of computational cells

4 The Numerical Experiments

The numerical simulation of a two-phase gas and dust flow with laser radiation
and chemical reactions was carried out taking Ω = [0, 0.5 m] as the integration
region. Solid particles from one fraction form a clump in the center of the region
with a maximum at coordinate 0.25 m at the initial moment (Fig. 3). The values
of gas-dynamics parameters, gas concentrations and dust components, radiation
intensity, and other parameters are given below:

uin = 0.05 m/sec, p = 101 325 Pa, Tin,g = 1073 K, Tin,i = 1073 K,

Fin = 1.6 · 1011 W/m2, Yin,CH4 = 1, Ym = 0, m = 2, ...,M,

si = 5 · 10−9 m, ni,max = 1016 m−3.

Fig. 3. Distribution of the density of particles, t = 0 sec

The two-temperature kinetic scheme (Table 2) is adopted to describe the
scheme of chemical transformations; it includes M = 16, a component of the
mixture, and one fraction of dust [13].

332 E. Peskova

Table 2. Reaction scheme

№ Reaction Ai, sec
−1 or m3 · mole−1 · sec−1 Ei, kJ · mole−1

1 1f C2H6 → CH3 +CH3 2.4 · 1016 366.0

1b CH3(s) + CH3(s) → C2H6 14.04 · 107 5.9

2 2f CH3 +C2H6 → CH4 +C2H5 3.26 · 106 50.24

2b CH4 +C2H5 → CH3 +C2H6 21.08 · 106 90.0

3 3f C2H5 → C2H4 +H 2.0 · 1013 166.0

3b C2H4 +H → C2H5 1.0 · 107 6.3

4 4f H+C2H6 → H2 +C2H5 1.0 · 108 40.16

4b H2 +C2H5 → H+C2H6 3.98 · 107 96.45

5 5f CH3 +C2H4 → C3H7 3.3 · 105 32.26

5b C3H7 → CH3 +C2H4 3.0 · 1014 139.0

6 6f C2H5 +C2H5 → C2H4 +C2H6 1.65 · 105 3.34

7 7f C3H7 +C2H4 → C2H5 +C3H6 2.65 · 104 27.6

8 8f CH3 +C2H4 → CH4 +C2H3 4.16 · 106 46.56

8b CH4 +C2H3 → CH3 +C2H4 8.9 · 104 25.94

9 9f CH3 +C2H3 → CH4 +C2H2 9.03 · 106 3.2

10 10f C2H3 +H → C2H2 +H2 1.2 · 107 0.0

11 11f CH4 +H → CH3 +H2 7.59 · 107 49.89

11b CH3 +H2 → CH4 +H 3.3 · 106 51.05

12 12f CH3 +CH3 → C2H5 +H 8.0 · 108 111.0

12b C2H5 +H → CH3 +CH3 1.08 · 108 3.64

13 13f C2H4 +H → C2H3 +H2 5.42 · 108 62.36

13b C2H3 +H2 → C2H4 +H 9.7 · 104 34.75

14 14f CH4 → CH3(s) + H 100.0

14b CH3 +H → CH4 1.9 · 108 1.15

15 15f C2H3 → C2H2 +H 6.93 · 1012 186.0

15b C2H2 +H → C2H3 54.98 · 105 10.6

16 16f C2H2 +CH3 → C3H4 +H 33.72 · 104 32.03

16b C3H4 +H → C2H2 +CH3 49.98 · 106 16.74

17 17f C3H4 +H → C3H3 +H2 7.23 · 107 18.87

18 18f C3H4 +C3H3 → C6H6 +H 6.99 · 105 50.21

19 19f C6H6 +CH3 → CH4 +C6H5 26.2 · 106 80.9

19b CH4 +C6H5 → C6H6 +CH3 19.99 · 105 36.0

20 20f C3H3 +C3H3 → C6H6 8.85 · 107 48.0

Reactions 1b and 14f in the given scheme proceed on particles at the temper-
ature of the solid phase consisting of one particle fraction; the remaining stages
proceed in the gas phase. The reactions rates in the gas phase are determined
from the formula

A Parallel Algorithm for a Two-Phase Gas-Solid-Particle Model 333

wr = kr ·
∏

c

Ym,

kr = Ar · e−Er/RTg ,

where r is the number of the reaction in the gas phase, and m is the number of
the gas component entering the r-th reaction.

The rate of reaction 1b can be determined from the formula

w1b = k1b · [CH3(s)] · [CH3(s)],

k1b = A1b · e−E1b/RTi .

The rate of reaction 14f is

w14f = k14f · [CH4],

k14f = α1πs2ini

√
8kBTg

πmCH4

· e−E14f/RTi ,

where α1 = 1 is a constant.
Figures 4, 5, 6 and 7 display the modeling results on a grid with a step of

2.5 · 10−3. The time integration step is 1.0 · 10−5. The computations extended
up to the time T = 1 s.

Fig. 4. Temperature Fig. 5. Velocity

For the given values of the problem parameters, Fig. 4 shows that the input
radiation heats the particles above the gas temperature by about 200 K, con-
sidering the losses due to endothermic reactions on the particle surface. The
maximum temperature in the particle clump reaches 1500 K. The heat exchange
of particles with gas and chemical reactions causes the gas in the clump to heat
up to 1280 K, which leads to an increase in gas pressure. The clump of par-
ticles begins to spread out asymmetrically against the velocity of the gas and
along the direction of its movement. The gas velocity takes on an S-shape (see
Fig. 5). Methane is converted (Fig. 6) into a clump of particles with the release
of hydrogen (Fig. 7).

334 E. Peskova

Fig. 6. Mole fraction of CH4 Fig. 7. Mole fraction of H2

The results of the numerical simulation correspond to experimental data.
Chemical reactions occur near the particles, and then the reaction products
are transferred to adjacent areas since laser radiation contributes to the active
generation of radicals on the surface of solid reaction particles due to a significant
increase in the system’s internal energy. The decomposition reaction of methane
does not occur at the specified gas temperatures in the absence of particles,
which confirms the thesis about the need to introduce gas-dust particles into the
reactor and the influence of laser radiation on them.

5 Conclusions

We considered a one-dimensional mathematical model of the dynamics of a react-
ing gas and ultradisperse particles with laser radiation and a radical kinetic
mechanism. The model includes a subsonic system of Navier–Stokes equations,
an equation for radiation transfer, an equation for determining the temperature
of particles, and a stiff system of chemical kinetics equations. For the numerical
solution, we used a parallel solver developed as a result of the study. The solver
implements the finite volume method with an increase in the order of accuracy
by the WENO scheme. The organization of parallel computations was based on
MPI technology. The computations were carried out on a workstation at the
National Research Mordovia State University and showed good scalability for
the program. We considered a model problem, which demonstrated the adequacy
of the results of computational experiments and the possibility of application of
the parallel solver to experimental tasks. We plan to modify the algorithm to
3D grids. Also, we plan to use the suggested approach to the parallel solution of
problems of two-phase reacting media to adapt the algorithm to 3D grids. The
use of parallel technologies combined with the explicitly iterative Chebyshev
scheme is also seen as a promising direction of research [14].

Acknowledgments. The author thanks V. N. Snytnikov and E. A. Lashina for the
helpful discussions and comments.

A Parallel Algorithm for a Two-Phase Gas-Solid-Particle Model 335

References

1. Snytnikov, V.N., Masyuk, N.S., Markelova, T.V., Parmon, V.N.: A laser catalysis
apparatus. Instrum. Exp. Tech. 62(3), 474–482 (2021)

2. Snytnikov, V.N., Peskova, E.E., Stoyanovskaya, O.P.: Mathematical model of a
two-temperature medium of gas-solid nanoparticles with laser methane pyrolysis.
Matem. Mod. 35(4), 24–50 (2023)

3. Peskova, E.E.: Numerical modeling of subsonic axisymmetric reacting gas flows. J.
Phys. Conf. Ser. 2057, 012071 (2021). https://doi.org/10.1088/1742-6596/2057/
1/012071

4. Shlenov, S., Smirnov, A., Bezborodov, A.: Parallel algorithm for filamentation of
high-power super-sport laser pulses. In: Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applications, Con-
ference on Real-Time Computing Systems and Applications, vol. 1, pp. 286–291
(2006)

5. Day, M.S., Bell, J.B.: Numerical simulation of laminar reacting flows with com-
plex chemistry. Combust. Theory Model. 4(4), 535–556 (2000). https://doi.org/
10.1088/1364-7830/4/4/309

6. Gubaydullin, I.M., Zhalnin, R.V., Masyagin, V.F., Peskova, E.E., Tishkin, V.F.:
Simulation of propane pyrolysis in a flow-through chemical reactor under constant
external heating. Math. Models Comput. Simul. 13(3), 437–444 (2021)

7. Snytnikov, V.L.N., Snytnikov, V.N., Masyuk, N.S., Markelova, T.V.: The absorp-
tion of CO2 laser radiation by ethylene in mixtures with methane. J. Quant. Spec-
trosc. Radiat. Transfer 253(107119), 1–6 (2020)

8. Gurentsov, E., Eremin, A.V., Falchenko, M: Modelling of heat transfer processes
of laser heated nanoparticles with gas environment. Physical-Chemical Kinetics in
Gas Dynamics 11 (2011)

9. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations: Stiff and
Differential-Algebraic Problems, 2nd edition. In: Springer Series in Computational
Mathematics, vol. 14 (1996). https://doi.org/10.1007/978-3-642-05221-7

10. Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves
and obstacles. USSR Comput. Math. Math. Phys. 1(2), 304–320 (1962)

11. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical
computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954)

12. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. In: ICASE Report pp. 97–65 (1997)

13. Lashina, E.A., Peskova, E.E., Snytnikov, V.N.: Mathematical modeling of non-
stationary temperature conversion of methane-ethane mixtures in a wide temper-
ature range. Chemistry for Sustainable Development 3 (2023). In print

14. Zhukov, V.T., Feodoritova, O.B., Novikova, N.D., Duben, A.P.: Explicit-iterative
scheme for the time integration of a system of navier-stokes equations. Matem.
Mod. 32(4), 57–74 (2020)

https://doi.org/10.1088/1742-6596/2057/1/012071
https://doi.org/10.1088/1742-6596/2057/1/012071
https://doi.org/10.1088/1364-7830/4/4/309
https://doi.org/10.1088/1364-7830/4/4/309
https://doi.org/10.1007/978-3-642-05221-7

MPI-Based Computational Algorithm
for Modeling a Cylindrical Catalyst Grain

During Oxidative Regeneration

Olga S. Yazovtseva1(B), Irek M. Gubaydullin2, Elizaveta E. Peskova1(B),
Arina A. Usmanova2(B), and Andrey N. Zagoruiko3

1 National Research Mordovia State University, Saransk, Russian Federation
kurinaos@gmail.com

2 Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences,
Ufa, Russian Federation

3 Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy
of Sciences, Novosibirsk, Russian Federation

zagor@catalysis.ru

Abstract. The article is devoted to the development of an efficient par-
allel algorithm for the numerical simulation of a cylindrical catalyst grain
during the process of burning coke residua off the catalyst. The three-
dimensional problem is reduced to a task in an axisymmetric formulation.
The mathematical model of the process consists of a system of nonlin-
ear parabolic partial differential equations and takes into account the
mass transfer (diffusion and Stefan flow), the heat transfer, and chemical
reactions. Reaction’s effect is included as a source term in the parabolic
equations. The effective thermophysical characteristics are interpolated
by time-dependent polynomials in conformity with reference data. The
simulated processes occur with different characteristic times, hence the
high degree of stiffness in the studied system. The model’s difference
analog is given in a dimensionless form. We use an approach based on
splitting by physical processes. Also, we isolate the solution of the chem-
ical kinetics equations into a separate block. The chemical kinetics equa-
tions are stiff and require specialized solution methods. In the present
research, we choose the Radau IIA method for this. For the equations of
mass transfer and heat transfer, we use the integro-interpolation method.
The numerical algorithm is implemented in C++ using MPI technology.
The two-dimensional computational domain is divided into equal spatial
cells. Each processor stores the data for computing the rates of chem-
ical reactions and effective thermophysical characteristics. It should be
noted that only boundary conditions are involved in the interprocessor
exchange, which significantly reduces the program runtime. We investi-
gate the efficiency of the developed parallel algorithm on the example
of the process of oxidative regeneration of a cylindrical catalyst grain.
We provide the corresponding results on the speedup of computations on
several processors with different numbers of cells, as well as the graphs
of substance concentrations and the temperature of the catalyst grain
under various process conditions.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 336–350, 2023.
https://doi.org/10.1007/978-3-031-38864-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_24&domain=pdf
https://doi.org/10.1007/978-3-031-38864-4_24

MPI-Based Computational Algorithm for Modeling 337

Keywords: Oxidative regeneration · Nonlinear model · Chemical
kinetics · MPI technology · Numerical methods

1 Introduction

At present, the oil and gas industry is based on the processing of hydrocarbons.
Petroleum refining processes are impossible without the use of catalysts. During
chemical reactions, the catalyst gets covered with coke residua. The composition
of residua depends on many factors: the type of catalyst, the type of feedstock,
the reaction conditions, and others. At the same time, researchers identify some
general characteristics of coke: it mainly consists of carbon and hydrogen [1–3].

Coke residua must be removed from the surface of catalyst grains and pores
if one wants to continue using the catalyst. Oxidative regeneration, that is, burn-
ing the accumulated coke off using an oxygen-containing mixture, is one of the
most accessible methods for this. The combustion of coke leads to the overheat-
ing of the catalyst grain, which can cause irreversible damage. The empirical
selection of technological parameters requires a large number of expensive lab-
oratory experiments. Mathematical modeling is by far a more efficient method
for predicting the course of the oxidative regeneration process [2,4,5].

The development of mathematical models for catalytic processes is a nontriv-
ial task requiring both an extensive experimental base and efficient methods for
solving the resulting problems. For correct modeling, it is necessary to take into
account the heat and mass transfer and chemical transformations. As is known,
the combination of such heterogeneous processes with a considerable difference
in their characteristic times leads to stiff systems and, accordingly, to a signifi-
cant increase in the computational complexity of the algorithms for the system
solution [6].

One of the approaches to reduce the computation time is the use of parallel
technologies.

The article [7] presents a parallel algorithm for the canonical substrate-
enzyme model with explicit phase separation; the model includes kinetic equa-
tions and diffusion. The research authors offer an analysis of the parallel algo-
rithm speedup and conclude that it is efficient in such tasks.

The use of parallelization to speed up the calculation of kinetic parameters in
various problem classes is described in [8]. As noted in the paper, a high degree of
stiffness requires a special approach. Also, the distribution of the computational
load among threads makes it possible to carry out the calculations in a reasonable
time.

The development of software for some kinetic problems is covered in [9]. The
software includes parallel task management and parallel algorithms for solving
algebraic and differential equations on computer clusters. The efficiency of such
a construction is analyzed.

338 O. S. Yazovtseva et al.

An example of parallel numerical algorithms’ implementation using MPI
technology as applied to problems of mathematical physics is presented in [10].
An analysis of the computation time shows a significant speedup compared to
the program’s parallel version.

The present paper is the continuation of the research described in [1,2,4,5,
11–13]. The numerical algorithm is developed for a cylindrical grain model during
oxidative regeneration. It is implemented in C++ using MPI technology. We
analyze the efficiency of the algorithm and compare it with a sequential version
of the problem solution. We also give the patterns of distribution over the catalyst
grain for substances involved in the chemical reaction, provide the dynamics of
the coke mass fraction, and analyze the catalyst grain temperature during the
process of burning the coke residua off. For data analysis and visualization, we
used the ParaView package.

Oxidative regeneration is a complex nonstationary process. Coke burning
occurs at quite high temperatures. The accompanying chemical reactions are
exothermic, hence the heating of the catalyst grain. In the process of burning
coke, the surface of the reaction area changes.

The book [2] suggests a mathematical model of various regimes of oxidative
regeneration. The authors note that oxidative regeneration, like any other cat-
alytic process, should be studied in a stepwise manner. The model consists of
three stages: the kinetic model, the grain model, and the catalyst-layer model.
The model of oxidative regeneration exhibits a high degree of stiffness since it
takes into account chemical transformations, heat transfer, and diffusion. This
results in algorithms with high computational complexity. A current topic is the
development of numerical algorithms that make it possible to conduct compu-
tational experiments with such models in a reasonable time.

Our research aims to develop an efficient parallel algorithm for the numerical
simulation of a cylindrical catalyst grain during the process of oxidative regen-
eration taking into account how the effective heat capacity and the effective
thermal conductivity depend on the temperature.

The paper is organized as follows. Section 1 is devoted to introduction and
literature review. In Sect. 2, we present mathematical model of oxidative regen-
eration of a cylindrical catalyst grain. Section 3 contains the numerical algorithm
for the model in the Sect. 2. Section 4 is devoted to the parallel solution algo-
rithm. Section 5 is for the numerical results. Conclusion summarizes the study
and points directions for further work.

2 Modeling the Processes in a Catalyst Grain

The first stage of the modeling process is the kinetic model. A proven kinetic
model of oxidative regeneration is given in [1], namely,

MPI-Based Computational Algorithm for Modeling 339

2ΘC + O2 −→ 2ΘCO, W1 = k1(T)Θ2
3 y1;

ΘCO + O2 −→ ΘCO + CO2, W2 = k2(T)Θ2 y1;
ΘCO −→ ΘC + CO, W3 = k3(T)Θ2;

ΘCH2 + O2 −→ ΘCO + H2O, W4 = k4(T)Θ1 y1;

ΘCO + ΘCO −→ 2ΘC + CO2, W5 = k5(T)Θ2
2;

ΘCH2
−−→←− ΘC + ZH2 , W6 = k6(T)

ρC
RC

(Θ∗
1 − z1);

ΘCO
−−→←− ΘC + ZO, W7 = k7(T)

ρC
RC

(Θ∗
2 − z2).

(1)

Here Wi, i = 1, 7, are the rates of the stages of chemical reaction (Wr, r = 1, 5,
have units of mole/(l·sec2), while W6 and W7 have units of g/(m2·sec)); kj(T),
j = 1, 7, are the reaction rate constants of the stages (the units of kj correspond
to ωj); Θl, l = 1, 3, are the degrees of the buildup of carbon complexes on
the coke surface (Θ1 is the hydrogen-carbon complex, Θ2 is the oxygen-carbon
complex, and Θ3 is the free carbon surface); y1 is the concentration of oxygen
in the gas phase in mole fractions; z1 and z2 are the concentrations of hydrogen

and oxygen in the coke layer in mass fractions; Θ∗
1 =

Θ1

6
and Θ∗

2 =
4Θ2

3
are

the amounts of hydrogen and oxygen adsorbed by coke in relation to the current
state of the coke deposit surface; ρC and RC are the density (g/m3) and the
average radius (m) of the granules of coke. Moreover,

Θ1 + Θ2 + Θ3 = 0.

The system of differential equations corresponding to the chemical transfor-
mations has the following form [2]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dqc
dt

= −MCSk(W2 + W3 + W5),

d(z1 qC)
dt

= SkW6,

d(z2 qC)
dt

= SkW7,

(2)

where MC is the molar mass of coke (g/mole) and Sk is the specific surface area
of coke granules, that is, the reaction surface area (m2/g).

Also, we have the following differential equations based on the law of con-
servation of mass to determine the proportions of hydrogen-carbon and oxygen-
carbon complexes [11,13]:

⎧
⎪⎪⎨

⎪⎪⎩

dθ1
dt

= −γkSk

c0
W4 − SkW6,

dθ2
dt

=
γkSk

c0
(2W1 − W3 + W4 − 2W5) − SkW7,

(3)

where γk is the catalyst bulk density (g/m3) and c0 is the molar density of the
reaction mixture (mole/m3).

340 O. S. Yazovtseva et al.

The second stage of the modeling process is the catalyst grain model. Obvi-
ously, the development of any mathematical model requires some assumptions. In
this study, we make the following assumptions: the catalyst grain is cylindrical,
the coke buildup has a hemispherical shape, and the coke is evenly distributed
in the grain. Under these assumptions, we can go from Cartesian coordinates
in three-dimensional space to cylindrical coordinates. By doing so, we signifi-
cantly reduce the problem solution time. Thus the problem is formulated in an
axisymmetric form.

The heat balance equation for a catalyst grain includes the heat transfer
along the cylinder radius and the axis of the catalyst grain, as well as the heat
release during the chemical reactions:

∂c∗Tz

∂t
=

1
r

∂

∂r

(

r
∂λ∗Tz

∂r

)

+
∂2λ∗Tz

∂z2
+ γkSk

5∑

j=1

QjWj , (4)

where Tz is the catalyst grain temperature (K), t is the time (sec), r is the
catalyst grain radius (m), z is the axis of the cylindrical grain of the catalyst
(m), c∗ is the effective heat capacity coefficient of the catalyst (J/m3/K), λ∗ is
the effective thermal conductivity of the catalyst (W/m/K), γk is the catalyst
bulk density (g/m3), and Qj , j = 1, 5, is the thermal effect of the j-th reaction
stage.

Polynomial dependencies for effective thermophysical characteristics are
obtained from reference data:

c∗(Tz) = (1 − ε)(ρk(AkT
2
z + BkTz + Ck)(1 − qc) +

+ (ACT 2
z + BCTz + CC)qc), (5)

λ∗(Tz) = (1 − ε)(ALT 2
z + BLTz + CL), (6)

where ρk is the density of the catalyst material; Ak, Bk, Ck and AC , BC , CC

are the coefficients of the polynomials describing the temperature dependence
of the specific heats of the catalyst material and the coke, respectively; ε is
the catalyst grain porosity; and AL, BL, and CL are the coefficients of the
polynomial describing the temperature dependence of the thermal conductivity
of the catalyst material.

The material balance equation for the catalyst grain takes into account the
chemical transformations, the diffusion, and the Stefan flow resulting from the
change in the reaction volume:

ε
∂yi
∂t

=
1
r

∂

∂r

(

r
∂D∗yi

∂r
− rμyi

)

+
∂

∂z

(
∂D∗yi

∂z
− μyi

)

+
γkSk

c0

7∑

j=1

νijWj , (7)

where yi, i = 1, 4 are the concentrations of substances in the grain pores in
mole fractions; D∗ is the effective diffusion coefficient (m2/sec); μ is the Stefan
flow velocity (m/sec); c0 is the gas molar density (mole/m3); and νij , i = 1, 4,
j = 1, 7, are the stoichiometric coefficients of the substances.

MPI-Based Computational Algorithm for Modeling 341

Several methods (see [14] and [15]) can be applied to calculate the value of
the effective diffusion coefficient. The small size of the catalyst pores (4 to 5 nm)
[2] makes it possible to compute the effective diffusion coefficient by the following
formula, based on the Knudsen diffusion coefficient (see [16] and [17]):

D∗ =
2rpε

3δ

√
8RTz

πM
, (8)

where rp is the pore radius (m), δ ≈ 2 is the tortuosity coefficient of the pores,
R is the universal gas constant (J/K/mole), and M is the molar mass of the
reaction mixture (g/mole).

The Stefan flow velocity is a quantity that changes over time. It is computed
from the condition that its value is zero at the boundary:

1
r

∂

∂r
(rμ) +

∂μ

∂z
=

γkSk

c0
(W1 + W3 + W5). (9)

The balance equations are supplemented with the following initial and bound-
ary conditions:

t = 0 : qc(0) = q0C , z1(0) = z01 , z2(0) = 0, θ1(0) = θ01, θ2(0) = 0,

Tz(0) = T (0), y1(0) = y0
1 , yi(0) = 0, i = 2, 4, μ = 0, (10)

r = 0, z = 0 :
∂yi
∂r

=
∂yi
∂z

= 0,
∂Tz

∂r
=

∂Θ

∂z
= 0; (11)

r = Rz : λ∗ ∂Tz

∂r
= α (T (0) − Tz) ,

∂yi
∂r

= 0, i = 1, 4,

z = L : λ∗ ∂Tz

∂z
= α (T (0) − Tz) ,

∂yi
∂z

= 0, i = 1, 4.

Conditions (11) follow from the fact that the composition of coke residua, the
temperature of the catalyst grain, and the temperature of the reaction mixture
are known at the initial moment, and heat exchange between the catalyst grain
and the reaction mixture surrounding it through the cylindrical wall and cylinder
ends.

Equations (4) and (7) are of the diffusion type and can be integrated quite
easily without regard to the chemical nature of the problem. However, the addi-
tion of source terms creates a significant difference in the characteristic times of
the processes, which inevitably increases the degree of stiffness of the system.
The stiffness analysis shows that the difference between the eigenvalues of the
Jacobi matrix for the grain model can reach fifteen orders of magnitude. This is
because fast chemical reactions occur against the background of a slow diffusion
process.

342 O. S. Yazovtseva et al.

We write the catalyst grain model in a dimensionless form (for convenience)
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂yi
∂τ

=
1

ϕεk

1
ρ

∂

∂ρ

(

ρ
∂yi
∂ρ

− ρμ̂yi

)

+
Rz

ϕεkL2

∂

∂l

(

Rz
∂yi
∂l

− Lμ̂yi

)

+

+
Ŝ

εk

5∑

j=1

νijωj ,

∂Θ

∂τ
=

λ∗τk
c∗R2

z

1
ρ

∂

∂ρ

(

ρ
∂Θ

∂ρ

)

+
λ∗τk
c∗L2

∂Θ

∂l
+

Ŝc0
Topc∗

5∑

j=1

Qjωj ,

1
ρ

∂

∂ρ
(ρμ̂) +

R

L

∂μ̂

∂l
= ϕŜ(−ω1 + ω3 + ω5),

∂qc
∂τ

= −MCc0
γk

Ŝ(ω2 + ω3 + ω5),

∂z1
∂τ

=
c0

γkqc
Ŝ(ω6 + z1MC(ω2 + ω3 + ω5)),

∂z2
∂τ

=
c0

γkqc
Ŝ(ω7 + z2MC(ω2 + ω3 + ω5)),

∂θ1
∂τ

= −Ŝ

(

ω4 +
c0
γk

ω6

)

,

∂θ2
∂τ

= Ŝ

(

2ω1 − ω3 + ω4 − 2ω5 − c0
γk

ω7

)

,

(12)

with the following dimensionless initial and boundary conditions:

τ = 0 : qc(0) = q0C , z1(0) = z01 , z2(0) = 0, θ1(0) = θ01, θ2(0) = 0,

Θ(0) =
T (0)
Top

, y1(0) = y0
1 , yi(0) = 0, i = 2, 4, μ̂ = 0; (13)

ρ = 0, l = 0 :
∂yi
∂ρ

=
∂yi
∂l

= 0,
∂Θ

∂ρ
=

∂Θ

∂l
= 0;

ρ = 1 :
∂Θ

∂ρ
=

Rzα

λ∗

(
T (0)
Top

− Θ

)

,
∂yi
∂ρ

= 0, i = 1, 4; (14)

l = 1 :
∂Θ

∂l
=

Lα

λ∗

(
T (0)
Top

− Θ

)

,
∂yi
∂l

= 0, i = 1, 4.

Here ρ is the dimensionless catalyst grain radius, ρ ∈ [0, 1] (independent spatial
variable); l is the dimensionless length of the catalyst grain axis, l ∈ [0, 1] (inde-
pendent spatial variable); τ is the dimensionless time, τ ∈ [0,+∞) (independent
time variable); Θ(ρ, τ) is the dimensionless catalyst grain temperature; yi(ρ, τ),
i = 1, 4, are the mole fractions of components in the gas phase of the reaction
(the index 1 corresponds to oxygen, 2 to carbon monoxide, 3 to carbon dioxide,
and 4 to water); μ̂(ρ, τ) is the dimensionless velocity of the Stefan flow; qc(ρ, τ) is
the mass fraction of coke on the catalyst grain; z1(ρ, τ) and z2(ρ, τ) are the mass
fractions of hydrogen and oxygen in the coke deposit; θ1(ρ, τ) and θ2(ρ, τ) are the
fractions of hydrogen-carbon and oxygen-carbon complexes on the coke granule

MPI-Based Computational Algorithm for Modeling 343

surface; Ŝ(ρ, τ) is the dimensionless area of coke granules; ωj(ρ, τ), j = 1, 5, are
the dimensionless rates of quasihomogeneous reactions taken from the kinetic
scheme; ωj(ρ, τ), j = 6, 7, are the rates of heterogeneous reactions taken from
the kinetic scheme (g/mole); D∗ is the effective diffusion coefficient (m2/sec);
τk is the contact time (sec); Rz is the catalyst grain radius (m); L is the cat-
alyst grain length (m); ε is the catalyst grain porosity; νij , i = 1, 4, are the
stoichiometric coefficients from the reaction scheme; c0 is the gas molar density
(mole/m3); Top = 520◦ is the temperature at which the reaction rate constants
are experimentally determined (K); c is the volumetric heat capacity of the cat-
alyst (J/(m3 · K)); Qj , j = 1, 5, are the thermal effects of chemical reactions
(J/mole); γ is the catalyst bulk density (g/m3); and MC is the coke molecular
weight (g/mole).

It should be noted that there is a decrease in the volume of the accumulated
coke over time. This fact is taken into account in model (12) as a decrease of

the reaction surface area Ŝ(ρ, τ) =
(

qc(ρ, τ)
qc(ρ, 0)

) 2
3
, while the catalyst grain size

remains constant.
The dimensionless model leads to a simplification of the computational

domain: the integration domain is now the square [0, 1] × [0, 1].

3 The Numerical Algorithm

We solved the diffusion and heat transfer equations in system (12) by the integro-
interpolation method. Using a three-stage implicit Runge–Kutta method of the
fifth order of accuracy, namely, Radau IIA [6], we separately solved the kinetic
equations (splitting by physical processes).

Let us write the differential analogue of system (12):

Θn+1
i,j = Θn

i,j +
Δt λ∗

D∗ϕih2
r

(
(i + 0.5)

(
Θn

i+1,j − Θn
i,j

) − (i − 0.5)
(
Θn

i,j − Θn
i−1,j

))
+

+
Δt λ∗τk

c∗L2

Θn
i,j+1 − 2Θn

i,j + Θn
i,j−1

h2
z

+

(
Ŝc0

Topc∗

5∑

o=1

Qoωo

)n

i,j

,

yn+1
i,j = yn ∗

i,j +
Δt

εkϕih2
r

(
(i + 0.5)

(
yn
i+1,j − yn

i,j

) − (i − 0.5)
(
yn
i,j − yn

i−1,j

))−

− Δt

εkϕih2
r

(
(i + 0.5)

(
μ̂n
i+1,jy

n
i+1,j − μ̂n

i,jy
n
i,j

) − (i − 0.5)
(
μ̂n
i,jy

n
i,j − μ̂n

i−1,jy
n
i−1,j

))
+

+
Δt R2

z

εkϕLh2
z

(
(j + 0.5)

(
yn
i,j+1 − yn

i,j

) − (j − 0.5)
(
yn
i,j − yn

i,j−1

))−

− Δt

εkϕih2
z

(
(j + 0.5)

(
μ̂n
i,j+1y

n
i,j+1 − μ̂n

i,jy
n
i,j

) − (j − 0.5)
(
μ̂n
i,jy

n
i,j − μ̂n

i,j−1y
n
i,j−1

))
+

+

(
Ŝ

εk

5∑

o=1

νoωo

)n

i,j

,

344 O. S. Yazovtseva et al.

μ̂n
i,j =

1

hr + hz

(
hrμ̂

n
i,j−1 − hz

i − 1
μ̂n
i−1,j + hrμ̂

n
i−1,j +

+ hzhr

(

ϕŜ

5∑

o=1

νoωo

)n

i−1,j−1

⎞

⎠ ,

where yn ∗
i,j are the preliminary mole fractions of the components obtained

by solving system (2)–(3).
The resulting difference scheme formed the basis of the software written

in C++. A theoretical study of stability and convergence is impossible due to
the complexity of the right side of system (12), so the study was carried out
for different numbers of computational cells. The conclusion about its stability
and convergence was made according to the correct operation of the numerical
algorithm for grids of sizes 102 × 102, 2 · 102 × 2 · 102, and 4 · 102 × 4 · 102.

4 The Parallel Solution Algorithm

Currently, many tools speed up and simplify the work of complex computing sys-
tems. A special place is occupied by parallel technologies, which allow performing
fast computations by distributing computational threads among processors.

In this article, calculations are carried out using the MPI standard. The
choice of this technology is determined by several factors.

Previously, the authors developed a parallel algorithm using the Open MP
technology for numerical simulation of the oxidative regeneration process of
spherical grains taking into account the simple geometry of the domain [13].
It is worth noting that the solution of kinetic problems in the general body of
the program leads to considerable step refinement, which entails significant time
costs for calculations. In the present study, we use splitting by physical processes
to solve separately the equations of chemical kinetics. However, it makes the use
of the OpenMP standard inefficient.

Interprocessor exchange is necessary only at the boundaries of the partition-
ing regions since the transition to cylindrical coordinates and the nondimen-
sionalization of the problem reduce the computational domain to the square
[0, 1] × [0, 1]. At the same time, an increase in the number of components in the
chemical reactions does not lead to a critical increase in calculation time since
solution of their equations will be distributed among the processors.

In addition, the study of the numerical algorithm stability in the formulation
of refining grids requires a significant number of computational experiments.
The MPI standard makes it possible to implement the computations for a large
number of spatial cells.

The computational domain is divided into parts according to the number of
processors used to organize the parallel computations.

The values of the variables corresponding to the concentrations and the tem-
perature are calculated using the given initial and boundary conditions in each
region. For the algorithm implementation, the temperature of the catalyst grain

MPI-Based Computational Algorithm for Modeling 345

Fig. 1. The scheme of computation on a node

and the concentrations of the mixture components are defined as integral aver-
ages in the grid cells.

Parameters for calculating the reaction rates and effective thermophysical
characteristics are stored on each processor, which can significantly reduce the
amount of data involved in the interprocessor exchange. It is enough to carry
out the exchange between adjacent processors in terms of boundary conditions.

Paired blocking functions MPI Send() and MPI Recv() are used in the code
to send and receive data since there only occurs exchange between two processors
in the parallel algorithm.

Figure 1 shows the flowchart describing the operation of one computing node
on the example of computation of the dimensionless temperature Θ(τ, ρ, l), the
concentrations yi(τ, ρ, l), and the Stefan flow velocity μ̂(τ, ρ, l).

346 O. S. Yazovtseva et al.

Table 1. The speedup and efficiency of the parallel algorithm

Cells Speedup Efficiency

576 9216 147 456 576 9216 147 456

1 processor 1 1 1 1 1 1

2 processors 1.96 2.01 1.98 0.98 1 0.99

4 processors 3.31 3.88 3.94 0.83 0.97 0.98

8 processors 4.35 6.94 7.74 0.54 0.87 0.97

16 processors 8.22 11.89 15.17 0.51 0.74 0.95

32 processors 11.84 17.94 28.06 0.37 0.56 0.88

We applied the developed software package to the initial boundary value
problem (12) with boundary and initial conditions (14). The computations were
performed on a workstation at the National Research Mordovia State University.

The algorithm was tested for several partitions of the computational domain
to analyze its efficiency. Table 1 contains the limit values; the intermediate ones
are some averaged values.

The graphs of the speedup and efficiency are given in Fig. 2.
As we can see from Fig. 2, an increase in the number of processors leads, as

expected, to an increase in the speed of calculations. However, if the number
of cells is large, the efficiency drops. This is a consequence of the considerable
amount of data transfer.

However, the efficiency reaches 88% when the number of cells increases. This
is an important result since the use of large grids is necessary when solving
practical problems.

Fig. 2. The speedup and efficiency for different numbers of cells

MPI-Based Computational Algorithm for Modeling 347

5 The Computation Results

We applied the developed parallel algorithm to the numerical simulation of the
process of oxidative regeneration in a cylindrical catalyst grain.

The values of the technological parameters were taken from [2,5]:

ρC = 1.8t/m3
, γk = 0.7 t/m3

, εk = 0.5, τk = 4.8 sec, c0 = 15 mole/m3
,

R0
C = 10−8 m, Top = 793 K, MC = 12 g/mole, θ01 = 0.12, θ02 = 0,

y0
1 = 0.05, α = 11.5 W/(m · s), β = 0.0115 m/sec.

The rate constants at a temperature of 720 K and the activation energies for
stages (1) are given in [2] and [4].

The effective coefficients of heat capacity and thermal conductivity were cal-
culated based on data given in [18–20]. The dependence of thermal conductivity
and heat capacity for aluminum oxide and coke was approximated by parabolas.

The calculations were carried out under the assumption that the initial tem-
perature of the catalyst grain corresponds to normal conditions (0◦C), and the
grain boundary is heated continuously by gas at a temperature of 520◦C.

The catalyst chosen for the computational experiment is based on aluminum
oxide. The grains have a cylindrical radius of 2 mm and a length of 4 mm. The
size of the computational grid is 100 × 100 cells.

The concentrations of oxygen O2, carbon monoxide CO, carbon dioxide CO2,
and water vapor H2O are shown in Figs. 3, 4, 5 and 6.

Fig. 3. O2 concentration

Fig. 4. CO concentration

348 O. S. Yazovtseva et al.

Fig. 5. CO2 concentration

Fig. 6. H2O concentration

Figure 7 depicts the key indicator of the oxidative regeneration process: the
decrease in coke’s mass fraction in the catalyst grain. Figure 8 shows the tem-
perature field pattern corresponding to the case when 40% of the coke’s initial
mass fraction is burnt off.

Fig. 7. Mass fraction of coke Fig. 8. Grain temperature

It follows from the graphs in Figs. 3, 4, 5, 6 and 7 that the process is most
active at the boundary zone, which agrees with the temperature distribution in
the grain (Fig. 8).

The low oxygen concentration in the grain’s center corresponds to a high
concentration of other substances in the gas phase, in complete agreement with
the law of conservation of mass. The coke burns out most quickly at the grain
boundary, which is associated with the heat transfer in this zone and the supply
of oxygen through the grain boundary.

MPI-Based Computational Algorithm for Modeling 349

6 Conclusions

In this article, we developed a numerical algorithm for the study of a model of
a cylindrical grain during oxidative regeneration. The numerical algorithm was
implemented in C++ using MPI technology. We analyzed the efficiency of the
algorithm and compared it with a sequential version of the problem solution.
Also, we gave the patterns of distribution over the catalyst grain for substances
involved in the chemical reaction, provided the dynamics of the coke mass frac-
tion, and analyzed the temperature field distribution over the catalyst grain
while burning coke residua off.

By calculating the effective coefficients of thermophysical characteristics,
we modified the model of the cylindrical grain during oxidative regeneration.
Afterward, the resulting nonlinear system of parabolic equations underwent
nondimensionalization. The resulting model is characterized by a high degree
of stiffness. An approach based on splitting into physical processes was cho-
sen for developing an efficient algorithm to solve the problem. The equations
of diffusion and heat transfer were solved by the integro-interpolation method,
while the kinetic equations were solved using a three-stage implicit Runge–Kutta
method of the fifth order. This approach makes it possible to solve such problems
in a reasonable time and conduct a large number of multiparameter numerical
experiments.

The parallel algorithm showed its efficiency in the simulation of oxidative
regeneration under different technological parameters. In the future, the model
considered in this paper will be used, as part of the catalyst-bed model, in
the study of the oxidative regeneration process. Also, we intend to extend the
developed algorithm to a new model.

Acknowledgments. This research was partially funded by the Boreskov Institute of
Catalysis (project AAAA-A21-121011390010-7) and the Institute of Petrochemistry
and Catalysis of the Russian Academy of Sciences (theme № FMRS-2022-0078).

References

1. Kutepov, B.I.: Kinetics of formation and interconversion of coke oxidation products
on modern cracking catalysts. Ufa, USSR (1980)

2. Masagutov, R.M., Morozov, B.F., Kutepov, B.I.: Regeneration of catalysts in oil
processing and petrochemistry. USSR, Moscow (1987)

3. Ostrovskii, N.M.: Kinetics of catalysts deactivation. Nauka, Moscow (2001)
4. Gubaydullin, I.M.: Mathematical modelling of dynamic modes of oxidative regen-

eration of catalysts in motionless layer. Ufa, Russia (1996)
5. Gubaydullin, I.M., Yazovtseva, O.S.: Investigation of the averaged model of coked

catalyst oxidative regeneration. Comput. Res. Model. 13(1), 149–161 (2021).
https://doi.org/10.20537/2076-7633-2021-13-1-149-161

6. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. Stiff and
Differential-Algebraic Problems. 2nd edn. Springer Series in Computational Math-
ematics, vol. 14. Springer, Heidelberg (1996)

https://doi.org/10.20537/2076-7633-2021-13-1-149-161

350 O. S. Yazovtseva et al.

7. Shestov, A., Popov, A., Lee, S.-C., Kuksa, P., Glickson, J.: Fast parallel algo-
rithm for large fractal kinetic models with diffusion (2018). https://doi.org/10.
1101/275248

8. Tikhonova, M. V., Gubaydullin, I. M.: Computer processing of chemical experi-
ments in solving inverse kinetic problems based on parallel computing. In: Vestnik
OmGU, vol. 64, no. 2 (2012)

9. Adamov, D.P., Fazliev, A.Z., Mikhailov, S.A.: Software for modeling chemical
kinetics by parallel programming methods for a computer cluster. In: Atmospheric
and Ocean Optics (1999)

10. Gubaydullin, I.M., Zhalnin, R.V., Peskova E.E., et al. : Construction of parallel
algorithms of high order of accuracy for modeling the dynamics of reacting flows.
In: Parallel Computing Technologies (PaVT’2017): Short Articles and Descriptions
of Posters XI International Conference, pp. 288–296. Kazan, Russia (2017)

11. Gubaydullin, I.M., Peskova, E.E., Yazovtseva, O.S., Zagoruiko, A.N.: Numerical
simulation of oxidative regeneration of a spherical catalyst grain. Matem. Mod.
34, 48–66 (2022). https://doi.org/10.20948/mm-2022-11-04

12. Gubaydullin, I.M., Peskova, E.E., Yazovtseva, O.S., Zagoruiko, A.N.: Numerical
simulation of oxidative regeneration of a spherical catalyst grain. Math. Models
Comput. Simul. 15, 485–495 (2023). https://doi.org/10.1134/S2070048223030079

13. Yazovtseva, O., Grishaeva, O., Gubaydullin, I., Peskova, E.: Construction of a par-
allel algorithm for the numerical modeling of coke sediments burning from the
spherical catalyst grain. In: Sokolinsky, L., Zymbler, M. (eds.) Parallel Compu-
tational Technologies. PCT 2022. Communications in Computer and Information
Science, vol. 1618, pp. 248–260 (2022). https://doi.org/10.1007/978-3-031-11623-
0 17

14. Pavlov, K.F., Romankov, P.G., Noskov, A.A.: Examples and tasks for the course
of processes and apparatuses of chemical technology. USSR, Leningrad (1987)

15. Sampath, B.D.S., Ramachandran, P.A., Hughes, R.: Modelling of non-catalytic
gas-solid reactions-I. Transient analysis of the particle-pellet model. Chem. Eng.
Sci. 30, 125–134 (1975)

16. Welty, J.R., Wicks, C.E., Wilson, R.E.: Fundamentals of Momentum, Heat, and
Mass Transfer (1969)

17. Muhlenkov, I.P., Dobkina, E.I., Derjuzhkina, V.I., et al.: Tehnologiya katalizatorov.
Leningrad, USSR (1989)

18. Sheludyak, E.Y., Kashporov, L.Y., Malinin, L.A., Tsalkov, V.N.: Thermophysical
properties of combustible system components. Moscow (1992)

19. Chirkin, V.S.: Thermophysical Properties of Materials for Nuclear Engineering.
USSR, Moscow (1968)

20. Kazantsev, E.I.: Industrial Furnaces: Reference Guide for Calculation and Design.
USSR, Moscow (1975)

https://doi.org/10.1101/275248
https://doi.org/10.1101/275248
https://doi.org/10.20948/mm-2022-11-04
https://doi.org/10.1134/S2070048223030079
https://doi.org/10.1007/978-3-031-11623-0_17
https://doi.org/10.1007/978-3-031-11623-0_17

Research of the Influence of the Thermal
State of an Air-Intake Model on In-Flight

Icing Conditions

Anton O. Mikryukov(B), Vladimir Ya. Modorskii ,
Stanislav L. Kalyulin(B) , and Danila S. Maksimov

Perm National Research Polytechnic University, Perm, Russian Federation

anto-mikryuko@yandex.ru, ksl@pstu.ru

Abstract. We consider the impact of icing on in-flight conditions in the
case of a structure with a heating element mounted to the aircraft skin,
taking as an example an engine air-intake model (AIM). The prediction
of the thermal state of the AIM allows choosing the optimal geomet-
ric and temperature parameters of the heating element. This reduces
the risk of ice entering the engine flow path. With the help of the
Ansys FENSAP-ICE simulation software, we researched the conjugate
heat transfer between the structure and an external moist flow. Also, we
conducted relevant numerical experiments using the High-performance
Computational Complex at Perm National Research Polytechnic Univer-
sity. We present in this paper the main results relating to the influence of
the heating temperature on the shape and thickness of icing in the AIM
for temperatures in the range 1.0Tst to 1.05Tst (Tst is the flow stagnation
temperature near the structure surface). Additionally, we give a compar-
ative assessment of the icing problem scalability on AMD Barcelona-3
and Intel Xeon E5-2680 processors.

Keywords: Air intake model · Icing condition · Numerical
simulation · High-performance computation · FENSAP ICE

1 Introduction

Aircraft icing has been a major challenge throughout the history of the aviation
industry (mainly since the 1980s). Icing has a significant impact on the safety of
aircraft operating under a wide range of meteorological conditions [1]. Icing may
exert an extremely adverse effect on the structural elements of aircraft engines
(AE), which manifests in various ways [1,2]:

1. Buildup of ice (due to the presence of small and large supercooled droplets in
the air) on elements of the engine intake system, with its subsequent detach-
ment (under the action of aerodynamic forces and vibration) and damage to
the engine parts located further along the path of the ejected mass of ice.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 351–363, 2023.
https://doi.org/10.1007/978-3-031-38864-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38864-4_25&domain=pdf
http://orcid.org/0000-0002-4200-3440
http://orcid.org/0000-0002-5998-0950
https://doi.org/10.1007/978-3-031-38864-4_25

352 A. O. Mikryukov et al.

2. Deterioration of the operation efficiency due to ice buildups on the fan blades,
the directing vane, low- and high-pressure compressors, and others. All this
makes it difficult for the engine to compress the air and leads to a noticeable
decrease in thrust and power.

3. Buildup of ice on optical sensors, which reduces the engine control efficiency
and ultimately leads to loss of power or operation instability.

4. Buildup of ice on the fan blades, which can cause unstable flow, detachment
by rotation, and “fluttering”.

5. Cyclic loading and reduction of rotor resources due to uneven ice growth.

Several types of deicing systems (DIS) (anti-icing, electrothermal, mechani-
cal, and their combinations; Fig. 1) have been developed and applied to minimize
the negative effects of this phenomenon [3,4].

Fig. 1. Types of DISs [4]: (a) anti-icing; (b) electro-thermal; (c) mechanical

Electrothermal DISs are the most widely used in the modern aircraft industry
because of their efficiency. They also offer the possibility of being mounted to
the aircraft skin, made of metal and composite materials, and varying operating
modes.

The need for studying the effect of icing on the air intake at the stage of
designing and upgrading AEs is determined by statistical data: more than 40%
of flight accidents and crashes occur due to icing of wings, fairings, and air
intakes of engines [1,3,5]. The prediction of the thermal state of an air-intake
model (AIM) allows choosing the optimal geometric and temperature parameters
of the heating element mode and minimizing the negative consequences of ice
entering the engine flow path.

Most works by foreign [5–9] and Russian research teams [1–3,10–21] con-
sider icing processes from the standpoint of the occurrence of the phenomenon,
experimentally and numerically applied to the aerodynamic profile of the wing.

Research of the Influence of the Thermal State of an Air-Intake Model 353

In this paper, we consider the geometry of an axisymmetric small-sized air
intake subjected to the negative influence of icing, namely, ice grows from the side
of the AE flow path. The geometric layout is a modified version of an air intake
based on a combination of airfoils NACA 5318 and NACA 4310. Such research
requires interdisciplinary approaches to account for the thermal balance between
the structure and the external moist flow. At the same time, finding the solution
to the problems of this class is resource-intensive and requires the appropriate
competence when using supercomputer technologies and parallelization.

In this research, we study how the thermal state of the AIM of an aircraft
engine (with a heating element mounted to the skin) affects in-flight icing con-
ditions, using various methods and approaches for the numerical simulation of
conjugate heat transfer. Also, we consider the scalability of the icing problem on
different processor architectures.

2 Materials and Methods

2.1 The Computational Domain

The initial geometry (without the elements of the flow path) of a small-sized
axisymmetric engine is shown in Fig. 2 a. We pass from this initial geometry to
the computational geometry (the AIM) shown in Fig. 2 b. The transition from
the initial to the computational geometry is possible thanks to the fact that the
considered design is axisymmetric, which, in the context of the processes under
research, allows studying only a characteristic element, namely, an airfoil based
on a combination of NACA 5318 and NACA 4310 airfoils.

The AIM consists of a leading edge, an inner panel (from the side of the
flow path), an outer panel, and a rear fairing. The toe is a multi-layer structure
consisting of a metal skin and an electrical insulator, inside which there is a
heating element (HE).

We determine the dimensions of the computational domain based on the
characteristic values of the computational geometry. To exclude the influence
of the boundaries of the computational domain on the moist flow, we assume
that the boundaries are moved away from the research object by five calibers
in the direction of the flow and by four calibers in the direction perpendicular
to the flow (by caliber, we mean the length L of the airfoil chord). Thus, the
computational domain is a parallelepiped with dimensions 11L×8L×0.5L. The
computational domain with the representation of the regions for the subsequent
adjustment of the boundary conditions is shown in Fig. 3.

2.2 Parameters and Methods

The influence of the thermal state of the AIM on in-flight icing conditions was
studied in a three-dimensional unsteady formulation of the conjugate heat trans-
fer between the AIM structure and the moist flow. In the research, we employed
the Ansys FENSAP-ICE software complex, which allows studying the effect of

354 A. O. Mikryukov et al.

Fig. 2. General view of the air intake engine geometry: (a) initial geometry; (b) com-
putational geometry

Fig. 3. Computational domain for the flow around the AIM construct by the moist
flow

Research of the Influence of the Thermal State of an Air-Intake Model 355

icing on structures through numerical simulations of processes and the opera-
tion of deicing systems in the context of the conjugate heat transfer approach
[15–18]. Within the framework of this approach, the heat flows are conjugated at
each time step from the solution of the heat balance equations, that is, from the
thermal state of the structure (solutions to the heat conduction problem) and
all the solutions of gas-dynamics and fluid problems for a moist airflow [8,9,18].

Our team of authors has vast experience in modeling icing in FENSAP-ICE
[13–21], which we contributed to model the thermal anti-icing system. It should
be noted that icing simulation is also possible using other engineering analysis
complexes, including some designed in Russia, such as FlowVision, IceVision,
and LOGOS Aero-Hydro. We plan to use these software tools in future research.

The following parameters were employed in the numerical simulations of the
buildup of ice on the AIM:

– flight altitude: 1000 m;
– flight velocity: 30 m/s;
– ambient temperature: −10◦C;
– humidity: 86%;
– liquid water content: 0.4 g/m3;
– water droplet diameter: 36.6 µm;
– droplet size and water suspension distribution: Langmuir D distribution;
– icing duration: 5 min.

We studied the influence of the thermal state on the icing process under
conditions of constant heating with a thermal power that maintains, on average,
the temperature of the outer surface of the leading edge of the AIM within
the range 1.0Tad to 1.05Tad (Tad is the flow stagnation temperature near the
structure surface).

The choice of flight conditions is determined by the fact that a given com-
bination of temperature, pressure (determined by the flight altitude), and flight
velocity (provided that there is no active deicing system) imply a high risk of
icing on the side of the bottom panel of the structure or a similar shape during
the whole period that these conditions are present. In the numerical simulation,
we assume that the droplet size and the water suspension in the moist flow are
distributed according to Langmuir D distribution (Fig. 4).

This distribution was chosen because, under real-life meteorological condi-
tions, the airflow can contain drops in a wide range of sizes (from 5 to 75 µm
and even larger [22]) when entering the icing zone. The Langmuir D distribution
used for a given median droplet size makes it possible to take this factor into
account.

2.3 Mesh Convergence Estimation

Three-dimensional mesh models were constructed with the help of the Ansys
ICEM CFD finite element mesh generator using the O-grid block topology app-
roach for the computational domain of the moist flow and geometry of the AIM

356 A. O. Mikryukov et al.

Fig. 4. Langmuir D distribution of droplet size and water suspension

leading edge structure. At the same time, the number of partitions along the
mating surface in the region of the leading edge is identical for the mesh model
of the flow and that of the structure.

To eliminate the influence of the “quality” of the constructed mesh models
on the obtained results, we assessed the mesh convergence by varying the linear
dimensions of the finite elements (the number of partitions of the generatrix of
the AIM surface) until the “independence” of the results was established during
the simulation of a steady gas dynamic flow around the AIM under in-flight
conditions. The convergence factor for mesh models is defined as the average
temperature value over the surface of the leading edge and the airfoil (i.e., the
combination of the leading edge, the inner panel, the outer panel, and the rear
fairing). The mesh convergence results are shown in Fig. 5.

From the analysis of the mesh convergence results, we concluded that 1.72
million elements are required as a minimum to obtain correct results in the
subsequent modeling. Further increasing the number of elements does not sig-
nificantly affect the results obtained. The corresponding mesh model (near the
AIM surfaces), employed in further numerical simulations, is shown in Fig. 6.

Based on the number of partitions of the AIM surface, we developed a mesh
model of the leading edge, which was required for further modeling of the con-
jugate heat transfer. While having an identical set of surface partitions for the
structure, the total number of elements was 310 thousand.

Thus, for the subsequent modeling, we used mesh models with a total of 2.03
million elements.

Research of the Influence of the Thermal State of an Air-Intake Model 357

Fig. 5. Mesh convergence graphs: the temperature averaged over the leading edge
surface (black curve) and over the airfoil surface (red curve) of the AIM versus the
number of elements (Color figure online)

Fig. 6. A mesh model of the AIM external flow for research on the thermal state
influence (ICEM CFD)

3 Results and Discussion

3.1 Speedup and Scalability

The research of interdisciplinary processes is resource-intensive and time-
consuming because of the mathematical complexity of such tasks. Icing processes
(either without conjugate heat transfer or with the conjugate exchange between

358 A. O. Mikryukov et al.

Fig. 7. An example of parallelization of a simulation task for modeling the liquid stage
with the polydisperse droplet distribution

the external flow and the structure) are implemented within the framework of
existing approaches and numerical methods in several phases:

1. Simulation of the distribution of gas-dynamics fields in the external flow: the
gas-dynamics phase.

2. Simulation of the distribution of the water field and that of droplets in the
external flow: the liquid phase.

3. Simulation of unsteady processes during icing of the structure without and
with heat flux influence from the structure: the icing phase.

Each phase has implementation features that affect the overall acceleration of
computations. The liquid phase has the most significant impact on the simulation
of in-flight icing under the considered flight conditions since the solution using
the Langmuir D droplet distribution for the water field is a weighted set of
independent computations for each characteristic size (Fig. 4).

The use of the polydisperse Langmuir D distribution for droplets instead of
a monodisperse one increases the computational cost by a factor of at least 7.
An example of parallelization of a simulation task for modeling the liquid stage
with the polydisperse droplet distribution is shown in Fig. 7. It should be noted
that the architecture of the processors on which the parallelization takes place
has a significant impact on the speed of the computations (Fig. 7).

To assess the scalability of the liquid phase solution, the following steps are
performed:

– Estimation of the processor architecture influence on the parallelization of
the liquid phase problem.

– Comparative analysis of the efficiency of parallelization of the liquid phase
problem.

Research of the Influence of the Thermal State of an Air-Intake Model 359

For the numerical experiments, we used the Ansys 2020 R2 licensed software
on various architectures with different numbers of cores. The software was run
on the high-performance computing cluster (HPC) of Perm National Research
Polytechnic University (PNRPU) [14], whose main characteristics are as follows:

– 95 computing nodes;
– 128 four-core processors AMD Barcelona-3 (a total of 512 cores);
– 62 eight-core Intel Xeon E5-2680 processors (a total of 480 cores);
– peak performance: 24.096 TFLOPS;
– performance measured by the LINPACK benchmark: 78%;
– storage system capacity: 27 TB;
– RAM: 5888 GB (32 GB/node for nodes with AMD Barcelona-3, and 128

GB/node for nodes with Intel Xeon E5-2680);
– 12 NVIDIA Tesla M2090 GPUs (a total of 512 cores and 6 GB).

In the first stage, we made a comparative assessment of the required time
for solving the problem of the liquid phase depending on the number of com-
putational cores. Figure 8 contains the assessment results for the two processor
architectures used on the PNRPU HPC, namely, Intel Xeon E5-2680 and AMD
Barcelona-3, on test runs of the considered problem.

From the analysis of the required time versus the number of cores used, we
drew the following conclusions. In the case of AMD Barcelona-3, the greatest
time reduction was achieved (by a factor greater than 1.9) when the number of
cores increased from 16 to 32. A similar picture was observed in the case of the
Intel Xeon E5-2680. If we compare the computation times for AMD Barcelona-3
and Intel Xeon E5-2680, we see that the time required by the latter is less by a
factor greater than 1.8.

We found that the optimal number of cores for parallelizing the task in Ansys
FENSAP-ICE is 32, regardless of the processor architecture used. By further
increasing the number of cores used, a decrease in speedup is observed due to
overheads in network data exchange between nodes.

Thus, the subsequent numerical simulations of the AIM thermal state under
in-flight icing conditions were carried out on 32 eight-core Intel Xeon E5-2680
processors.

3.2 Results for Heater Regimes

Based on numerical simulation results, we drew the following conclusions. We
obtained the distributions of gas-dynamics fields, liquid water content and
droplet velocities in the flow, and the thickness of the ice buildup on the AIM
surfaces. The results for the ice shape and thickness on the AIM surfaces at the
final time step T under various heating conditions are given in Fig. 9.

360 A. O. Mikryukov et al.

Fig. 8. Results of the problem parallelization for different numbers of cores using Intel
Xeon E5-2680 and AMD Barcelona-3 architectures

From the analysis of the obtained shapes and thicknesses of the ice buildup
on the structure of the AIM under various temperature conditions, we drew the
following conclusions: We made the following conclusions based on the research
results of the thermal state influence on the AIM in-flight icing conditions:

1. The ice shape that most distorts the external AIM aerodynamic profile grows
over the entire structure surface under a constant power heat flux equivalent
to 1.00Tad. In this case, the maximum thickness of ice buildups (relative to
other temperature regimes of constant heating) reaches the value hmax.

2. The thermal state with constant heating of the AIM leading edge from 1.00Tad

to 1.05Tad under in-flight icing conditions does not ensure the absence of ice
on the side of the engine flow path. As heating increases up to 1.02Tad, the
ice thickness grows up to hmax on the surface from the side of the flow path;
the ice buildup can become critical for the unit’s performance as a result of
subsequent detachment (under the influence of aerodynamic forces) and can
cause damages to the engine parts located further along the path of the ejected
ice mass. Nevertheless, an increase in temperature up to 1.05Tad is sufficient
to avoid ice buildups from the side of the inner panel, which significantly
reduces the risk of ice entering the engine flow path.

Research of the Influence of the Thermal State of an Air-Intake Model 361

Fig. 9. The shape and thickness of the ice buildup on the AIM surface under constant
heating of the leading edge and power heat flux equivalent to (a) 1.00Tad; (b) 1.02Tad;
(c) 1.05Tad

4 Conclusions

We considered the air-intake model of an aircraft engine (with a heating element
mounted to the skin) under in-flight icing conditions. For this, we used various
methods and approaches for the numerical simulation of conjugate heat transfer
(Ansys 2020 R2, FENSAP-ICE).

We conducted numerical experiments using the HPC resources of PNRPU to
determine the thermal state influence of the air-intake model on in-flight icing
conditions. The flight parameters considered in the simulations were: altitude:
1000 m m, flight velocity: 30 m/s, ambient temperature: −10◦C, humidity: 86%,
liquid water content: 0.4 g/m3, the polydisperse spectrum of Langmuir D distri-
bution of droplet size, average median diameter: 36.6 µm, and icing duration:
5 min.

362 A. O. Mikryukov et al.

We compared the estimated time required for the most time-consuming stages
of the simulation of processes of conjugate heat transfer under icing conditions.
We determined that 32 is the optimal number of cores for parallelizing the task
in Ansys FENSAP-ICE, regardless of the processor architecture used. By further
increasing the number of cores used, a decrease in speedup is observed due to
overheads in network data exchange between nodes.

According to the results of numerical experiments of the AIM thermal state,
the ice shape that most distorts the external aerodynamic profile occurs over the
entire structure surface at a constant heating of 1.0Tad. At the same time, the
maximum thickness of ice buildups reaches the value hmax.

Moreover, an increase in temperature up to 1.05Tad is sufficient to avoid ice
buildups from the side of the inner panel, which significantly reduces the risk of
ice entering the engine flow path.

Acknowledgments. The study was supported by the Russian Science Foundation
(grant № 22-19-20118) and the Ministry of Education and Science of the Perm Region
(agreement № c-26/1203, dated June 30, 2022).

References

1. Tsypenko, V.G., Shevkov, V.I.: Ensuring the flight safety of transport aircraft
taking into account new certification requirements for icing conditions. Civil Aviat.
High Technol. 22(3), 45–46 (2019). (in Russian)

2. Gurevich, O.S., Smetanin, S.A., Trifonov, M.E.: Evaluation of the deterioration of
the characteristics of gas turbine engines during crystalline icing and the possibility
of its compensation by control methods. Aviat. Engines 3(4), 17–24 (2019). (in
Russian)

3. Milyaev, K.E., Semenov, S.V., Balakirev, A.A.: Ways of fight against frosting in the
aviation engine methods of countering with icing in the aircraft engine. PNRPU
Aerosp. Eng. Bull. 59, 5–18 (2019). https://doi.org/10.15593/2224-9982/2019.59.
01

4. Popov, S.N.: Aeroflot from A to Z. Book on demand, p. 183 (2012). (in Russian)
5. Cao, Y., Tan, W., Wu, Z.: Aircraft icing: an ongoing threat to aviation safety.

Aerosp. Sci. Technol. 75, 353–385 (2018). https://doi.org/10.1016/j.ast.2017.12.
028

6. Yong, S.M.: Fiber-reinforced plastic material with de-icing capability for radome
application 284(2), art. no. 128943 (2021). https://doi.org/10.1016/j.matlet.2020.
128943

7. Shen, X., Wang, H., Lin, G., Bu, X., Wen, D.: Unsteady simulation of aircraft
electro-thermal deicing process with temperature-based method. Aerosp. Eng. 234,
388–400 (2020). https://doi.org/10.1177/0954410019866066

8. Raj, L.P., Myong, R.S.: Computational analysis of an electro-thermal ice protection
system in atmospheric icing conditions. J. Comput. Fluids Eng. 21(1), 1–9 (2016).
https://doi.org/10.6112/kscfe.2016.21.1.001

9. Reid, T. Baruzzi, G., Aliaga, C., Aube, M., Habashi, W.: FENSAP-ICE: appli-
cation of unsteady CHT to de-cing simulations on a wing with inter-cycle ice
formation. Am. Inst. Aeronaut. Astronaut. 1–11 (2010). https://doi.org/10.2514/
6.2010-7835

https://doi.org/10.15593/2224-9982/2019.59.01
https://doi.org/10.15593/2224-9982/2019.59.01
https://doi.org/10.1016/j.ast.2017.12.028
https://doi.org/10.1016/j.ast.2017.12.028
https://doi.org/10.1016/j.matlet.2020.128943
https://doi.org/10.1016/j.matlet.2020.128943
https://doi.org/10.1177/0954410019866066
https://doi.org/10.6112/kscfe.2016.21.1.001
https://doi.org/10.2514/6.2010-7835
https://doi.org/10.2514/6.2010-7835

Research of the Influence of the Thermal State of an Air-Intake Model 363

10. Kashevarov, A.V., Stasenko, A.L.: Modeling of ice accretion on the airfoil surface
in an air flow containing ice particles. J. Appl. Mech. Tech. Phys. 59(4), 645–652
(2018). https://doi.org/10.1134/S0021894418040107

11. Alekseenko, S.V., Prikhodko, A.A.: Numerical simulation of icing of a cylinder and
an airfoil: model review and computational results. TsAGI Sci. J. 44(6), 761–805
(2013). https://doi.org/10.1615/TsAGISciJ.2014011016

12. Grinats, E.S., Miller, A.B., Potapov, Y.F., Stasenko, A.L.: Experimental and the-
oretical studies of the processes of icing of nanomodified superhydrophobic and
ordinary surfaces. Bull. Moscow State Reg. Univ. Ser. Phys. Math. 3, 84–92 (2013).
(In Russian)

13. Kalyulin, S.L., Modorskii, V.Y., Cherepanov, I.E.: Numerical modeling of the influ-
ence of the gas-hydrodynamic flow parameters on streamlined surface icing. In:
Fomin, V. (ed.) ICMAR 2018, AIP Conference Proceedings, vol. 2027, art. no.
030180 (2018). https://doi.org/10.1063/1.5065274

14. Modorskii, V.Y., Shevelev, N.A.: Research of aerohydrodynamic and aeroelastic
processes on PNRPU HPC system. In: Fomin, V. (ed.) ICMAR 2016, AIP Con-
ference Proceedings, vol. 1770, art. no. 020001 (2016). https://doi.org/10.1063/1.
4963924

15. Kozlova, A.V., Modorskii, V.Y., Ponik, A.N.: Modeling of cooling processes in the
variable section channel of a gas conduit. Rus. Aeronaut. 53(4), 401–407 (2010).
https://doi.org/10.3103/s1068799810040057

16. Kalyulin, S.L., Modorskii, V.Y., Paduchev, A.P.: Numerical design of the rectifying
lattices in a small-sized wind tunnel. In: Fomin, V. (ed.) ICMAR 2016, AIP Con-
ference Proceedings, vol. 1770, art. no. 030110 (2016). https://doi.org/10.1063/1.
4964052

17. Kalyulin, S.L., Modorskii, V.Y., Petrov, V.Y., Masich, G.F.: Computational and
experimental modeling of icing processes by means of PNRPU high-performance
computational complex. J. Phys. Conf. Ser. 965, art. no. 012081 (2018). https://
doi.org/10.1088/1742-6596/1096/1/012081

18. Kalyulin, S.L., Modorskii, V.Y., Maksimov, D.S.: Physical modeling of the influ-
ence of the gas-hydrodynamic flow parameters on the streamlined surface icing
with vibrations. In: Fomin, V. (ed.) ICMAR 2018, AIP Conference Proceedings,
vol. 2027, art. no. 040090 (2018). https://doi.org/10.1063/1.5065364

19. Seregina, M.A., Babushkina, A.V., Modorsky, V.Y., Maksimov, D.S.: Numerical
simulation of processes of interaction of a gas wave and a deformed barrier in
a model channel aircraft engine. PNRPU Aerosp. Eng. Bull. 69, 92–99 (2022).
https://doi.org/10.15593/2224-9982/2022.69.10

20. Modorsky, V.Y., et al.: Influence of some parameters of the experimental anti-icing
complex “filter” on the efficiency of protection of power plants from snow. PNRPU
Aerosp. Eng. Bull. 69, 100–109 (2022). https://doi.org/10.15593/2224-9982/2022.
69.10

21. Maksimov, D.S., et al.: Developing cyber infrastructure and a model climatic
wind tunnel based on the PNRPU high-performance computational complex. Com-
mun. Comput. Inf. Sci. 2163, 336–350 (2020). https://doi.org/10.1007/978-3-030-
55326-5 24

22. Zhbanov, V.A., Kashevarov, A.V., Miller, A.B., Potanov, Y.F.: Study of icing under
various conditions. Proc. MAI 105, 1–17 (2019). (in Russian)

https://doi.org/10.1134/S0021894418040107
https://doi.org/10.1615/TsAGISciJ.2014011016
https://doi.org/10.1063/1.5065274
https://doi.org/10.1063/1.4963924
https://doi.org/10.1063/1.4963924
https://doi.org/10.3103/s1068799810040057
https://doi.org/10.1063/1.4964052
https://doi.org/10.1063/1.4964052
https://doi.org/10.1088/1742-6596/1096/1/012081
https://doi.org/10.1088/1742-6596/1096/1/012081
https://doi.org/10.1063/1.5065364
https://doi.org/10.15593/2224-9982/2022.69.10
https://doi.org/10.15593/2224-9982/2022.69.10
https://doi.org/10.15593/2224-9982/2022.69.10
https://doi.org/10.1007/978-3-030-55326-5_24
https://doi.org/10.1007/978-3-030-55326-5_24

Author Index

A
Abotaleb, Mostafa 78
Akimova, Elena N. 110
Akostelov, Ivan 231
Amosova, Elena 231
Anisimov, Pavel 137
Atayan, A. M. 244

B
Barkalov, Konstantin 167
Batalov, Maxim 93
Boronina, M. 299
Buryak, Dmitry 19

C
Chernykh, Igor G. 110
Chistyakov, A. E. 244

D
Demidova, Tatiana 269
Dubovtsev, Dmitry 167
Dudnikova, G. 299

E
Efimova, A. 299
Enikeeva, Leniza 167
Evstigneev, N. M. 152

G
Galaktionova, Anastasia 182
Gao, Jiexing 137
Gradusov, V. A. 63
Grigoryev, Vitaliy 269
Gubaydullin, Irek M. 336
Gubaydullin, Irek 167
Gurieva, Yana 93

I
Ilyin, Valery 93
Ilyushin, Yaroslaw 311
Ivanov, Oleg 19

K
Kalyulin, Stanislav L. 351
Karatach, Sergey 51
Kazakov, Evgeniy 137
Khamitov, Kamil 19
Khudoleeva, Anna 3
Kochemazov, Stepan 123
Kolganova, Alexandra 197
Kondratiev, Victor 123
Kulikov, Igor M. 110
Kuznetsova, I. Yu. 244

L
Lempert, David 231
Levchenko, Vadim 33
Levin, Gennady 311

M
Makarovskikh, Tatiana 78
Maksimov, Danila S. 351
Marchevsky, Ilia 197
Mikryukov, Anton O. 351
Misilov, Vladimir E. 110
Modorskii, Vladimir Ya. 351

P
Panyukov, Anatoly 78
Parakhin, Vladimir 231
Perepelkina, Anastasia 33, 215
Peskova, Elizaveta 323
Peskova, Elizaveta E. 336
Petukhov, Artyom 93
Podryga, Viktoriia 285
Polyakov, Sergey 285

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
L. Sokolinsky and M. Zymbler (Eds.): PCT 2023, CCIS 1868, pp. 365–366, 2023.
https://doi.org/10.1007/978-3-031-38864-4

https://doi.org/10.1007/978-3-031-38864-4

366 Author Index

Popova, Nina 19
Porksheyan, M. V. 244
Protsenko, Elena A. 259
Protsenko, Sofya V. 259

R
Reshetova, Galina 182
Roudnev, V. A. 63
Ryabkov, O. I. 152

S
Semenov, Alexander 123
Shubin, Mikhail 19
Sidoryakina, V. V. 244
Sinuk, Vasiliy 51
Stefanov, Konstantin 3
Sukhinov, A. I. 244
Sukhinov, Alexander I. 259

T
Tarasov, Nikita 285

U
Usachev, Vladimir 285
Usmanova, Arina A. 336
Usova, Marina 167

V
Vakhrushev, Vadim 19
Vishnyakov, Gennady 311
Voevodin, Vadim 3
Volokhov, Vadim 231
Vshivkov, K. 299

Y
Yakovlev, S. L. 63
Yarevsky, E. A. 63
Yazovtseva, Olga S. 336

Z
Zagoruiko, Andrey N. 336
Zakirov, Andrey 215
Zemlyakov, Viacheslav 137

	 Preface
	 Organization
	 Contents
	High Performance Architectures, Tools and Technologies
	Evaluating the Impact of MPI Network Sharing on HPC Applications
	1 Introduction
	2 Related Work
	3 Description of Noise Generators and Tests
	3.1 Tests
	3.2 Test and Noise Layout
	3.3 Selection of Noise Generators

	4 Experimental Results
	4.1 Case 1: One Shared Node
	4.2 Case 2: One Shared Switch
	4.3 Case 3: Two Adjacent Switches
	4.4 Case 4: Two Nonadjacent Switches

	5 Conclusions
	References

	Parallel Data Preprocessing Library for Neural Network Training
	1 Introduction
	2 Related Work
	3 Overview of the Proposed Methods
	3.1 Batch-Level Parallelism
	3.2 Object-Level Parallelism
	3.3 Shared Memory Buffer Use

	4 Implementations
	5 Experiment Results
	5.1 Image Processing
	5.2 Time Series Processing
	5.3 Video Processing

	6 Conclusions
	References

	An Efficient LRnLA Algorithm and Data Structure for Manycore and Multicore Computers with Hierarchical Cache
	1 Introduction
	2 Computational Aspects of LBM
	3 LRnLA Algorithms
	3.1 Data Structures
	3.2 Algorithmic Issues
	3.3 Optimal Algorithm for Manycore CPUs

	4 FArShFold
	4.1 FArShFold Properties
	4.2 Localization Limits
	4.3 Latency Limits

	5 Performance Tests
	5.1 Parameter Adjustment
	5.2 Benchmark Results

	6 Related Work
	7 Conclusions
	References

	Parallel Numerical Algorithms
	Implementation of a Fuzzy Inference Method with Nonsingleton Fuzzification Based on CUDA and GPGPU Technologies
	1 Introduction
	2 The Problem Statement
	3 A Method of Inference Using a Fuzzy Truth Value
	4 Features of the Inference Method Implementation Using a Fuzzy Truth Value
	4.1 Using OpenGL for the Fuzzy Truth Value Computing
	4.2 The Implementation of Efficient Convolution Inside the CUDA Kernel
	4.3 Features of the Implementation of the FTV Convolution When T1=min

	5 A Comparative Analysis of Various Implementation Methods
	6 Conclusions
	References

	Solving the Three-Dimensional Faddeev–Merkuriev Equations via Spline Collocation and Tensor Product Preconditioning
	1 Introduction
	2 The Theoretical Approach
	2.1 The Faddeev–Merkuriev Equations
	2.2 The Total-Orbital-Momentum Representation

	3 The Computational Scheme
	3.1 The Basic Scheme
	3.2 The Preconditioner
	3.3 Algorithm Complexity and Parallelization

	4 The Results
	5 Conclusions
	References

	Monitoring and Forecasting Crop Yields
	1 Introduction
	2 Data Organization
	2.1 The Data Structure for Aerial Photography Representation
	2.2 The Database of Objects Under Consideration

	3 Generalized Least Deviation Method (GLDM)
	4 Parallel Prospects of the GLDM
	5 Computational Experiments
	6 Conclusions
	References

	On Parallel Multigrid Methods for Solving Systems of Linear Algebraic Equations
	1 Introduction
	2 Some Variants of Multigrid Approaches for Solving Two-Dimensional Problems
	3 Multigrid Methods of Incomplete Factorization for Three-Dimensional Problems
	4 Parallelization of Multigrid Methods
	5 Numerical Experiments
	6 Conclusions
	References

	Optimized Relativistic Code for Massive Parallel Systems
	1 Introduction
	2 Mathematical Model and Numerical Method
	3 Hybrid Parallel Implementation
	3.1 The Domain Decomposition
	3.2 The Computational Algorithm
	3.3 Auto Vectorization and Data Structures
	3.4 OpenMP Parallelization
	3.5 MPI Parallelization

	4 Code Research
	4.1 OpenMP Threading Performance: Strong Scalability
	4.2 MPI Performance: Weak Scalability

	5 Collision of Relativistic Jets
	6 Conclusions
	References

	Using Parallel SAT Solving to Study Hard Combinatorial Problems Associated with Boolean Circuits
	1 Introduction
	2 Preliminaries
	2.1 Boolean Circuits
	2.2 Boolean Satisfiability and Circuits
	2.3 Equivalence Checking for Boolean Circuits
	2.4 Automatic Test Pattern Generation for Boolean Circuits

	3 Solving ATPG for Boolean Circuits Using Parallel SAT-Based Algorithms
	3.1 The Hardness of LEC with Respect to SAT Partitioning
	3.2 Exploiting the Structure of Circuits When Solving ATPG

	4 LEC and ATPG Using Parallel Computing
	5 Computational Experiments
	6 Conclusion
	References

	Parallelization of the Generalized Multimode Nonlinear Schrödinger Equation Solver: A Performance Analysis
	1 Introduction
	2 Theoretical Information
	3 The Implementations of SSFM and MPA
	3.1 The SSFM
	3.2 The SSFM with GPU Support
	3.3 The MPA with OpenMP Support
	3.4 The MPA with OpenMP and GPU Support

	4 Numerical Results
	4.1 Computation Time
	4.2 GPU Performance in the MPA
	4.3 Single and Double Precisions
	4.4 Impact of the Integration Step Size
	4.5 Adaptive Step Size

	5 Conclusions
	References

	On a Template Programming Approach for Shared Memory Parallel Architectures with Applications to the Fully Implicit Stokes Solver
	1 Introduction
	2 The Implementation
	2.1 The Implementation of Data Structures
	2.2 The Implementation of `For Each' Operations
	2.3 The Implementation of Memory Models and Utilities

	3 Simple Application and Benchmarks
	4 Stokes Solver Performance
	5 Conclusions
	References

	Parallel Computing in the Tikhonov Regularization Method for Solving the Inverse Problem of Chemical Kinetics
	1 Introduction
	2 The Problem Statement
	3 The Parallel Global Optimization Algorithm
	3.1 The Optimization Problem
	3.2 Characteristic Algorithms
	3.3 Parallel Algorithm with Asynchronous Trials

	4 Numerical Experiments
	5 Conclusions
	References

	Parallel Implementation of the Time-Reversal Mirror Method for Retrieving the Position and Type of a Seismic Source from Observational Data
	1 Introduction and Motivation
	2 Algorithm for Retrieving the Seismic Source Type
	3 The Mathematical Statement of the Problem
	4 The Numerical Simulation
	5 The Numerical Test
	6 Parallel Implementation
	7 Conclusions
	References

	Parallel Implementation of Fast Algorithms in the Vortex Particle Method
	1 Introduction
	2 The Governing Equations
	3 The Direct Algorithm
	3.1 OpenMP for Shared Memory and MPI for Cluster Systems
	3.2 Nvidia CUDA for Graphics Accelerators

	4 Approximate Tree-Based Fast Algorithms
	4.1 Tree-Based Fast Methods for the N-Body Problem
	4.2 CPU Implementation of the BH/Multipole Algorithm
	4.3 GPU Implementation of the BH/Multipole Algorithm

	5 Conclusions
	References

	Supercomputer Simulation
	Implementation of an Asymptotically Compact Algorithm for GPU Simulation of an Acoustic Equation
	1 Introduction
	2 The Algorithms
	2.1 The Problem Statement
	2.2 LRnLA Algorithms
	2.3 Asymptotically Compact Update

	3 The Implementation
	3.1 The Data Structure
	3.2 Data Exchange
	3.3 The CompactTorre Kernel

	4 The Benchmarks
	4.1 Linear Scalar Wave Equation
	4.2 The Sine-Gordon Equation
	4.3 Performance Benchmarks
	4.4 Parallel Scaling

	5 Related Works
	6 Conclusions
	References

	Quantum-Chemical Simulation of High-Energy Azoxy Compounds
	1 Introduction
	2 Calculation of the Enthalpy of Formation in the Gaseous Phase by the Atomization Reaction Method
	3 Method of Homodesmotic Reactions
	4 Results and Discussion
	4.1 Enthalpy of Formation
	4.2 Dependence of the Enthalpy on the Structure

	5 Computational Details
	6 Conclusions
	References

	Parallel Algorithms for Simulation of the Suspension Transport in Coastal Systems Based on the Explicit-Implicit and Splitting Schemes
	1 Introduction
	2 Model of Multicomponent Suspension Transport
	3 Construction of Schemes for the Suspension Transport Problem: Explicit-Implicit and Splitting Schemes
	4 Construction of Parallel Algorithms for Computing 2D Problems
	5 Numerical Experiments for the Simulation of Suspended Matter Transport
	6 Conclusions
	References

	Parallel Numerical Implementation of Three-Dimensional Mathematical Models of Hydrodynamics Taking into Account Vertical Turbulent Exchange
	1 Introduction
	2 Spatially Inhomogeneous 3D Model of Wave Hydrodynamics in a Shallow Water Body
	3 Parameterization of the Vertical Turbulent Exchange
	4 Parallel Implementation of Wind-Wave Models of the Third Generation
	5 Parallel Implementation of 3D Mathematical Models of Hydrodynamics
	6 Results of the Numerical Experiments
	7 Conclusions
	References

	Comparison of Two Methods for Modeling the Dynamics of Gas Flows in a Protoplanetary Disk
	1 Introduction
	2 Model and Methods
	2.1 Basic Equations
	2.2 Initial Conditions
	2.3 Boundary Conditions

	3 Results
	3.1 Calculation Results
	3.2 Parallelization

	4 Conclusions
	References

	Computer Modeling of Metal Nanoclusters and Substrate Interaction at Mesoscopic Level
	1 Introduction
	2 The Problem Formulation
	3 Basic Equations
	4 The Numerical Algorithm
	5 The Parallel Implementation
	6 Results of the Computational Experiments
	7 Conclusions
	References

	Supercomputer Simulation of Plasma Flow in the Diamagnetic Mode of Open Magnetic Systems
	1 Introduction
	2 Problem Statement
	3 Parallel Algorithm
	4 Results of Numerical Simulation
	5 Conclusion
	References

	Computer Simulation of the Three-Dimensional Synthesis of Phase Images of Nanometer Scale Objects
	1 Introduction
	2 Algorithms for Image Synthesis
	3 Numerical Simulations of the Optical Wave Scattering on an Object
	3.1 Parallelization of Computations and Developing Codes

	4 Simulation Results
	5 Conclusions
	References

	A Parallel Algorithm for a Two-Phase Gas-Solid-Particle Model with Chemical Reactions and Laser Radiation
	1 Introduction
	2 The Mathematical Model
	3 The Parallel Algorithm
	3.1 Decomposition of the Computational Domain
	3.2 The Numerical Scheme for the Solution of the Problem in a Subdomain
	3.3 The Scheme of the Parallel Program
	3.4 Efficiency Analysis of the Parallel Algorithm

	4 The Numerical Experiments
	5 Conclusions
	References

	MPI-Based Computational Algorithm for Modeling a Cylindrical Catalyst Grain During Oxidative Regeneration
	1 Introduction
	2 Modeling the Processes in a Catalyst Grain
	3 The Numerical Algorithm
	4 The Parallel Solution Algorithm
	5 The Computation Results
	6 Conclusions
	References

	Research of the Influence of the Thermal State of an Air-Intake Model on In-Flight Icing Conditions
	1 Introduction
	2 Materials and Methods
	2.1 The Computational Domain
	2.2 Parameters and Methods
	2.3 Mesh Convergence Estimation

	3 Results and Discussion
	3.1 Speedup and Scalability
	3.2 Results for Heater Regimes

	4 Conclusions
	References

	Author Index

