Mathematics and telecommunication networks: general principles and open issues

Michele Pagano

e-mail:m.pagano@iet.unipi.it

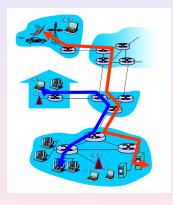
Dipartimento di Ingegneria dell'Informazione Università di Pisa

Novosibirsk June 29th

Outline

- Telephone networks and Classical Teletraffic Theory
 - Public Switched Telephone Network
 - Teletraffic theory
- Network architecture of the Internet
 - Packet Switching Principles
 - Congestion control
 - TCP Linux
- Internet traffic features
 - POTS vs. Internet
 - Why fractals?
 - Queueing performance
- 4 Conclusions

Plain Old Telephone Service (POTS)



- Circuit switching
 - Resources reserved for call
 - link bandwidth
 - switch capacity
 - Dedicated resources: no sharing
 - Call set-up required
- Teletraffic theory and POTS: one of the most successful applications of mathematics in industry

POTS and teletraffic theory

- Highly static nature of PSTN
 - Homogeneous systems
 - Limited variability
 - ⇒ Existence of universal laws
- Agner Krarup Erlang (1878-1929) Danish mathematician, the father of queueing theory, has worked for the Copenhagen Telephone Company (KTAS in Danish) for almost 20 years
 - The Erlang B formula gives the (steady-state) probability that a trunk is not available as a function of the load and the number of trunks in a loss system
 - The Erlang C formula gives the (steady-state) probability that an arrival must wait before beginning service in a delay system

Michele Pagano Mathematics and Internet 4 / 26

General features of POTS traffic

- Poisson nature of call arrivals at links where traffic is highly aggregated
 - Parsimonious traffic model

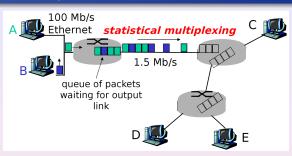
Palm-Khintchine theorem

The superposition of a large number of independent equilibrium renewal processes, each with a small intensity, behaves asymptotically like a Poisson process

- Call holding times follow more or less an exponential distribution
 - Insensitivity property of the Erlang B formula (Kosten, 1948)
- Mathematically tractable models could be used to predict accurately many performance measures of interest

Michele Pagano Mathematics and Internet 5 / 26

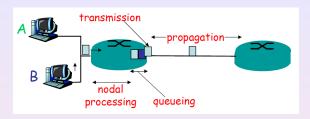
Packet Switching



- Each end-end data stream is divided into packets
 - Users share network resources: statistical multiplexing
 - Each packet uses full link bandwidth
 - Resources are used as needed
- Resource contention
 - Aggregate resource demand can exceed the amount available
 - Need for end-to-end congestion control mechanisms

Michele Pagano Mathematics and Internet 6 / 26

Node delay



- Processing delay d_{proc}
- Queueing delay dqueue
- Transmission delay d_{trans} the delay between the times that the first and the last bits of the packet are transmitted

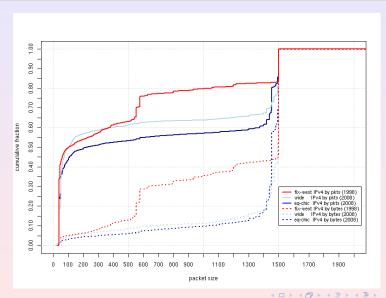
$$d_{trans} = L/R$$

where L is the packet length and R is the transmission rate

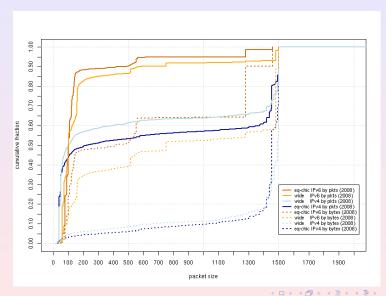
Propagation delay d_{prop}

Michele Pagano Mathematics and Internet 7 / 26

Packet length distribution



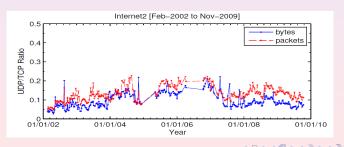
Packet length distribution



4 L F 4 DF F 4 E F 4 E F 9) U(*)

Transmission Control Protocol (TCP)

- Connection-oriented transport protocol that provides a reliable byte-stream data transfer service between pairs of processes
- Key features:
 - Connection-oriented
 - Multiplexing/Demultiplexing
 - Reliability
 - Flow Control
 - Congestion Control TCP sensitive to network conditions



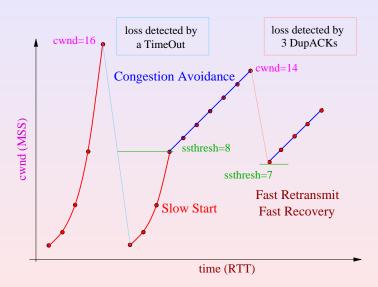
Michele Pagano Mathematics and Internet 10 / 26

TCP Congestion Control

- TCP seeks to
 - achieve high utilization
 - control congestion
 - share bandwidth
- TCP Congestion Control is window-based
 - cwnd state variable that limits how much data TCP is allowed to have in transit
 - A TCP source calculates cwnd according to the level of congestion it perceives to exist in the network
- TCP assumes packet losses are caused by congestion
- Behaviour of cwnd
 - no losses ⇒ more bandwidth is available ⇒ cwnd
 - loss of a packet ⇒ network congestion ⇒ cwnd \
- Differentiation between major and minor congestion events
 - Introduction of Fast Recovery mechanism

Michele Pagano Mathematics and Internet 11 / 26

Classical TCP Congestion Control (TCP Reno)



Michele Pagano Mathematics and Internet 12 / 26

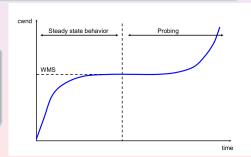
Main TCP Linux Variants

Cubic and Reno (NewReno)

- Loaded into the kernel, via standard kernel module mechanism
- Information available in /proc/sys/net/ipv4
 - tcp_allowed_congestion_control cubic reno
 - tcp_congestion_control cubic

Key features of TCP CUBIC

- Cubic growth of cwnd
- Default since 2.6.19
 Linux kernel



Michele Pagano Mathematics and Internet 13 / 26

Is -a /lib/modules/'uname -r'/kernel/net/ipv4/tcp*

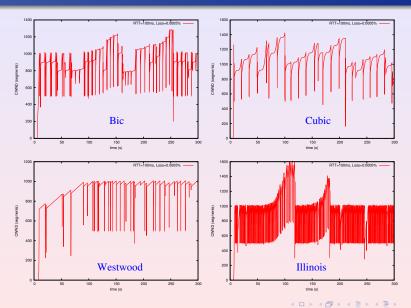
kernel 2.6.35-30

- tcp_bic.ko
- tcp_highspeed.ko
- tcp_htcp.ko
- tcp_hybla.ko
- tcp_illinois.ko
- tcp_lp.ko
- tcp_probe.ko
- tcp_scalable.ko
- tcp_vegas.ko
- tcp_veno.ko
- tcp_westwood.ko
- tcp_yeah.ko

kernel 4.4.0-97

- tcp_bic.ko
- tcp_cdg.ko
- tcp_dctcp.ko
- tcp_diag.ko
- tcp_highspeed.ko
- tcp_htcp.ko
- tcp_hybla.ko
- tcp_illinois.ko
- tcp_lp.ko
- tcp_probe.ko
- tcp_scalable.ko
- tcp_vegas.ko
- tcp_veno.ko
- tcp_westwood.ko
- tcp_yeah.ko

Behaviour of some Linux TCP Variants



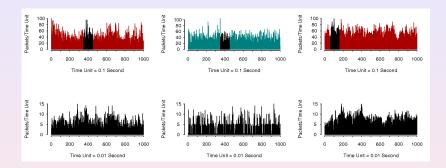
Michele Pagano Mathematics and Internet 15 / 26

Statistical features of data traffic

- End-to-end congestion control
 - Traffic is shaped by the conditions each connections has encountered in its past
- Data traffic is much more variable than voice traffic
 - Mice and elephant data flows
 - Highly different rates
 - Heterogeneous applications
 - High burstiness
- Mathematics of high or extreme variabilities
 - Temporal high variability ⇒ Long Range Dependence
 - Spatial high variability ⇒ Heavy-tailed distributions
 - Lack of a dominant time scale ⇒ Fractals

Michele Pagano Mathematics and Internet 16 / 26

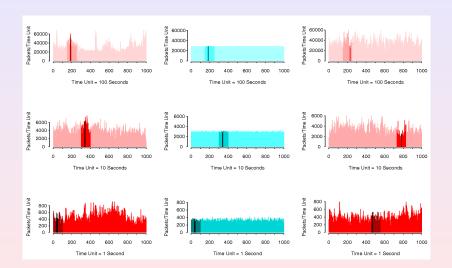
Traffic Self-similarity



M. S. Taqqu, W. Willinger, R. Sherman *Proof of a fundamental result in self-similar traffic modeling*, Computer communication review, 1997

Michele Pagano Mathematics and Internet 17 / 26

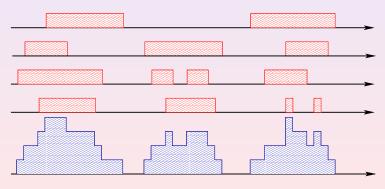
Traffic Self-similarity



Michele Pagano Mathematics and Internet 18 / 26

Limit theorems for aggregated traffic

- Let us consider a network with a high number of hosts communicating with each other
- Each source is modeled according to a binary On-Off alternating renewal process



Michele Pagano Mathematics and Internet 19 / 26

Flow characterization

Fluid on-off model

$$I(t) = \begin{cases} 0 & t \in \text{Off interval} \\ 1 & t \in \text{On interval} \end{cases}$$

- Denote by $\mu_{\rm on}$ and $\mu_{\rm off}$ the mean sojourn times in On and Off states
- Assume that

$$\overline{F}_{
m on} \simeq \ell_{
m on} \ x^{-lpha_{
m on}} \ L_{
m on}(x) \quad (1 < lpha_{
m on} < 2)$$
 or $\sigma_{
m on}^2 < \infty \ \Rightarrow lpha_{
m on} \stackrel{\Delta}{=} 2$

and

$$\overline{F}_{
m off} \simeq \ell_{
m off} \, x^{-lpha_{
m off}} \, L_{
m off}(x) \quad (1 < lpha_{
m off} < 2)$$
 or $\sigma_{
m off}^2 < \infty \ \Rightarrow lpha_{
m off} \stackrel{\Delta}{=} 2$

Michele Pagano Mathematics and Internet 20 / 26

Superposition of On-Off sources: Key result

 Aggregate cumulative packet counts for N IID sources in the interval [0, tT]

$$A_N(tT) = \int_0^{tT} \left(\sum_{k=1}^N I_k(u) \right) du$$

 Convergence to fractional Brownian motion (fBm) Z_H(t) for high values of N and T

$$\lim_{T \to \infty} \lim_{N \to \infty} \frac{1}{T^H \sqrt{L(T)} \sqrt{N}} \left(\underbrace{A_N(tT)}_{} - TN \, \frac{\mu_{\text{on}}}{\mu_{\text{on}} + \mu_{\text{off}}} \, t \right) \stackrel{(\textit{d})}{=} \, \sigma_{\text{lim}} Z_H(t)$$

where

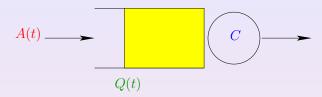
$$H = \frac{3 - \alpha_{\min}}{2} \in (1/2, 1)$$
 and $\alpha_{\min} = \min(\alpha_{\text{on}}, \alpha_{\text{off}})$

 Noah Effect at source level (heavy tails) produces aggregate network traffic that exhibits the Joseph Effect (self-similarity)

< □ > ← □ > ← □ > ← 필 > ← □

Michele Pagano Mathematics and Internet 21 / 26

Single server queue with infinite buffer



- A(t) = mt + X(t) Gaussian traffic model
- Constant service rate C > 0 and $r \stackrel{\triangle}{=} C m > 0$

Logarithmic large buffer asymptotic (LDT result)

$$\mathbb{P}(Q > b) symp \sup_{t \in \mathbb{R}} \exp\left(-rac{(b+rt)^2}{2v(t)}
ight) = \exp\left(-\inf_{t \in \mathbb{R}} rac{(b+rt)^2}{2v(t)}
ight)$$
 where $v(t) = \mathbb{D}X(t)$

Michele Pagano Mathematics and Internet 22 / 26

Large buffer asymptotic $(b \to \infty)$

Exact asymptotic for fBm

$$\mathbb{P}(Q > b) \sim \frac{\alpha(H)}{\sqrt{2\pi}\beta(H)} \cdot b^{\gamma} \exp\left(-\Theta b^{2-2H}\right)$$

where $\gamma = 2H - 3 + \frac{1}{H}$

$$\alpha(H) \stackrel{\triangle}{=} \frac{\mathcal{H}_{2H}\sqrt{\pi}}{2^{(1-H)/2H}\sqrt{H}} \left(\frac{H}{r(1-H)}\right)^{H-1} \left(\frac{1}{1-H}\right)^{(2-H)/H}$$

$$\beta(H) \stackrel{\Delta}{=} \left(\frac{r(1-H)}{H}\right)^H \frac{1}{1-H}$$

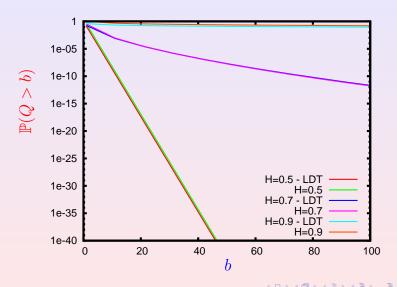
Pickands constants

$$\mathcal{H}_{lpha} \; \stackrel{\Delta}{=} \; \lim_{T o \infty} rac{1}{T} \cdot \mathbb{E} \exp \left(\sup_{t \in [0,T]} \left(\sqrt{2} B_{lpha/2}(t) - t^{lpha}
ight)
ight)$$

where $\alpha \in (0,2]$ and $B_{\alpha/2}$ – fBm with Hurst parameter $\alpha/2$

Michele Pagano Mathematics and Internet 23 / 26

Asymptotic ($b \to \infty$) for fBm



Michele Pagano Mathematics and Internet 24 / 26

Conclusions

IETF (Internet Engineering Task Force) motto

We reject kings, presidents and voting. We believe in: rough consensus and running code

- Differences between POTS and Internet
 - Circuit vs. packet switching
 - Homogeneous vs. heterogeneous systems
 - Limited variability vs. burstiness
 - Poisson vs. LRD
 - Exponential distribution vs. heavy tails
- Relevance of LRD in terms of network performances
 - Buffers are not the solution!
- Big challenges for mathematicians and statisticians
 - Parsimonious modelling
 - Parameter estimations
 - Queueing performance

