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MULTIGRID INCOMPLETE FACTORIZATION
METHODS IN KRYLOV SUBSPACES

V. P. Il’in∗ UDC 519.6

The paper studies multigrid methods for solving systems of linear algebraic equations resulting from
the seven-point discretization of the three-dimensional Dirichlet problem for an elliptic differential
equation of the second order in a parallepipedal domain on a regular grid. The algorithms suggested
are presented as special iteration processes of incomplete factorization in Krylov subspaces with a
hierarchical recursive vector structure that corresponds to a sequence of embedded grids and gives
rise to a block tridiagonal recursive representation of the coefficient matrix of the original linear
algebraic system. The convergence of iterations is enhanced by using the principle of compensation
of the row sums and also the symmetric successive block overrelaxation. An arbitrary m-grid
method is defined recursively, based on the two-grid method. For simplicity, the algorithms are
considered for linear systems with Stieltjes coefficient matrices. Issues related to generalization of
the algorithms to larger classes of problems and, in particular, those with unsymmetric matrices
are discussed. Bibliography: 22 titles.

1. Introduction

Multigrid methods for solving systems of linear algebraic equations (SLAEs) arising from
approximation of multidimensional boundary-value problems are of special importance in com-
putational algebra because they result in asymptotically optimal algorithms, for which the
amount of computer resources is proportional to the number of unknowns. In the pioneering
works by Fedorenko [1] and Bakhvalov [2], these approaches were based on spectral principles
with separate suppression of error in low- and high-frequency components. In a large number
of subsequent publications, they were developed in geometric terms (in particular, the so-called
cascade method was considered [3–5]), in algebraic terms (Algebraic Multi Grid – AMG), and
in combinatorial terms. The latter approach is based on transformations of grid graphs (e.g.,
with the formation of spanning trees, see [6–20] and the references therein). The traditional
approaches are based on iterative processes using smoothing, reduction (or restriction), coarse
grid correction, and prolongation operators. Various methodological results were also accom-
panied by software development and numerous practical applications, including parallelization
of algorithms. In this paper, we investigate iterative multigrid methods as a special class of pre-
conditioned Krylov type algorithms applied to linear systems with hierarchically or recursively
ordered grid nodes.

The paper is organized as follows. In Sec. 2, we describe a general scheme for constructing
algebraic multigrid methods based on a recursive ordering of vector components. Section 3
presents preconditioned iterative methods in Krylov subspaces in application to the AMG in
question. Section 4 considers multigrid incomplete factorization methods for solving seven-
point SLAEs resulting from approximation of three-dimensional boundary-value problems on
a parallelepipedal grid. In the final section, possible generalizations of the algorithms proposed
to a wider class of problems are discussed.

2. General scheme of multigrid approaches

Consider a linear algebraic system

Au=f, A={at,s} ∈ RN,N , u={ut}, f={ft} ∈ RN , (1)
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with a symmetric positive definite (s.p.d.) matrix resulting from approximation of a three-
dimensional boundary-value problem for a second-order elliptic differential equation using
a finite difference, a finite volume, or a finite element method, see [21]. For simplicity, the
parallelepiped-shaped computational domain Ω will be considered, and its discretization will be
carried out using a parallelepipedal grid consisting ofm embedded grids of the same topological
structure:

Ωh=Ωh
1 ⊃ Ωh

2 ⊃ · · · ⊃ Ωh
m.

For simplicity, it is assumed that the boundary Γ of the domain Ω passes along the faces
of the coarsest grid Ωh

m, and the finer grid of the lth level Ωh
l is obtained by drawing new

coordinate planes bisecting all grid intervals of the coarser grid Ωh
l+1, l= 1, 2, . . . ,m − 1. A

possible generalization of the approaches considered to other types of domains and grids will
be described below.

The common up-to-date approach to constructing multigrid algorithms is based on iterative
processes in Krylov subspaces with preconditioning matrices corresponding to recursive data
structures. We will investigate node-type SLAEs. In this case, every node of each of the grids
corresponds to a single component of a given and an unknown vectors, and they are numbered
in accordance with a recursive multilevel ordering of the nodes of the embedded grids. The set
of nodes and vector components of the original SLAE on the finest (initial) grid is represented
in the following two-level form:

Ωh=Ωh
1=

̂Ωh
1 ∪ Ω̆h

1 , Ω̆h
1=Ωh

2 , (2)

u=u(1)=
(

(û(1))�, (ŭ(1))�
)�

, ŭ(1)=u(2).

The second-level subsets and subvectors can be decomposed in a similar way. As a result, we
obtain the following multilevel representations for m grids:

Ωh=Ωh
1=

̂Ωh
1 ∪ ̂Ωh

2 · · · ∪ ̂Ωh
m−1 ∪Ωh

m,

u=u(1)=
(

(û(1))�, (û(2))�, . . . , (û(m−1))�, (u(m))�
)�

,

where every set of the lth level is split into two subsets, one of which belongs to the next level
and is also split into two parts:

Ωh
l =

̂Ωh
l ∪ Ω̆h

l , Ω̆h
l =Ωh

l+1, u(l)=
(

(û(l))�, (ŭ(l))�
)�

, ŭ(l)=u(l+1).

The right-hand-side vector f is written in a similar hierarchical form as f=f (1)= ( ̂f (1), f̆ (1)),

f̆ (1)=f (2). In the case of the two-level node ordering (2) and the corresponding splitting into
subvectors, the original linear system takes the following block form:

Au=

[

A1,1 A1,2

A2,1 A2,2

] [

û(1)

u(2)

]

=

[

̂f (1)

f (2)

]

=f. (3)

The simplest method (in the general case, the major component of the multigrid method)
is the two–grid variant. The essence of this variant is as follows. Upon some transformations,
the subvector (u(2))0 is computed by solving system (3) by a direct method. Actually, an
initial approximation of this subvector is found by approximately eliminating the subvector
û(1). This initial approximation is refined in the course of subsequent iterations.

Given an initial vector u0 and a subvector (u(2))0 ∈ R
N2
i,s , the first iterative guess for Eq. (3)

can schematically be represented as u=u0 + P (u(2))0, where P ∈ R
N,N2 is a prolongation

operator. The operator can be constructed, for example, using interpolation from the coarse

524



grid to the fine one. Upon substituting this expression into SLAE (3) preliminary multiplied
on the left by the restriction operator R=P�, we obtain the equation

Ac(u
(2))0=R(f −Au0) =Rr0, Ac=RAP, (4)

where Ac ∈ R
N2,N2 is a low-rank approximation of the matrix A associated with the coarse

grid. The prolongation operator P is considered to be a matrix of full rank. Then we have

u=u0 +B−1
2 r0, B−1

2 =PA−1
c R=B−T

2 =
(

B−1
2

)T
. (5)

Here, the symmetric matrix B2 ∈ R
N,N can be treated as a preconditioner for A. The inversion

of B2 actually requires solving the algebraic system (4) on the coarse grid, and the vector
relation (5) provides a foundation for constructing two-grid iterative methods. In this case,
from the methodological point of view, there is the following alternative: SLAE (4) can be
solved either by a direct or by an iterative method. The second option leads to a two-level
process, but, in this paper, we only consider the first option, which allows us to use embedded
grids in a uniform way (provided that the structure of the matrix Ac is similar to that of the
matrix A).

The above form of the two-grid method is as yet incomplete, and at every iteration it must
be supplemented with a presmoothing and a postsmoothing operations. In matrix terms, this
is done by replacing the preconditioner B−1

2 in (5) with the preconditioning matrix

B
−1
2 =S2PA−1

c RS1, S1=S�
2 .

Here, the operators S1 and S2, whose specific form will be discussed below, must ensure that
the matrix B2 is symmetric.

When using an m-grid algorithm, the subvectors u(l), l= 2, . . . ,m−1, are successively split,
and the resulting SLAE to be solved can be represented in the following form:

Au=Au(1)=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A1,1 A1,2 0
A2,1 A2,2 A2,3 0

. . .
. . .

. . .

. . . Am−1,m−1 Am−1,m

0 . . . 0 Am,m−1 Am,m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

û(1)

û(2)

...

û(m−1)

u(m)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂f (1)

̂f (2)

...
̂f (m−1)

f (m)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (6)

It is important to observe that this system has a block tridiagonal coefficient matrix (this is a
necessary requirement imposed on the grids constructed and the corresponding matrix blocks).
Formally, system (6) only differs from (1) or (3) in the ordering of unknowns. Representing
SLAE (6) in the two–by–two block form as

Au=

[

A1,1 A1,m−1

Am−1,1 Am,m

] [

u(1)

u(m)

]

=f, Am−1,1=A
�
1,m−1,

we can apply to it the principles of constructing multigrid preconditioned iterative algorithms,
as it was done in Eqs. (4), (5) for the two-grid variant.

3. Preconditioned conjugate direction methods

In the problem statement with a recursive ordering of unknowns, the problem of constructing
an iterative process reduces to finding a preconditioning matrix for the SLAE (6) and to
applying a conjugate direction method in Krylov subspaces.

First consider a two-sided preconditioning based on a matrix that allows for an efficient
Cholesky factorization,

B=LBUB, B−1=U−1
B L−1

B , UB=L�
B. (7)
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The preconditioned SLAE resulting from (1) is written as

Au=f, A=L−1
B AU−1

B , u=UBu, f=L−1
B f. (8)

Krylov type iterative methods for solving the symmetric system (8) are then represented in
the form

r0=f −Au0, p0=r0, n= 0, 1, . . . : un+1=un + αnp
n=u0 + α0p

n + · · ·+ αnp
n, (9)

rn+1=f −Aun+1=rn − αnApn=r0 − α0Ap
0 − · · · − αnAp

n,

where u0 is an arbitrary initial guess, and pn are the direction vectors satisfying the following
orthogonality conditions:

(

A
γ
pn, pk

)

= (pn, pk)γ=ρ(γ)n δk,n, ρ(γ)n = (pn, pn)γ . (10)

Here, δk,n is the Kronecker symbol, and the values γ= 0, 1, 2 correspond to the minimal er-
ror, conjugate gradient, and conjugate residual algorithms, respectively. This family of it-
erative processes, with the chosen hierarchical ordering of grid nodes and the corresponding
structures of the coefficient and preconditioning matrices, will be referred to as the multigrid
conjugate direction methods. Relations (9), (10) provide for minimization of the functionals
(

rn+1, rn+1
)

γ−2
in the Krylov subspaces

Kn+1

(

r0, A
)

=Span
{

r0, Ar0, . . . , A
n
r0
}

, (11)

and the following relations are valid:

Φγ

(

rn+1
)

=
(

rn+1, rn+1
)

γ−2
=Φγ

(

r0
)−

n
∑

k=0

(σ
(γ)
k )2/ρ

(γ)
k , σ

(γ)
k =

(

r0, pk
)

γ−1
.

For γ= 1, 2, these optimization properties are achieved by computing the iterative parameters
and direction vectors via the following formulas:

α(γ)
n =σ(γ)

n /ρ(γ)n , p0=r0, pn+1=rn+1 + β(γ)
n pn,

β(γ)
n =− (

rn+1, pn
)

γ
/ρ(γ)n =σ

(γ)
n+1/σ

(γ)
n .

(12)

For γ= 0, the above formulas are not applicable because they involve the inverse matrix A
−1

.
An alternative approach to finding the direction vectors is to apply the Lanczos orthogonaliza-

tion process. The coefficients α
(0)
n can be found from the representations of the error vectors

vn=u−un and the residual vectors rn=Avn resulting from the following representation of the
exact solution u=UBu:

u=u0 + α
(0)
0 p0 + · · ·+ α(0)

n pn + · · · ,
vn=α(0)

n pn + α
(0)
n+1p

n+1 + · · · ,
rn=α(0)

n Apn + α
(0)
n+1Ap

n+1 + · · · .
Thus, we obtain

α(0)
n = (vn, pn)/ρ(0)n =− α

(0)
n−1(v

n, Apn−1)/ρ(0)n =− α
(0)
n−1(r

n, pn−1)/ρ(0)n .

It should be kept in mind that since σ
(0)
0 = (r0, A

−1
p0), the initial direction vector cannot be

arbitrary and must be determined as follows:

p0=Ar0, σ
(0)
0 = (r0, r0).
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Now the Lanczos process for computing pn is as follows:

p0=Ar0, p1=Ap0 − α0p
0,

n= 1, 2, . . . : pn+1=Apn − αnp
n − βnp

n−1,

αn= (Apn, pn)/ρ(0)n , βn= (Apn, pn−1)/ρ
(0)
n−1, ρ(0)n =(pn, pn).

(13)

Note that if at every iteration the computations in (13) and (9) are carried out simultaneously,
then there is no need in storing all the direction vectors pn. The commonly used simplest
stopping criterion is the condition ||rn|| ≤ ε||f ||, with a given ε�1 (for more subtle approaches
and error estimates, see the survey [20]). Note that for γ= 0, the direction vectors can also be

computed by formulas (12), except for using σ
(0)
n .

Consider a special cost–effective variant of the two-sided preconditioning where the coeffi-
cient matrix is split as A=D + L+ U , where D,L, and U are the diagonal, lower triangular,
and upper triangular parts of A, respectively, and the preconditioning matrix is constructed
using the following incomplete factorization method:

B = (G+ L)G−1(G+ U) = G+ L+ U + LG−1U,

G=D − LG−1U − θS Se = (LG−1U − LG−1U)e,
(14)

where the overline means an approximation of a matrix; S is a diagonal matrix; e is a trial
(frequently, the unit) vector, and θ ∈ [0, 1] is a compensation parameter, see [22].

In what follows, we will use banded approximations (by C= (C)s the band part of the
matrix C with bandwidth s is denoted). If the matrix factors are defined by the relations

LB= (G+ L)U−1
G , UB=L−1

G (G+ U), G=LGUG, UG=L�
G, (15)

then the preconditioned matrix can be represented as follows:

A= (I + L)−1 + (I + U)−1 + (I + L)−1(D − 2I)(I + U)−1,

D=L−1
G DU−1

G , L=L−1
G LU−1

G , U=L−1
G UU−1

G ,

Av= (I + L)−1[v + (D − 2I)w] + w, w= (I + U)−1v.

(16)

If we apply this approach to a banded (for example, a diagonal or a tridiagonal) matrix G,
then the operations of multiplying a vector by the original matrix A and by the preconditioned
matrix A have approximately the same complexity.

In some cases, factorization of the preconditioning matrix is impractical. Then a one-sided
preconditioning of the SLAE is used. For γ= 1, 2, from the above relations we obtain the
following formulas in terms of the matrices A and B (the superscripts γ are omitted for
brevity):

• for the conjugate gradient methods,

r0=f −Au0, p0=B−1r0, αn=σn/ρn,

un+1=un + αnp
n, rn+1=rn − αnAp

n, pn+1=B−1rn+1 + βnp
n, (17)

σn= (rn, pn) =
(

B−1rn, rn
)

, ρn=(Apn, pn) , βn=σn+1/σn;

• for the conjugate residual methods,

r0=f −Au0, r̂0=p̂0=B−1r0, αn=σn/ρn,

un+1=un + αnp̂
n, r̂n+1=r̂n − αnB

−1Ap̂n, p̂n+1=r̂n+1 + βnp̂n, (18)

σn=
(

B−1r̂n, Ap̂n
)

=(Ar̂n, r̂n) , ρn=
(

B−1Ap̂n, Ap̂n
)

, βn=σn+1/σn.

Note that in both methods, at every iteration one multiplication by A and one multiplication
by B−1 are required, and in formulas (18) the vector r̂n is the preconditioned residual, i.e., in
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the exact arithmetic, r̂n=B−1rn=B−1(f −Aun), and at every iteration the value (B−1rn, rn)
is minimized.

Similarly, one can switch to one-sided preconditioning in the minimum error method, in
which the coefficients are computed by the formulas

α(0)
n =− α

(0)
n−1(B

−1rn, pn−1)/(B−1pn, pn), α(0)
n =− α

(0)
0 (B−1r0, r0)/(B−1p0, p0),

and the direction vectors are found by substituting pn=L−1
B pn into the Lanczos orthogonal-

ization formulas (13).

4. Multigrid incomplete factorization methods

Now, from the abstract algebraic representation of the algorithms we pass to their speci-
fications for seven-point SLAEs obtained using 3D parallelepipedal grids. Assume that the
coefficient matrix A in SLAE (1) is a Stieltjes matrix, i.e., it is symmetric positive definite
(s.p.d.), diagonally dominant (in general, not necessarily strictly but with at least one strictly
diagonally dominant row), and has positive diagonal and nonpositive off-diagonal entries.

Auxiliary matrices A(l) of the same type will be constructed for each of the grids Ωh
l . The

corresponding SLAEs will be written in the form

(A(l)u(l))t=a
(l)
t,tut +

6
∑

q=1

a
(l)
t,t+st,qu

(l)
t+st,q=f t, t= 1, . . . ,Nl, l= 1, 2, . . . ,m, (19)

where Nl is the order of the system, q= 1, 2, . . . , 6 are the numbers of diagonals (possibly

curved) from the lower triangular or upper triangular part of the matrix A(l).
In order to simplify the notation in (19), in what follows we consider uniform grids of the

form
Ωh
1 : xi+1=xi + h, yj+1=yj + h, zk+1=zk + h; i, j, k= 0, 1, 2, . . . ,

Ωh
l : xi+2l′=xi + 2l

′
hx, yj+2l′=yj + 2l

′
hy, zk+2j′=zk + 2l

′
hz,

i, j, k= 0,2l
′
, 2 · 2l′ , 3 · 2l′ , . . . , l′=l − 1, . . . ,m− 1.

In the case of nonuniform grids, only the coefficients of arithmetic expressions change,
whereas the general computational scheme of the algorithms described below remains the
same.

Consider a pair of neighboring systems from the family of algebraic systems (19),

A(l)u(l)=f (l), A(l+1)u(l+1)=f (l+1), l= 1, . . . ,m− 1,

where l corresponds to the finer grid and l + 1 corresponds to the coarser one. We subdivide
the nodes of Ωh

l into four subsets of different types and number them in the following way:

Ωh
l =Ω1

l ∪ Ω2
l ∪ Ω3

l ∪ Ω4
l , Ω4

l=Ωh
l+1.

Here, the subsets consist of the centers of volumes and faces, the midpoints of edges, and
the nodes of the embedded coarser grid Ωh

l+1, respectively, which are denoted by the symbols

⊗, ◦,×, and • in Fig. 1). Denoting the associated subvectors (of dimensions N
(l)
1 , N

(l)
2 , N

(l)
3 ,

N
(l)
4 ) in the lth SLAE by u

(l)
1 , u

(l)
2 , u

(l)
3 , u

(l)
4 and f

(l)
1 , f

(l)
2 , f

(l)
3 , f

(l)
4 , we write it in the resulting

block form as

A(l)u(l) =

⎡

⎢

⎢

⎢

⎢

⎣

A
(l)
1,1 A

(l)
1,2 0 0

A
(l)
2,1 A

(l)
2,2 A

(l)
2,3 0

0 A
(l)
3,2 A

(l)
3,3 A

(l)
3,4

0 0 A
(l)
4,3 A

(l)
4,4

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ū
(l)
1

ū
(l)
2

ū
(l)
3

ū
(l)
4

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

f̄
(l)
1

f̄
(l)
2

f̄
(l)
3

f̄
(l)
4

⎤

⎥

⎥

⎥

⎦

.
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Fig. 1. Nodes of the two-level method on cubic embedded grids.

Here, the right lower block is denoted by A
(l)
4,4=A(l+1) and is represented in a similar form

of block order four. Thus, the original block matrix A=A(1) is defined in a recursive m-stage
manner. Since in the representation considered of a SLAE with two-level ordering of variables,
corresponding to different numbers of embedded grids and types of nodes in each of them, the
notation of the vectors used has an unusual recursive structure:

(u(l)) = ((u
(l)
1 )�, (u(l)2 )�, (u(l)3 )�, (u(l+1))�)�, l= 1, 2, . . . ,m− 1;

moreover, for l + 1 =m the subvector u(m) is not partitioned.
For the matrix A(l)=D(l)+L(l)+U (l), the preconditioner is defined in the following factorized

form (recall that (C)1 denotes the diagonal part of the matrix C):

B(l)= (G(l) + U (l))(G(l))−1(G(l) + U (l))

=

⎡

⎢

⎢

⎢

⎢

⎣

G
(l)
1,1 0 0 0

A
(l)
2,1 G

(l)
2 0 0

0 A
(l)
3,2 G

(l)
3 0

0 0 A
(l)
4,3 G

(l)
4

⎤

⎥

⎥

⎥

⎥

⎦

(G(l))−1

⎡

⎢

⎢

⎢

⎢

⎣

G
(l)
1 A

(l)
1,2 0 0

0 G2 A
(l)
2,3 0

0 0 G
(l)
3 A

(l)
3,4

0 0 0 G
(l)
4

⎤

⎥

⎥

⎥

⎥

⎦

,
(20)

where

G
(l)
1 =A

(l)
1,1, G

(l)
2 =A

(l)
2,2 − (A

(l)
2,1(G

(l)
1 )−1A

(l)
1,2)1 − θ2S

(l)
2 ,

S
(l)
2 e2=

[

A
(l)
2,1(G

(l)
1 )−1A

(l)
1,2 − (A

(l)
2,1(G

(l)
1 )−1A

(l)
1,2)1

]

e2,

G
(l)
3 =A

(l)
3,3 −

(

A
(l)
3,2(G

(l)
2 )−1A

(l)
2,3

)

1
− θ3S

(l)
3 ,

S
(l)
3 e3=

[

A
(l)
3,2(G

(l)
3 )−1A

(l)
2,3 −

(

A
(l)
3,2(G

(l)
2 )−1A

(l)
2,3

)

1

]

e3,

G
(l)
4 =A

(l)
4,4 −A

(l)
4,3(G

(l)
3 )−1A

(l)
3,4.

Here, G
(l)
1 , G

(l)
2 , G

(l)
3 are diagonal matrices, and G

(l)
4 is a seven-diagonal matrix with the same

matrix portrait as A(l+1), which is the matrix of the SLAE corresponding to the next-level

grid. The compensation parameters θ
(l)
2 , θ

(l)
3 ∈ [0, 1] are considered distinct for generality, and

the trial vectors e
(l)
2 , e

(l)
3 have dimensions N

(l)
2 , N

(l)
3 . In order to specify the preconditioning

matrix B(l), we also need to represent the matrix G
(l)
4 in factorized form. We consider two
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factorizations. If l + 1 =m is the number of the last grid, then the exact triangular decompo-

sition G
(l)
4 =A(l+1)=L(l+1)U (l+1) is used. Otherwise, the matrix A(l+1)=G

(l)
4 in (20) is replaced

by the preconditioner B(l+1) defined by the same formula. The use of the preconditioner of
the form (20) formally corresponds to the Incomplete Factorization Implicit Method, IFIM,
see [22], with coefficient (based on the row sum criterion).

Note that if θ
(l)
2 =θ

(l)
3 = 1 (the full compensation mode), then the generalized row sum crite-

rion is applied to the initial and preconditioning matrices in the form Ae=Be, where

e=e(l)= ((e
(l)
1 )�, (e(l)2 )�, (e(l)3 )�, (e(l)4 )�)�,

e(l) ∈ RNl is defined recursively in the same way as u(l); the vectors e
(l)
2 , e

(l)
3 are defined in

accordance with (20), whereas the vectors e
(l)
1 , e

(l)
4 are chosen arbitrarily. In this case, the

preconditioned iterative method converges in one iteration, provided that the initial error
vector is equal to u− u0=e(l). Optimization of the compensation parameters θ and estimates
of the resulting convergence rate for some particular cases can be found in [22] and in the
references therein. In general, the problem of choosing the iterative parameters is still open.

A possible approach is to determine the values of θ
(l)
q , q= 2, 3, l= 1, . . . ,m, in (18) from the

condition (Be, e) = (Ae, e), which leads to expressions of the form

θ(l)q =μ(l)
q /(ν(l)q − μ(l)

q ), (21)

where

μ(l)
q =

(

A
(l)
q,q−1(G

(l)
q−1)

−1A
(l)
q−1,qe

(l)
q , e(l)q

)

, ν(l)q =
((

A
(l)
q,q−1(G

(l)
q−1)

−1A
(l)
q−1,q

)

1
e(l)q , e(l)q

)

.

In order to choose an appropriate number m of embedded grids, it is necessary to estimate
the computational complexity of the direct algorithm for solving the lth SLAE of dimension
Nl ≡ CN1×2−3(l−1), l= 1, 2, . . . ,m, where C is a constant. Since the triangular decomposition
method requires Ql ≈ CN3

l arithmetic operations, we have Qm/Q1 ≈ 23(1−m). This means,
for example, that the costs of using the direct algorithm in the two-grid method are 512 =29

times less and for m= 3 they are 218 times less than in solving the original SLAE by a direct
method. And since the preconditioning quality deteriorates and convergence rate slows down
as the number of grids grows, we conclude that in practice the choice of a multigrid method
reduces to choosing between m= 2 and m= 3.

Application of a preconditioning matrix B in computing approximate solutions un is based
on solving the auxiliary SLAEs

Bvn=rn ≡ f −Aun, (22)

where
B= (G+ L)G−1(G+ U), vn= (vn1 , v

n
2 , v

n
3 , v

n
4 ),

and u0 is an arbitrary initial vector.
With account for the structure of the preconditioner B and given the residual vector rn,

the solution of SLAE (22) is carried out using the relations

(G+ L)wn=rn, (G+ U)vn=Gwn, G=diag {Gk}, (23)

which, in block form, are as follows:

G1w
n
1=rn1 ; k= 2, 3, 4 : Gkw

n
k=rnk −Ak,k−1w

n
k−1;

vn4=wn
4 ; k= 3, 2, 1 : vk=wk −G−1

k Ak,k+1w
n
k .

(24)

It is important to observe that solution of the auxiliary SLAE with the matrix G4 from
(24) actually means solution of the system on the coarse grid Ω2, having the same seven-

diagonal structure as the matrix A(2); formulas (24) for k= 2, 3, 4 correspond to the reduction
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(restriction) stage of the two-grid method, whereas for k= 3, 2, 1 they describe the prolongation
stage, and solution of the SLAE with the coefficient matrix G4 is the coarse grid correction.

Note that in accordance with (14), formulas (22)–(24) determine an incomplete factorization
method. In the simpler case where G=ω−1D, they represent either a symmetric (if A is a
symmetric matrix) or an unsymmetric method of successive over-relaxation, SSOR or USSOR,
respectively. If ω= 1 and A is a Stieltjes matrix, then the SSOR method (which coincides with
the symmetric Seidel method), gives rise to a monotone preconditioning matrix. Moreover,
the factors of the triangular decomposition of this matrix,

B1=L1U1, L1= (D + U)U−1
D =U�

1 , D=LDUD, (25)

also are monotone, i.e., the inverse matrices B−1
1 , L−1

1 , U−1
1 are nonnegative. Therefore, when

multiplied by vectors, the latter matrices possess certain smoothing properties (see [8, 12]),
whence the preconditioner (25) can be used as a smoothing operator. More exactly, one can
use the “double” preconditioning with the matrix

B=L1L2U2U1=B
�
, (26)

where L2U2 is an IFIM or a SSOR type preconditioner. In this case, at every iteration inversion
of the matrices L1 and U1 in formulas (23) corresponds to the stages of preliminary and final
smoothing, respectively. It is not difficult to show that if θ2, θ3 ∈ (0, 1) and ω ∈ (0, 2), then
all the considered preconditioning matrices, including those of the form (25) in the case of
smoothing, are positive definite. This ensures the convergence of all the proposed iterative
multigrid incomplete factorization methods in Krylov subspaces.

5. Possible extensions of the algorithms

The multigrid approaches considered above remain applicable to the seven-point grid equa-
tions whenever the computational domain is composed of parallelepipeds, and the boundary
conditions of mixed type are allowed, provided that the coefficient matrix of the SLAE being
solved remains a Stieltjes matrix. Naturally, the grid can be parallelepipedal not literally, but
topologically. However, if it becomes irregular and/or unstructured, then the construction of
the algorithms proposed needs additional investigation. The same applies to the higher-order
schemes, in which, for example, to every node, edge, and face several unknowns correspond.
In such a case, possible block generalizations of multigrid methods not only result in a much
more complicated computational process but also make its analysis significantly more difficult.

Reducing the dimension of the boundary-value problem significantly simplifies the ap-
proaches under consideration both for rectangular and triangular grids. Transition to a 3D
computational domain with a tetrahedral grid neither implies essential difficulties because in
this case as well the recursive vector structure of embedded grids gives rise to SLAEs with
block tridiagonal matrices. This makes it possible to use preconditioners and conjugate direc-
tion methods of the same types at different grid levels.Yet another possible generalization of
the AMG approach consists in passing to nonuniform matrix structures in the algebraic sys-
tems obtained on a sequence of embedded grids. Finally, we note that the algorithms can be
generalized to the unsymmetric case by using the preconditioned generalized minimal residual
method (GMRFS), see the surveys [7, 20].

Translated by the author.

REFERENCES

1. R. P. Fedorenko, “About Convergence Rate for An Interational Process,” Zh. Vychisl. Mat.
Mat. Fiz., 4, No. 3, 559–564 (1964).

531



2. N. S. Bakhvalov, “On the convergence of a relaxation method with natural restrictions on
an elliptic operator,” Zh. Vychisl. Mat. Mat. Fiz., 5, No. 5, 861–893 (1965).

3. F. A. Bornemann and P. Deuflhard, “The cascadic multigrid methods for elliptic problems,”
Numer. Math., 75, No. 2, 135–152 (1996).

4. V. P. Il’in, “A variant of the multigrid method,” Sib. Mat. Zh., 26, No. 2, 102–107 (1985).
5. V. V. Shaidurov, “Some estimates of the rate of convergence for the cascadic conjugate-

gradient method,” J. Comput. Math. Appl., 31, No. 4/5, 161–171 (1996).
6. A. Brandt, “Algebraic multigrid theory: The Symmetric Case,” J. Appl. Math. Comput.,

19, 23–56 (1986).
7. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM (2003).
8. M. A. Olshanksii, “Analysis of a multi-grid method for convection-diffusion equations with

Direchlet boundary conditions,” Zh. Vychisl. Mat. Mat. Fiz., 44, No. 8., 1450–1479 (2004).
9. Y. Notay, “Algebraic multigrid and algebraic multilevel methods: A theoretical compari-

son,” Numer. Linear Algebra Appl., 12, 419–451 (2005).
10. R. Bank, R. Falgout, T. Jones, T. Manteuffel, S. McCormick, and J. Ruge, “Algebraic

multigrid domain and range decomposition (AMG-DD/AMG-RD),” SIAM J. Sci. Com-
put., 37, 113–136 (2015).

11. Y. V. Vassilevski and M. A. Olshanskii, Short Course on Multi-Grid and Domain Decom-
position Methods [in Russian], Moscow, MAKS Press Publ. (2007).

12. P. Vanek, “Smoothed prolongation multigrid with rapid coarsening and massive smooth-
ing,” Appl. Math., 57, No. l, 1–10 (2012).

13. M. Brezina, R. Falgout, S. Maclachlani, T. Manteuffel, S. Mccormjcki, and J. Rugei,
“Adaptive smoothed aggregation (ASA),” SIAM J. Sci. Comput., 25, No. 6, 1896–1920
(2004).

14. Y. Notay, “Analysis of two-grid methods: The nonnormal case,” Report GANMN 18-01
(2018).

15. Y. Notay and A. Napov, “A massively parallel solver for discrete Poisson-like problems,”
J. Comp. Phys., 231, 237–250 (2015).

16. Y. Notay and A. Napov, “An efficient multigrid method for graph Laplacian systems II:
Robust aggregation,” SIAM J. Sci. Comput., 39, No. 5, 379–403 (2017).

17. J. Xu and L. Zikatanov, Algebraic Multigrid Methods, Cambridge University Press (2017).
18. Y. L. Gugieva, V. P. Il’in, and A. V. Petukhov, “On multigrid methods for solving two-

dimensional boundary value problems,” Zap. Nauchn. Semin. POMI, 482, 14–27 (2019);
English transl., J. Math. Sci., 249, No. 2, 118–127 (2020).

19. D. Demidov, “AMGCL: An efficient, flexible, and extensible algebraic multigrid imple-
mentation,” Lobachevskii J. Math., 40, No. 5, 535–546 (2019).

20. V. P. Il’in, “Iterative preconditioned methods in Krylov subpaces: Trends of the 21st
Century,” Zh. Vychisl. Mat. Mat. Fiz., 61, No. 11, 1786–1813 (2021).

21. V. P. Il’in, Mathematical Modeling. Part I. Continuous and Discrete Models [in Russian],
SB RAS Publ., Novosibirsk (2017).

22. V. P. Il’in, Finite Element Methods and Technologies [in Russian], ICMMG SB RAS Publ.,
Novosibirsk (2007).

532


	Abstract
	1. Introduction
	2. General scheme of multigrid approaches
	3. Preconditioned conjugate direction methods
	4. Multigrid incomplete factorization methods
	5. Possible extensions of the algorithms
	REFERENCES

